首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two cyclic nucleotide phosphodiesterase (PDE) activities were identified in pig aortic endothelial cells, a cyclic GMP-stimulated PDE and a cyclic AMP PDE. Cyclic GMP-stimulated PDE had Km values of 367 microM for cyclic AMP and 24 microM for cyclic GMP, and low concentrations (1 microM) of cyclic GMP increased the affinity of the enzyme for cyclic AMP (Km = 13 microM) without changing the Vmax. This isoenzyme was inhibited by trequinsin [IC50 (concn. giving 50% inhibition of substrate hydrolysis) = 0.6 microM for cyclic AMP hydrolysis in the presence of cyclic GMP; IC50 = 0.6 microM for cyclic GMP hydrolysis] and dipyridamole (IC50 = 5 microM for cyclic AMP hydrolysis in the presence of cyclic GMP; IC50 = 3 microM for cyclic GMP hydrolysis). Cyclic AMP PDE exhibited a Km of 2 microM for cyclic AMP and did not hydrolyse cyclic GMP. This activity was inhibited by trequinsin (IC50 = 0.2 microM), dipyridamole (IC50 = 6 microM) and, selectively, by rolipram (IC50 = 3 microM). Inhibitors of cyclic GMP PDE (M&B 22948) and of low Km (Type III) cyclic AMP PDE (SK&F 94120) only weakly inhibited the two endothelial PDEs. Incubation of intact cells with trequinsin and dipyridamole induced large increases in cyclic GMP, which were completely blocked by LY-83583. Rolipram, SK&F 94120 and M&B 22948 did not significantly influence cyclic GMP accumulation. Dipyridamole enhanced the increase in cyclic GMP induced by sodium nitroprusside. Cyclic AMP accumulation was stimulated by dipyridamole and trequinsin with and without forskolin. Rolipram, although without effect alone, increased cyclic AMP in the presence of forskolin, whereas M&B 22948 and SK&F 94120 had no effects on resting or forskolin-stimulated levels. These results suggest that cyclic GMP-stimulated PDE regulates cyclic GMP levels and that both endothelial PDE isoenzymes contribute to the control of cyclic AMP.  相似文献   

2.
Abstract: The cyclic nucleotide phosphodiesterase (PDE) activities were studied in a nerve ending fraction from bovine neural lobes. Most of the activity was particulate and unaffected by calcium. Lineweaver-Burk plots for this fraction showed negative cooperativity with apparent K m values for cyclic AMP of 11 μ M and for cyclic GMP of 4 μ M . The soluble activities for both cyclic nucleotides were activated by calcium and inhibited by calmodulin-binding drugs (trifluoperazine and calmidazolium). The apparent K m values were 50 μ M for cyclic AMP and 20 μ M for cyclic GMP for the soluble activities. Sucrose density gradients resolved the soluble activities into two peaks. The activity with the higher sedimentation rate (MW 122,000 daltons) hydrolysed both cyclic nucleotides and was calcium-calmodulin-dependent. The other peak (MW 47,000 daltons) had a higher affinity for cyclic AMP than for cyclic GMP and was calcium-independent. Solubilized particulate activities gave two main peaks on the density gradient, both calcium-independent. One was mainly for cyclic AMP (MW 47,000 daltons) and the other mainly for cyclic GMP (MW 133,000 daltons). The function of PDEs in relation to secretion was discussed.  相似文献   

3.
Huai Q  Colicelli J  Ke H 《Biochemistry》2003,42(45):13220-13226
Cyclic nucleotide phosphodiesterases (PDEs) regulate the intracellular concentrations of cyclic 3',5'-adenosine and guanosine monophosphates (cAMP and cGMP, respectively) by hydrolyzing them to AMP and GMP, respectively. Family-selective inhibitors of PDEs have been studied for treatment of various human diseases. However, the catalytic mechanism of cyclic nucleotide hydrolysis by PDEs has remained unclear. We determined the crystal structure of the human PDE4D2 catalytic domain in complex with AMP at 2.4 A resolution. In this structure, two divalent metal ions simultaneously interact with the phosphate group of AMP, implying a binuclear catalysis. In addition, the structure suggested that a hydroxide ion or a water bridging two metal ions may serve as the nucleophile for the hydrolysis of the cAMP phosphodiester bond.  相似文献   

4.
A modification of the protein binding assay for cyclic guanosine-3',5'-monophosphate (cyclic GMP) is described that is more sensitive and less subject to interference by cyclic AMP than are previously published protein binding methods. The assay employs a purified binding protein from the fat body of the pupa of the common silkmoth, Bombyx mori. The dissociation constant of the binding protein for cyclic GMP is 4.3 nM. A protein kinase modulator protein isolated from the same species increases the binding affinity and capacity of the cyclic GMP binding protein and can be used to advantage in the assay for cyclic GMP. As little as 0.1 pmoles of cyclic GMP can be detected by this procedure. Changes in the level of cyclic GMP in the frog heart during the cardiac cycle were determined by means of the new assay.  相似文献   

5.
Phosphodiesterase activities of horse (and dog) thyroid soluble fraction were compared with either cyclic AMP (adenosine 3':3'-monophosphate) or cyclic GMP (guanosine 3':5'-monophosphate) as substrate. Optimal activity for cyclic AMP hydrolysis was observed at pH 8, and at pH 7.6 for cyclic GMP. Increasing concentrations of ethyleneglycol bis(2-aminoethyl)-N,N'-tetraacetic acid inhibited both phosphodiesterase activities; in the presence of exogenous Ca2+, this effect was shifted to higher concentrations of the chelator. In a dialysed supernatant preparation, Ca2+ had no significant stimulatory effect, but both Mg2+ and Mn2+ increased cyclic nucleotides breakdown. Mn2+ promoted the hydrolysis of cyclic AMP more effectively than that of cyclic GMP. For both substrates, substrate velocity curves exhibited a two-slope pattern in a Hofstee plot. Cyclic GMP stimulated cyclic AMP hydrolysis, both nucleotides being at micromolar concentrations. Conversely, at no concentration had cyclic AMP any stimulatory effect on cyclic GMP hydrolysis. 1-Methyl-3-isobutylxanthine and theophylline blocked the activation by cyclic GMP of cyclic GMP of cyclic AMP hydrolysis, whereas Ro 20-1724 (4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone), a non-methylxanthine inhibitor of phosphodiesterases, did not alter this effect. In dog thyroid slices, carbamoylcholine, which promotes an accumulation of cyclic GMP, inhibits the thyrotropin-induced increase in cyclic AMP. This inhibitory effect of carbamoylcholine was blocked by theophylline and 1-methyl-3-isobutylxanthine, but not by Ro 20-1724. It is suggested that the cholinergic inhibitory effect on cyclic AMP accumulation is mediated by cyclic GMP, through a direct activation of phosphodiesterase activity.  相似文献   

6.
Approximatively 2–8% of the cyclic nucleotide phosphodiesterase activity of a crude 1000 g supernatant from rat heart was associated with the washed 105,000 g pellet fraction. This activity exhibited biphasic Lineweaver-Burk plots over a large range of cyclic nucleotides concentrations. Concave-Bownward plots were obtained with cyclic AMP as the assay substrate, while cyclic GMP gave rise to concave-upward plots. Treatment of this particulate fraction by freezing and thawing and then with 2% Lubrol PX released the major part of phosphodiesterase activity into the supernatant (70 and 90% for cyclic AMP and cyclic GMP phosphodiesterase activities respectively). Isoelectric focusing of the solubilized enzyme revealed a single peak of phosphodiesterase activity. While the Lineweaver-Burk plots of cyclic AMP phosphodiesterase activity were not markedly modified by detergent treatment kinetic plots of cyclic GMP phosphodiesterase activity underwent a drastic transformation during the overall solubilization procedure. The substantial increase in the cyclic GMP rate of hydrolysis observed at low substrate level might explain the difference in the apparent yield of solubilization between cyclic AMP and cyclic GMP phosphodiesterase activities.  相似文献   

7.
A rapid highly sensitive assay for cyclic AMP phosphodiesterase has been devised. After a 5-min incubation, cyclic AMP is readily resolved from 5′-AMP, adenosine, and inosine by ion-exchange thin-layer chromatography on 1.3 × 6.5-cm strips of PEI-cellulose for 7 to 8 min. This procedure combines the accuracy of the standard paper chromatography assay (1) with the speed of ion-exchange resin techniques (2), while surmounting some of the major drawbacks of the other two methods (3). Since chromatography on PEI-cellulose efficiently resolves cyclic GMP, 5′-GMP, and guanosine, this methodology has also been adapted to the measurement of cyclic GMP hydrolysis.  相似文献   

8.
Adenosine 3′:5′-monophosphate (cyclic AMP) and guanosine 3′:5′-monophosphate (cyclic GMP) have been determined simultaneously by combining individual protein binding assays using different isotopically labeled cyclic nucleotides. Preparations of cyclic AMP-binding protein from beef adrenal cortex and cyclic GMP-binding protein from the fat body of silkworm pupae (Bombyx mori) have been used for the assay. The method allows the analysis of cyclic AMP and cyclic GMP levels in crude extracts without any purification. The assay has been applied to hormone-stimulated Mouse liver and phorbol ester-treated Rat embryo cells.  相似文献   

9.
Murine adrenal cortex tumor Y-1 cells contained both soluble and particulate forms of cyclic nucleotide phosphodiesterase (3',5'-cyclic AMP 5'-nucleotide hydrolase, EC 3.1.4.17). The soluble forms of the enzyme comprised 80% of total cellular phosphodiesterase activity. The soluble enzyme(s) hydrolyzed both cyclic AMP and cyclic GMP, with apparent Km values of 125 and 30 microM, respectively. Soluble cyclic AMP phosphodiesterase showed marked inhibition by the calcium chelator, ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid (EGTA), and the anticalmodulin drugs, chlorpromazine, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), and calmidazolium. No alteration in soluble cyclic GMP phosphodiesterase activity was observed when cyclic AMP was added to the assay. Resolution of the soluble enzymatic activity by DEAE-cellulose chromatography in the presence of calcium showed two peaks of phosphodiesterase activity. Further purification of one of these peaks on DEAE-cellulose in the presence of EGTA yielded a phosphodiesterase activity peak that was stimulated fivefold by calmodulin. The particulate form of the enzyme hydrolyzed both cyclic AMP anc cyclic GMP; the apparent Km values for these substrates were similar (90 and 100 microM, respectively). Hydrolysis of cyclic GMP by the particulate enzyme was inhibited by cyclic AMP in a concentration-dependent manner with an apparent half-maximal inhibitory concentration of 100 microM. The particulate form of phosphodiesterase was not inhibited by EGTA or anticalmodulin drugs.  相似文献   

10.
The cyclic nucleotide phosphodiesterase (3':5'-cyclic nucleotide 5'-nucleotidohydrolase, EC 3.1.4.17) systems of many tissues show multiple physical and kinetic forms. In contrast, the soluble rat uterine phosphodiesterase exists as a single enzyme form with non-linear Lineweaver-Burk kinetics for cyclic AMP (app. Km of approx. 3 and 20 microM) and linear kinetics for cyclic GMP (app. Km of approx. 3 microM) since the two hydrolytic activities are not separated by a variety of techniques. In uterine cytosolic fractions, cyclic AMP is a non-competitive inhibitor of cyclic GMP hydrolysis (Ki approx. 32 microM). Also, cyclic GMP is a non-competitive inhibitor of cyclic AMP hydrolysis (Ki approx 16 microM) at low cyclic GMP/cyclic AMP substrate ratios. However, cyclic GMP acts as a competitive inhibitor of cyclic AMP phosphodiesterase (Ki approx 34 microM) at high cyclic GMP/cyclic AMP substrate ratios. When a single hydrolytic form of uterine phosphodiesterase, separated initially by DEAE anion-exchange chromatography, is treated with trypsin (0.5 microgram/ml for 2 min) and rechromatographed on DEAE-Sephacel, two major forms of phosphodiesterase are revealed. One form elutes at 0.3 M NaOAc- and displays anomalous kinetics for cyclic AMP hydrolysis (app. Km of 2 and 20 microM) and linear kinetics for cyclic GMP (app. Km approx. 5 microM), kinetic profiles which are similar to those of the uterine cytosolic preparations. A second form of phosphodiesterase elutes at 0.6 M NaOAc- and displays a higher apparent affinity for cyclic AMP (app. Km approx. 1.5 mu) without appreciable cyclic GMP hydrolytic activity. These data provide kinetic and structural evidence that uterine phosphodiesterase contains distinct catalytic sites for cyclic AMP and cyclic GMP. Moreover, they provide further documentation that the multiple forms of cyclic nucleotide phosphodiesterase in mammalian tissues may be conversions from a single enzyme species.  相似文献   

11.
Chromatography on hexyl-agarose resolved a partially purified cyclic GMP-activated phosphodiesterase from rat liver into two peaks of activity: the first was eluted with 0.5 M-KCl and was cyclic AMP-specific. The second was tightly bound to hexyl-agarose and was not eluted with KCl (0--2.0 M), which enhanced the hydrophobic interactions of this form with the matrix. It was eluted with 0.5 M-Tris, hydrolysed cyclic AMP and cyclic GMP and was specifically activated by cyclic GMP. The cyclic GMP-activated phosphodiesterase was immobilized on hexyl-agarose. Enzyme activity, quantitatively bound to hexyl-agarose, was not released from the hydrophobic matrix in the presence of cyclic AMP or cyclic GMP, under our assay conditions. The immobilized form of the enzyme retained catalytic activity, was inhibited by 0.1 mM-cyclic AMP and was activated by micromolar concentrations of cyclic GMP to a lesser extent (7-fold) than the control, i.e. the enzyme mixed with unsubstituted agarose (15-fold). When the enzyme was immobilized, inhibition of cyclic AMP phosphodiesterase activity was only observed in the presence of cyclic GMP (at 3 microM); in its absence, activity remained unchanged. The kinetic behaviour of the immobilized enzyme is consistent with the hypothesis of a binding site distinct from the hydrolytic and activating sites.  相似文献   

12.
Phosphodiesterases (PDEs) are hydrolytic enzymes, which convert cyclic AMP (cAMP) and cyclic GMP (cGMP) into their corresponding monophosphates. PDE-dependent hydrolysis shape gradients of these second messengers in cells, which may form the basis of their compartmentation and play a key role in a vast number of physiological and pathological processes. Here, we present a novel approach for real-time monitoring of local cAMP and cGMP levels associated with particular PDEs. We used HEK 293 cells expressing genetic constructs encoding a PDE of interest (PDE3A, PDE4A1 or PDE5A) fused to cAMP and cGMP sensors, which allow to directly visualize changes in cyclic nucleotide concentrations in the vicinity of PDE molecules by fluorescence resonance energy transfer (FRET). FRET was detected by imaging of single cells on 96-well plates and demonstrated specific effects of PDE inhibitors on local cyclic nucleotide levels. In addition, this approach reported physiological regulation of PDE3A activity, its activation by PKA-dependent phosphorylation and inhibition by cGMP. In conclusion, our assay provides a unique and highly sensitive method to analyze PDE activity in living cells. It allows to sense cAMP gradients around particular PDE molecules and to study the pharmacological effects of selective inhibitors on localized cAMP signalling.  相似文献   

13.
Cyclic GMP inhibits the slow inward Ca current of cardiac cells. This effect could be due to a cyclic GMP-mediated phosphorylation of the Ca channel (or some protein modifying Ca channel activity), or alternatively, to enhanced degradation of cyclic AMP owing to stimulation of a phosphodiesterase by cyclic GMP. To test the latter possibility, we examined the effect of extracellular 8-bromo-cyclic GMP on cyclic AMP levels in guinea pig papillary muscles, in parallel with electrophysiological experiments. Isoproterenol (10(-6) M) significantly increased the cyclic AMP levels and induced Ca-dependent slow action potentials. Superfusion with 8-bromo-cyclic GMP (10(-3) M) inhibited the slow action potentials induced by isoproterenol. However, muscles superfused with 8-bromo-cyclic GMP had cyclic AMP levels identical to those of muscles superfused with isoproterenol alone. Similarly, 8-bromo-cyclic GMP had no effect on the increase in cyclic AMP levels of muscles treated with forskolin (10(-6) M) or histamine (10(-6) M). We conclude that the inhibitory effect of cyclic GMP on slow Ca channels in guinea pig ventricular cells is not due to a decrease in the cyclic AMP levels. We hypothesize that a cyclic GMP-mediated phosphorylation is the most likely explanation for the Ca channel inhibition observed in this preparation.  相似文献   

14.
Low- and high-affinity binding sites for cyclic GMP were found to be associated with the cyclic AMP-dependent protein kinase (ATP: protein phosphotransferase, EC 2.7.1.37) from human tonsillar lymphocytes, but neither of them was identical with the cyclic AMP binding site. The enzyme activated by cyclic GMP phosphorylated the same site of calf thymus H2b histone as the cyclic AMP activated enzyme; however, more complex kinetics of activation were found with cyclic GMP. Two classes of cyclic GMP binding site were demonstrated by kinetic analysis of cyclic [3H]GMP binding in the enzyme preparations eluted by 0.1 M potassium phosphate (pH 7.0) from DEAE cellulose. The high-affinity cyclic GMP binding site (Kd about 4 . 10(-8) M) belonged to some complex form of the protein kinase, as evidenced by the mutual inhibition of cyclic AMP binding and high affinity cyclic GMP binding. However, the high-affinity cyclic GMP binding site disappeared on Sephadex G-100 gel chromatography of the enzyme preparation, whereas the cyclic AMP binding activity was recovered quantitively as separate fractions. The low-affinity cyclic GMP binding site (Kd 2--5 . 10(-6) M) was demonstrated by the inhibitory effect of 10(-5) M cyclic GMP on cyclic AMP binding in each cyclic AMP binding fraction obtained by gel chromatography. However, cyclic AMP did not inhibit the binding of cyclic GMP to the low-affinity binding site.  相似文献   

15.
The concentrations of cyclic AMP and cyclic GMP in the mouse cerebellum after intracerebroventricular administration of a range of doses of IPTBO have been studied with particular interest in the temporal changes after injection. A non typical dose relationship was observed. After the lowest and non-convulsive dose used (0.06 μg/animal) cyclic AMP levels decreased and cyclic GMP levels increased within 1 min, but after higher doses cyclic AMP and cyclic GMP levels were both raised. At three different convulsive doses of IPTBO there were increased levels of cyclic AMP with time which were more apparent in convulsing animals. Raised levels of cyclic GMP however, were not so influenced by convulsions. The results suggest that (1) the immediate decrease in cyclic AMP and the immediate increase in cyclic GMP may play a part in the mechanism of action of IPTBO—possibly by triggering convulsions and (2) there is an increase in cyclic AMP in response to, or because of, the convulsions. It is concluded that time after treatment and time into convulsions are critical when studying cyclic nucleotide changes, particularly for cyclic AMP and that such factors may explain conflicting observations with respect to this nucleotide.  相似文献   

16.
The effects of serum and cell density on the concentration of cyclic AMP, cyclic GMP in normal mouse fibroblasts cells (3T3 cells) and their Simian Virus 40 transformed derivative (SV3T3 cells) were studied. 3T3 cells grown in 10% foetal bovine serum exhibit density dependent inhibition of growth and associated with this in an increase in the concentration of cyclic AMP, a decrease in the concentration of cyclic GMP and an increase in the ratio (cyclic AMP/cyclic GMP) of the cyclic nucleotides. 3T3 cells grown in 10% newborn calf serum exhibit a higher saturation density and this is associated with a low concentration of cyclic AMP and a high concentration of cyclic GMP. SV3T3 cells grown in either 10% foetal bovine serum or 10% newborn calf serum show high saturation densities and this is associated with a low and decreasing concentration of cyclic AMP and a high concentration of cyclic GMP. When the level of the cyclic AMP in both cell lines was artificially raised by adding dibutyryl cyclic AMP and theophylline to the growth media, the cells grew to low densities.  相似文献   

17.
We have examined the activity of cyclic AMP phosphodiesterase, cyclic GMP phosphodiesterase and the protein activator of cyclic AMP phosphodiesterase in various anatomic and subcellular fractions of the bovine eye. Cyclic GMP hydrolysis was 1.6--12 times faster than hydrolysis of cyclic AMP in the subcellular fractions of the retina and in the precipitate of the rod outer segment. An opposite pattern was seen in the bovine lens, where the hyrolysis of cyclic AMP occurred 17 and 169 times faster than that of cyclic GMP in the supernatant and precipitate of lens, respectively. The activity of cyclic AMP phosphodiesterase was not affected by ethylene-glycol bis(beta-aminoethylether)-N,N'-tetraacetic acid in any fractions except in the retinal supernatant, suggesting that the phosphodiesterase exists primarily as a Ca2+-independent, activator-independent form. However, the protein activator of cyclic AMP phosphodiesterase existed in all fractions examine. A complex kinetic patternwas observed for both cyclic AMP and cyllic GMP hydrolysis by the 105000 times g lens supernatant. The Michaelis constants for both cyclic AMP (1.3-10(-6) and 9.I-10(-6) M) and cyclic GMP (1.04-10(6) AND 1.22 10(-5) M) appeared to be similar.  相似文献   

18.
Chemotactic stimulation of vegetative or aggregative Dictyostelium discoideum cells induced a transient elevation of cyclic GMP levels. The addition of chemoattractants to postvegetative cells by pulsing induced phosphodiesterase activity. The following lines of evidence suggest a messenger function for cyclic GMP in the induction of phosphodiesterase: (i) Folic acid and cyclic AMP increased cyclic GMP levels and induced phosphodiesterase activity. (ii) Cyclic AMP induced both cyclic GMP accumulation and phosphodiesterase activity by binding to a rate receptor. (iii) The effects of chemical modification of cyclic AMP or folic acid on cyclic GMP accumulation and phosphodiesterase induction were closely correlated. (iv) A close correlation existed between the increase of cyclic GMP levels and the amount of phosphodiesterase induced, independent of the type of chemoattractant by which this cyclic GMP accumulation was produced. (v) Computer simulation of cyclic GMP binding to intracellular cyclic GMP-binding proteins indicates that half-maximal occupation by cyclic GMP required the same chemoattractant concentration as did half-maximal phosphodiesterase induction.  相似文献   

19.
Injection of LH (2 and 10 μg) into proestrus rats increased ovarian cyclic AMP levels and concomitantly decreased the levels of cyclic GMP. When injected into diestrus rats, cyclic AMP increases were even greater, whereas cyclic GMP levels were not significantly different from controls receiving saline injections. Ovarian cyclic nucleotide levels were also examined on different days of the cycle. On the afternoon of proestrus (1700 h), the time when circulating levels of LH are at their maximum, the concentration of cyclic AMP showed a moderate but insignificant increase. At the same time, cyclic GMP levels were significantly decreased. An inverse relation between cyclic AMP and cyclic GMP levels was seen on each day of the cycle. When rats were injected with pentobarbital (35 mg/kg) on the afternoon of proestrus (1300 h) to block the LH surge, the expected increases in ovarian cyclic AMP and decreases in cyclic GMP were effectively blocked. These results indicate that ovarian cyclic AMP and cyclic GMP levels are regulated by circulating LH. The apparent differences in direction of nucleotide response to LH, suggest divergent roles for the nucleotides in ovarian function.  相似文献   

20.
Antisera to cyclic AMP and cyclic GMP were obtained by immunizing rabbits with antigens prepared by conjugating the 2'0-succinyl derivative of the cyclic nucleotides to thyroglobulin. The cyclic nucleotide-thyroglobulin conjugates were injected intradermally into multiple sites on the backs of the animals. This immunization procedure resulted in the production of antiserum in four of five animals capable of binding at a final serum dilution of greater than 1:10,000, 20% of the corresponding iodinated cyclic nucleotide derivative added. The antisera were also highly specific. The antiserum for cyclic AMP had a 2500-fold or greater relative affinity for cyclic AMP than other nucleotides or nucleosides, while that for cyclic GMP had a 5000-fold or greater affinity for 2'0 acetylated nucleotides or nucleosides except for acetylated cyclic IMP. The obstacles to measuring cyclic nucleotides, particularly cyclic GMP, in tissues were also overcome by refining and simplifying the methods for iodination, purification and assay. Furthermore, a "disequilibrium" incubation was developed as an alternative to the acetylation method to increase the sensitivity of the radioimmunoassay. Thus, the levels of both cyclic GMP and cyclic AMP can be determined rapidly and easily in the same tissue sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号