首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Urothelial umbrella cells are characterized by apical, rigid membrane plaques, which contain four major uroplakin proteins (UP Ia, Ib, II and III) forming UPIa/UPII and UPIb/UPIII pairs. These integral membrane proteins are thought to play an important role in maintaining the physical integrity and the permeability barrier function of the urothelium. We asked whether the four uroplakins always coexpress in the entire human lower urinary tract. We stained immunohistochemically (ABC-peroxidase method) paraffin sections of normal human ureter (n = 18) and urinary bladder (n = 10) using rabbit antibodies against UPIa, UPIb, UPII and UPIII; a recently raised mouse monoclonal antibody (MAb), AU1, and two new MAbs, AU2 and AU3, all against UPIII; and mouse MAbs against umbrella cell-associated cytokeratins CK18 and CK20. Immunoblotting showed that AU1, AU2 and AU3 antibodies all recognized the N-terminal extracellular domain of bovine UPIII. By immunohistochemistry, we found that in 15/18 cases of human ureter, but in only 2/10 cases of bladder, groups of normal-looking, CK18-positive umbrella cells lacked both UPIII and UPIb immunostaining. The UPIb/UPIII-negative cells showed either normal or reduced amounts of UPIa and UPII staining. These data were confirmed by double immunofluorescence microscopy. The distribution of the UPIb/UPIII-negative umbrella cells was not correlated with localized urothelial proliferation (Ki-67 staining) or with the distribution pattern of CK20. Similar heterogeneities were observed in bovine but not in mouse ureter. We provide the first evidence that urothelial umbrella cells are heterogeneous as some normal-looking umbrella cells can possess only one, instead of two, uroplakin pairs. This heterogeneity seems more prominent in the urothelium of human ureter than that of bladder. This finding may indicate that ureter urothelium is intrinsically different from bladder urothelium. Alternatively, a single lineage of urothelium may exhibit different phenotypes resulting from extrinsic modulations due to distinct mesenchymal influence and different degrees of pressure and stretch in bladder versus ureter. Additional studies are needed to distinguish these two possibilities and to elucidate the physiological and pathological significance of the observed urothelial and uroplakin heterogeneity.  相似文献   

2.
The expression of cytokeratin (CK) 17 was studied in 28 primary transitional cell carcinomas (TCCs) of the human urinary tract using CK 17-specific monoclonal antibody E3. While CK 17 was not detectable at all or only present in some areas of basal cells in normal—appearing urothelium, a certain subpopulation of cells of all G1 and G1/G2 TCCs examined (9 cases) stained positive for CK 17. These latter cells were either restricted to the basal compartment or located also in suprabasal layers exhibiting a decreasing intensity of immunoreactivity. CK 17 was seen in practically all cells in G2 and G2/G3 tumors (7 cases). In contrast, G3 TCCs and anaplastic carcinomas showed a highly variable CK 17 staining pattern ranging from completely negative to completely positive with several intermediate phenotypes. Our results indicate that CK 17 could be a useful marker for the progression of urinary tumors.  相似文献   

3.
Cytokeratins (CKs) are a group of 20 antigenically distinct intermediate filaments, generally confined to epithelia and their neoplasms. Immunostaining for CKs, in particular coordinate staining for CK7 and CK20, has become a useful tool in diagnostic pathology. Although studies defining CK distribution in neoplasms identify 0--7.7% of renal cell carcinomas (RCCs) positive for CK20, none has described the incidence of CK20 immunopositivity in renal oncocytomas (ROs). Distinction between RCC and RO may be difficult but this distinction is clinically significant, prompting us to establish the incidence of CK20 positivity in RO. We selected fifteen surgical cases of RO from our archives and studied their immunoreactivity for CKs including CK7 and CK20; 12/15 (80%) were positive for CK20, with variation in the number of cells staining. There was also variation in the distribution of CKs within the cells, including diffuse cytoplasmic, perinuclear, and a punctate or dot-like pattern. Such punctate staining corresponds to cytoplasmic balls of intermediate filaments and has been described with CAM 5.2 in RO and CK20 in Merkel cell carcinomas. Our findings suggest that CK20 immunohistochemistry is a useful tool for distinguishing RCCs from ROs. (J Histochem Cytochem 49:919-920, 2001)  相似文献   

4.
Monoclonal antibodies which recognize one or only a few keratin polypeptides have been used to study the distribution of different keratins in benign and malignant breast lesions by immunocytochemical methods. Seven monoclonal antibodies which recognized either different keratin polypeptides by immunoblotting techniques, or identified different epithelial cell types in complex tissues were used. In two mastopathies and three fibroadenomas the antibody lu5 stained luminal cells as well as myoepithelial cells. In contrast the antibodies CK7, Troma 1, CK2 and KA4 labeled only luminal cells, whereas antibody CKB1 decorated only myoepithelial cells. All 15 ductal carcinomas showed a uniform staining of tumor cells with the antibodies Troma 1, CK2, KA4 and lu5. The antibody CK7 also stained all ductal carcinomas, but in two specimens the staining was heterogeneous. The antibody CKB1 decorated only the pre-existing myoepithelial cells in 11 of 12 ductal carcinomas but in the remaining specimen the tumor cells were also strongly positive. Tumor cells in lobular carcinomas were labeled by antibodies CK7, Troma 1, CK2, KA4, bu not by CKB1. The antibody CKS1 showed no staining of any of the benign and malignant breast lesions.  相似文献   

5.
Patterns of cytokeratin and vimentin expression in the human eye   总被引:1,自引:0,他引:1  
Summary We studied the expression of the various cytokeralin (CK) polypeptides and vimentin in tissues of the human eye by applying immunocytochemical procedures using a panel of monoclonal antibodies as well as by performing biochemical analyses of microdissected tissues. Adult corneal epithelium was found to contain significant amounts of the cornea-specific CKs nos. 3 and 12 as well as CK no. 5, and several additional minor CK components. Among these last CKs, no. 19 was found to exhibit an irregular mosaiclike staining pattern in the peripheral zone of the corneal epithelium, while having a predominantly basal distribution in the limbal epithelium. Both the fetal corneal epithelium and the conjunctival epithelium were uniformly positive for CK no. 19. In the ciliary epithelium, co-expression of CKs nos. 8 and 18 and vimentin was detected, whereas in the retinal pigment epithelium, CKs nos. 8 and 18 were dominant. The present data illustrate the remarkable diversity and complexity of CK-polypeptide expression in the human eye, whose significance with respect to histogenetic and functional aspects is, as yet, only partially clear. The unusual distribution of CK no. 19 in different zones of the corneal epithelium may be related to the specific topography of corneal stem cells. The occurrence of the expression of simple-epithelium CKs in the ciliary and pigment epithelium demonstrates that, despite their neuroectodermal derivation, these are true epithelia.Supported by a grant from the Deutsche Forschungsgemeinschaft (Mo 345-3).  相似文献   

6.
Patterns of cytokeratin and vimentin expression in the human eye   总被引:2,自引:0,他引:2  
We studied the expression of the various cytokeratin (CK) polypeptides and vimentin in tissues of the human eye by applying immunocytochemical procedures using a panel of monoclonal antibodies as well as by performing biochemical analyses of microdissected tissues. Adult corneal epithelium was found to contain significant amounts of the cornea-specific CKs nos. 3 and 12 as well as CK no. 5, and several additional minor CK components. Among these last CKs, no. 19 was found to exhibit an irregular mosaic-like staining pattern in the peripheral zone of the corneal epithelium, while having a predominantly basal distribution in the limbal epithelium. Both the fetal corneal epithelium and the conjunctival epithelium were uniformly positive for CK no. 19. In the ciliary epithelium, co-expression of CKs nos. 8 and 18 and vimentin was detected, whereas in the retinal pigment epithelium, CKs nos. 8 and 18 were dominant. The present data illustrate the remarkable diversity and complexity of CK-polypeptide expression in the human eye, whose significance with respect to histogenetic and functional aspects is, as yet, only partially clear. The unusual distribution of CK no. 19 in different zones of the corneal epithelium may be related to the specific topography of corneal stem cells. The occurrence of the expression of simple-epithelium CKs in the ciliary and pigment epithelium demonstrates that, despite their neuroectodermal derivation, these are true epithelia.  相似文献   

7.
In superficial umbrella cells of normal urothelium, uroplakins (UPs) are assembled into urothelial plaques, which form fusiform vesicles (FVs) and microridges of the apical cell surface. Altered urothelial differentiation causes changes in the cell surface structure. Here, we investigated ultrastructural localization of UPIa, UPIb, UPII and UPIIIa in normal and cyclophosphamide-induced preneoplastic mouse urothelium. In normal urothelium, terminally differentiated umbrella cells expressed all four UPs, which were localized to the large urothelial plaques covering mature FVs and the apical plasma membrane. The preneoplastic urothelium contained two types of superficial cells with altered differentiation: (1) poorly differentiated cells with microvilli and small, round vesicles that were uroplakin-negative; no urothelial plaques were observed in these cells; (2) partially differentiated cells with ropy ridges contained uroplakin-positive immature fusiform vesicles and the apical plasma membrane. Freeze-fracturing showed small urothelial plaques in these cells. We concluded that in normal urothelium, all four UPs colocalize in urothelial plaques. However, in preneoplastic urothelium, the growth of the uroplakin plaques was hindered in the partially differentiated cells, leading to the formation of immature FVs and ropy ridges instead of mature FVs and microridges. Our study demonstrates that despite a lower level of expression, UPIa, UPIb, UPII and UPIIIa maintain their plaque association in urothelial preneoplastic lesions.  相似文献   

8.
Cytokeratins (CKs) are known as the intermediate filament proteins of epithelial origin. Their distribution in human epithelia is different according to the type of epithelium, state of growth and differentiation. We used monoclonal mouse antibodies against cytokeratins to study CK expression in the following human tissues: cholesteatoma, middle ear mucosa, glandular epithelium, and meatal ear canal epithelium. Immunohistochemical processing was performed using the labeled steptavidin peroxidase method to demonstrate the presence of CKs in cells of human epidermis. Positive reaction was obtained for CK4, CK34betaE12, CK10, CK14 in skin and cholesteatoma epithelium. However, a more extensive positive reaction with those CKs was observed in cholesteatoma epithelium. Positive immunoreactivity was seen with anti- CK19 in the glandular epithelium. Middle ear mucosa specimens revealed positive immunoreactivity with the antibodies against CK4. The expression of CK4 was definitely positive within the basal layers of the epidermis. The glandular epithelium showed no positive reaction with anti- CK4, anti- CK34betaE12, anti- CK14 and anti-CK10. Immunohistochemistry for CK18 showed no reaction in all examined tissues. Cholesteatoma is known as a proliferative disease in the middle ear which pathogenesis is not completely understood. Keratinocytes express hyperproliferation- associated CKs and after reaching the suprabasal layers they finally undergo apoptosis creating keratinous debris. Cytokeratin expression observed in the epithelium explains proliferative behavior of cholesteatoma which is associated with increased keratinocyte migration. Cytokeratins can be used as potential proliferative markers. It can also allow for searching the usefulness of inhibiting regulators in the treatment of hyperproliferative diseases.  相似文献   

9.
To evaluate proliferating cell nuclear antigen (PCNA) staining for assessing proliferative activity in routine pathology specimens of urinary bladder, the bladder carcinoma cell line J82 and a total of 122 specimens of normal bladder and urothelial lesions were stained with the antibody clone PC10 against proliferating cell nuclear antigen. In in vitro plateau cultures the proportion of PCNA-positive cells exceeded that of Ki-67-positive cells, and only very few cells were negative. In formalin-fixed tissues, the PCNA staining pattern, which should be confined to replicon units in the nucleus, was optimized by 1 h postfixation in an organic solvent (methacarn). Sections showed positive nuclear staining confined to basal and some suprabasal cells in normal urothelium and grade 1 dysplasias, but more generalized nuclear staining in all other neoplastic lesions. In addition, stromal cells adjacent to invasive tumors showed nuclear positivity in some instances. Using quantitative true color image analysis of sections counterstained with hemalum, the degree of brown staining of the PCNA reaction product is contrasted with the blue staining of the nuclear area. With this method low contrast specific staining not appreciated optically can be reliably detected. Image analysis data confirmed observations made on noncounterstained sections and showed significant differences between grade 1 and 2 dysplasias as well as between grade 1 dysplasia and all grades of papillary tumor. Furthermore, a significant difference in PCNA staining indices was found between grade 1 and 3 bladder carcinomas. The results indicate that PCNA staining using the PC10 antibody is not confined to the proliferative fraction of neoplastic urothelium. In contrast with data from normal tissue and malignant hematological neoplasms, the amount of PCNA is regulated differently in urothelial neoplasms, emphasizing the biological differences between the following two sets: mild dysplasia and moderate dysplasia; mild dysplasia and papillary carcinomas. The use of image analysis to standardize the detection process after controlled staining conditions is advisable in order to provide reliable data. Supported by the DFG project: Knuechel/Urothelcarcinom 263  相似文献   

10.
Keratocystic odontogenic tumor (KOT) is a benign cystic tumor that affects the jaw bones and may be associated with the nevoid basal cell carcinoma syndrome (NBCCS). Twenty-five cases diagnosed as KOT, including primary and recurrent tumors and those associated with NBCCS, were submitted to immunohistochemical study for analysis of cytokeratins (CKs) 7, 8, 10, 13, 14, 18 and 19. The results showed CK13 immunostained on the intermediate layers and upper cells. CK14 was expressed in all epithelial layers and in those areas where inflammation and subepithelial splits were present; this protein was preserved within the basal cells. CK 18 was expressed mainly in the basal layer, whereas CK19 was expressed mainly on the intermediate and superficial layers. The remaining CKs tested were not immuoreactive. The status of maturation of cytokeratin seems to be altered on KOTs, and this is not distinct when different tumors are compared.  相似文献   

11.
To clarify how root-synthesized cytokinins (CKs) are transported to young shoot organs, CK distribution patterns were analysed in free-CK-responsive ARR5::GUS transformants of Arabidopsis thaliana (L.) Heynh. together with free plus bound CKs using specific CK monoclonal antibodies. Plants were subjected to two different growth conditions, completely protected from any air movement, or exposed to gentle wind 3 h before harvesting. In wind-protected plants the strongest ARR5::GUS expression was found in the root cap statocytes, spreading upwards in the vascular cylinder. This pattern in roots was congruent with that found by CK immunolocalization. Shoots of wind-protected plants displayed either no or only low ARR5::GUS expression in the stem vascular bundles, nodal ramifications, and the bases of flower buds; shoot vascular bundles showed patterns of acropetally decreasing staining and the apical parts of buds and leaves were free from ARR5::GUS expression. In wind-exposed plants ARR5::GUS expression was considerably increased in shoots, also in basal-to-apical decreasing gradients. Immunolabelled shoots showed differential staining, with the strongest label in the vascular bundles of stems, leaves, and buds. The fact of the apparent absence of free CK in the buds of wind-protected plants and the typical upward decreasing gradients of free and conjugated CKs suggest that the bulk of the CK is synthesized in the root cap, exported through the xylem and accumulates at sites of highest transpiration where cuticles do not yet exist or do not protect against water loss.  相似文献   

12.
The expression of cytokeratins (CKs) 8, 18 and 19 was analyzed in male and female rat gonads from the undifferentiated stage (12.5 days of gestation) until two weeks after birth by indirect immunofluorescence, using specific monoclonal antibodies anti-CK 8 (LE41), anti-CK 19 (LP2K) and anti-CK 18 (LE65 and RGE53). In the undifferentiated blastema, the somatic cells were stained for CK 8 and CK 19, whereas no detectable immunoreactivity for CK 18 was obtained. The same staining CK pattern was observed in ovaries, in the somatic cells of ovigerous cords and in primary follicles. The staining was progressively decreasing in growing follicles after one week after birth. At the onset of testicular differentiation, when the first Sertoli cells differentiate in the gonad of 13.5-day old male fetuses, positive staining for CK 18 became evident, in addition to CK 8 and CK 19 expression. In the following days, CK 8, CK 18 and CK 19 were detected in Sertoli cells in the differentiating seminiferous cords, but progressively the reactivity for CK 19 decreased and was no longer observed after 18.5-19.5 days of gestation. In all cases, CKs were found to be coexpressed with vimentin, and germ cells were negative for both vimentin and CKs. The results reported here show first, that CKs are expressed before sexual differentiation in gonadal blastema in which no epithelial organization is observed, and second, that there is a CK 18/CK 19 shift in expression during morphogenesis of the testis which is not observed in the differentiating ovary. Future studies will have to determine whether these differences in CK expression are due to epitope-masking phenomena or to the regulation of CK synthesis.  相似文献   

13.
Alternatives to the Draize rabbit eye irritation test are currently being investigated. Because of morphological and biochemical differences between the rabbit and the human eye, continuous human cell lines have been proposed for use in ocular toxicology studies. Single cell-type monolayer cultures in culture medium have been used extensively in ocular toxicology. In the present study, an SV40-immortalised human corneal epithelial (HCE) cell line was characterised immunohistochemically, by using 13 different monoclonal antibodies to cytokeratins (CKs), ranging from CK3 to CK20. The results from the monolayer HCE cell cultures were compared with those from the corneal epithelium of human corneal cryostat sections. Previous studies have shown that the morphology of the HCE cell is similar to that of primary cultured human corneal epithelial cells, and that the cells express the cornea-specific CK3. In the study reported here, we show that the cell line also expresses CKs 7, 8, 18 and 19. These CKs are typically expressed by simple epithelial cells, and are not found in the human cornea in vivo. Therefore, the monolayer HCE cell line grown in culture medium does not express the CK pattern that is typical of human corneal epithelium. This should be taken into consideration when using HCE cell cultures in similar single cell-type experiments for ocular toxicology.  相似文献   

14.
It is currently unclear whether intestinal metaplasia at the esophagogastric junction and in the distal esophagus represent a continuum of the same underlying disease process, i.e., gastroesophageal reflux, or constitute different entities with a different pathogenesis. Biopsies below the Z line might show specialized epithelium in some patients and the question is whether this is another form of short segment Barrett's esophagus or whether it is related to a generalized atrophic process of the stomach. Data from recent studies regarding the expression of cytokeratin CK7 and CK20 in intestinal metaplasia (IM) found at the gastroesophageal junction are conflicting. Prompted by these data we undertook the present study: a) to evaluate the expression of CK7 and CK20 in IM of the gastric cardia and to compare the findings with those in patients with Barrett's esophagus and IM of the gastric corpus and antrum mucosa; and b) to evaluate the immunophenotype of non-intestinalized cardiac mucosa and to compare it with that of normal gastric epithelium. We studied the expression of CK7 and CK20 on biopsy specimens from patients with long-segment Barrett's esophagus (n=17) and surgical resection and biopsy specimens of gastric cardia (n=15), corpus (n=14) and antrum (n=22) from patients with histological evidence of IM. Eighty-four biopsy specimens from 42 patients (antrum n=15, corpus n=20, cardia n=7) without evidence of IM were studied as a control group. We observed an immunophenotype characterised by diffuse moderate to strong CK7 staining on the surface and crypt epithelium combined with strong CK20 staining on the surface and superficial part of the crypts in 94.1% (16/17) of the cases with long-segment Barrett's esophagus, but in none of the 36 cases with IM in distal stomach (antrum and corpus). IM in the gastric cardia expressed the immunophenotype seen in IM of the gastric mucosa in 93.3% (14/15) of the cases. On the other hand, normal cardiac epithelium expressed patchy strong CK7 staining on the surface epithelium and on both, superficial and deep parts of the pits combined with patchy strong CK20 staining on the surface epithelium and superficial pits, a feature permitting distinction of the normal cardiac epithelium from those of the normal gastric antrum and corpus epithelium. We conclude that the expression of cytokeratins 7 and 20 can be used to distinguish the origin of IM of the gastroesophageal junction. The CK7/20 immunophenotype of IM in the gastric cardia closely resembles that of the IM in the gastric antrum and corpus and is different from IM in long-segment Barrett's esophagus. In contrast, the CK7/20 immunophenotype of the cardiac epithelium is different from that of the gastric antrum and corpus mucosa, suggesting that cardiac epithelium might not be a native normal gastric epithelium but one that is acquired as a consequence of longstanding inflammation. Changing pattern of CK7 and CK20 expression from normal to intestinalized epithelium suggests that IM arising from cardiac epithelium might have distinctive features.  相似文献   

15.
The immunohistochemical reactivity of human, monkey, shrew, rat and mouse normal mammary glands was examined using methacarn-fixed paraffin-embedded specimens and acetone-fixed frozen sections using the avidinbiotin-peroxidase method for cell phenotype comparison. Actin was visualized using anti-smooth muscle actin antibody and keratin expression was determined by employing 12 different monoclonal antibodies. All these antibodies cross-reacted specifically with the species examined. Basal (myoepithelial) cells from all species showed muscle-specific actin according to reactivity with HHF35 monoclonal antibody. Keratin expression showed significant phenotypic differences among species. In human and monkey, AEL-KS2, KL1, CK8.13, AE3 and 34BE12 stained luminal cells as well as basal cells. AE1, RPN1165, CK4.62, 35BE11, M20 and RPN1162 labeled only luminal cells whereas 312C8-1 preferentially bound to basal cells. In shrews, AEL-KS2, CK8.13 and AE3 reacted to both cell types, AE1 reacted only with luminal cells, and 35BE12 and 312C8-1 selectively stained basal cells. In rodents, AEL-KS2 reacted to both cell types, CK8.13, AE3, 34BE12 and 312C8-1 stained rat basal cells, and 34BE12 and 312C8-1 reacted to mouse basal cells. The data represents cytoskeletal differences among species.  相似文献   

16.
17.
An intermediate population has been identified among prostate glands called transiently amplifying (TA) cells, which are characterized by coexpression of basal and luminal cytokeratins (CKs), high proliferation, and lack of p27 expression. These cells are rare in the normal adult prostate and increase in pretumoral conditions, but their importance in the developing gland remains unknown. We analyzed fetal prostates for the expression of CKs (5/6, 18, 19) and factors involved in proliferation and apoptosis: p63, Ki67, p27, epidermal growth factor (EGFR), Bcl2, androgen receptor (AR). Immunostaining was performed on a tissue microarray, including 40 prostates from fetuses aged 13-42 weeks and normal prostate tissue from 10 adults. In both solid buds and the basal compartment of canalized glands, cells expressed p63, CK5/6, CK19, CK18, BCL2, EGFR and were p27 negative. Luminal cells of fetal canalized glands continue to express CK19, EGFR, and BCL2, without p27 expression. In contrast, adult epithelial luminal cells showed diffuse AR and p27 expression, without CK19, BCL2, and EGFR staining. Proliferation was high and diffuse in fetal glands and rare and restricted to basal cells in adult glands. These results indicate that most fetal epithelial prostatic cells exhibit the phenotype of TA cells, suggesting their regulatory function in prostate development.  相似文献   

18.
Cell types of lung epithelia of mini pigs have been studied using a panel of monoclonal and polyclonal antibodies against cytokeratins (CKs) and vimentin and three lectins before and after radiation-induced fibrosis. In normal tissues, CK18 specific antibodies reacted above all with type II alveolar epithelial cells, while CK7 and pan CK-specific antibodies stained the whole alveolar epithelium. In bronchial epithelial cells, CKs 7, 8, 18 and focally CKs 4 and 13 as well as vimentin were found. Cell specificity of the CK pattern was confirmed by double label immunofluorescence using type II cell-specific Maclura pomifera (MPA) lectin, type I cell specific Lycopersicon esculentum (LEA) lectin and capillary endothelium-binding Dolichos biflorus (DBA) lectin. In experimental pulmonary fibrosis, enhanced coexpression of CK and vimentin was observed in bronchial epithelium. Subtypes of alveolar epithelial cells were no longer easily distinguishable. CK18 was found to be expressed in the entire alveolar epithelium. The gradual loss of the normal alveolar epithelial marker, as seen by the binding of MPA to type I-like cells, of LEA to type II-like cells and the partial loss of MPA-binding to type II cells, was paralleled by the appearance of CK4, typical for squamous epithelia, and the occurrence of DBA-binding in epithelial cells. Implications of these results for general concepts of intermediate filament protein expression and lectin binding in the fibrotic process are discussed.  相似文献   

19.
Rat liver epithelial cells (LECs) are non-parenchymal proliferating cells that readily emerge in primary culture and can be established as cell lines, but their in vivo cell(s) of origin is unclear. We reported recently some evidence indicating that the LEC line, T51B, contains two cytokeratins (CKs) equivalent to human CK8 and CK14 respectively. T51B cells also contain vimentin assembled as a network of intermediate filaments distinct from that of the CKs. In the present study, we examined the expression of CK14 gene in various LEC preparations and a Triton-resistant rat skin cytoskeletal fraction, and then assessed its usefulness as an LEC specific marker in the liver. Northern and Western blot analyses with cDNAs and antibodies for CK8, CK14, CK18 and vimentin confirmed that rat hepatocytes express CK8 and CK18 genes only, whereas T51B cells express CK8, CK14 and vimentin genes in the absence of CK18. CK14 was also present in LECs derived as primary from embryonic-day 12 rat liver and secondary cultures from 4-day-old rat liver. Primary cultures of oval cells isolated from 3'-methyl-4-dimethylaminoazobenzene (3'-Me-DAB) treated rat liver (an enriched source of biliary epithelial cells) contained CK14 mRNAs which were slightly shorter than those in LECs. The analyses of CK5 (the usual partner of CK14) gene expression using specific cDNA and antibody clearly demonstrated its absence in LECs. In situ double immunolocalization analyses by laser scanning confocal microscopy showed that CK14 was not present in hepatocytes (HES6+ cells) and was expressed in some biliary epithelial (BDS7+ cells). CK14-positive cells were also found in the Glisson's capsule. However, CK14-positive cells of the portal region were vimentin negative, whereas those of the Glisson's capsule were vimentin positive. Our results suggest that CK14 gene expression is part of the differentiation program of two types of LECs and that this differential CK14 gene expression can be used as a new means to type LECs in culture and in vivo.  相似文献   

20.
The aim of this study was to detect a spectrum of cytokeratins (CK) present in the adult human cornea, limbus and perilimbal conjunctiva. Cryosections from seven corneo-scleral discs were fixed, and indirect immunofluorescent staining was performed using antibodies directed against CK1-CK10 and CK13-CK20. The percentage of positive cells was calculated in the epithelium of the cornea, limbus and perilimbal conjunctiva. Quantitative real time RT-PCR (qRT-PCR) was used to detect CK6 and CK18 expression in the corneal and conjunctival epithelium. The most intense staining present throughout the cornea was observed for CK3, CK5 and CK14; CK19 was found at the corneal periphery only. CK4 and CK10/13 revealed mild to moderate positivity mostly in the superficial layers of the cornea. The suprabasal cell layers of all examined areas showed a strong positivity for CK16. A heterogeneous staining pattern with a centrifugal decrease in the signal was observed for CK8 and CK18. CK5/6, CK14 and CK19 were present in the limbus, where a positive signal for CK3 was observed in the suprabasal and superficial cells only. In contrast to the cornea, CK15 appeared in the basal and suprabasal layers of the limbus. The perilimbal conjunctiva showed strong immunostaining for CK10/13, CK14 and CK19. A moderate signal for CK7 was detected in the superficial layers of the conjunctiva. qRT-PCR confirmed CK6 and CK18 expression in the corneal and conjunctival epithelium. The detailed characterization of the corneal, limbal and perilimbal conjunctival epithelium under normal circumstances may be useful for characterizing the changes occurring under pathological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号