首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Serine proteases are implicated in a variety of processes during neurogenesis, including cell migration, axon outgrowth, and synapse elimination. Tissue-type plasminogen activator and urokinase-type activator are expressed in the floor plate during embryonic development. F-spondin, a gene also expressed in the floor plate, encodes a secreted, extracellular matrix-attached protein that promotes outgrowth of commissural axons and inhibits outgrowth of motor axons. F-spondin is processed in vivo to yield an amino half protein that contains regions of homology to reelin and mindin, and a carboxyl half protein that contains either six or four thrombospondin type I repeats (TSRs). We have tested F-spondin to see whether it is subjected to processing by plasmin and to determine whether the processing modulates its biological activity. Plasmin cleaves F-spondin at its carboxyl terminus. By using nested deletion proteins and mutating potential plasmin cleavage sites, we have identified two cleavage sites, the first between the fifth and sixth TSRs, and the second at the fifth TSR. Analysis of the extracellular matrix (ECM) attachment properties of the TSRs revealed that the fifth and sixth TSRs bind to the ECM, but repeats 1-4 do not. Structural functional experiments revealed that two basic motives are required to elicit binding of TSR module to the ECM. We demonstrate further that plasmin releases the ECM-bound F-spondin protein.  相似文献   

2.
F-spondin and Mindin are members of a subgroup of the thrombospondin type 1 (TSR) class molecules, defined by two domains of homology, the FS1/FS2 and TSR domains. The TSRs of F-spondin proteins are typical of class 2 TSRs. F-spondin and Mindin are evolutionarily conserved proteins. The embryonic expression of the vertebrate genes is enriched in the nervous system, mainly at the floor plate and the hippocampus. Similar to thrombospondin, F-spondin and Mindin are extracellular matrix attached molecules that promote neurite outgrowth and inhibit angiogenesis. Analysis of gain and loss of function experiments reveal that F-spondin is required for accurate pathfinding of embryonic axons. F-spondin plays a dual role in patterning axonal trajectories: it promotes the outgrowth of commissural and inhibits the outgrowth of motor axons. Macrophages of Mindin-deficient mice exhibit defective responses to a broad spectrum of microbial stimuli. This may implicate Mindin and F-spondin in inflammatory processes in the nervous system.  相似文献   

3.
Thrombospondin-1 (TSP-1) is a multidomain protein that has been implicated in cell adhesion, motility, and growth. Some of these functions have been localized to the three thrombospondin type 1 repeats (TSRs), modules of approximately 60 amino acids in length with conserved Cys and Trp residues. The Trp residues occur in WXXW patterns, which are the recognition motifs for protein C-mannosylation. This modification involves the attachment of an alpha-mannosyl residue to the C-2 atom of the first tryptophan. Analysis of human platelet TSP-1 revealed that Trp-368, -420, -423, and -480 are C-mannosylated. Mannosylation also occurred in recombinant, baculovirally expressed TSR modules from Sf9 and "High Five" cells, contradictory to earlier reports that such cells do not carry out this reaction. In the course of these studies it was appreciated that the TSRs in TSP-1 undergo a second form of unusual glycosylation. By using a novel mass spectrometric approach, it was found that Ser-377, Thr-432, and Thr-489 in the motif CSX(S/T)CG carry the O-linked disaccharide Glc-Fuc-O-Ser/Thr. This is the first protein in which such a disaccharide has been identified, although protein O-fucosylation is well described in epidermal growth factor-like modules. Both C- and O-glycosylations take place on residues that have been implicated in the interaction of TSP-1 with glycosaminoglycans or other cellular receptors.  相似文献   

4.
The ADAMTS superfamily contains several metalloproteases (ADAMTS proteases) as well as ADAMTS-like molecules that lack proteolytic activity. Their common feature is the presence of one or more thrombospondin type-1 repeats (TSRs) within a characteristic modular organization. ADAMTS like-1/punctin-1 has four TSRs. Previously, O-fucosylation on Ser or Thr mediated by the endoplasmic reticulum-localized enzyme protein-O-fucosyltransferase 2 (POFUT2) was described for TSRs of thrombospondin-1, properdin, and F-spondin within the sequence Cys-Xaa(1)-Xaa(2)-(Ser/Thr)-Cys-Xaa-Xaa-Gly (where the fucosylated residue is underlined). On mass spectrometric analysis of tryptic peptides from recombinant secreted human punctin-1, the appropriate peptides from TSR2, TSR3, and TSR4 were found to bear either a fucose monosaccharide (TSR3, TSR4) or a fucose-glucose disaccharide (TSR2, TSR3, TSR4). Although mass spectral analysis did not unambiguously identify the relevant peptide from TSR1, metabolic labeling of cells expressing TSR1 and the cysteine-rich module led to incorporation of [(3)H]fucose into this construct. Mutation of the putative modified Ser/Thr residues in TSR2, TSR3, and TSR4 led to significantly decreased levels of secreted punctin-1. Similarly, expression of punctin-1 in Lec-13 cells that are deficient in conversion of GDP-mannose to GDP-fucose substantially decreased the levels of secreted protein, which were restored upon culture in the presence of exogenous l-fucose. In addition, mutation of the single N-linked oligosaccharide in punctin-1 led to decreased levels of secreted punctin-1. Taken together, the data define a critical role for N-glycosylation and O-fucosylation in the biosynthesis of punctin-1. From a broad perspective, these data suggest that O-fucosylation may be a widespread post-translational modification in members of the ADAMTS superfamily with possible regulatory consequences.  相似文献   

5.
NetCGlyc 1.0: prediction of mammalian C-mannosylation sites   总被引:2,自引:0,他引:2  
Julenius K 《Glycobiology》2007,17(8):868-876
  相似文献   

6.
Phosphorylation of formate dehydrogenase in potato tuber mitochondria   总被引:3,自引:0,他引:3  
Two highly phosphorylated proteins were detected after two-dimensional (blue native/SDS-PAGE) gel electrophoretic separation of the matrix fraction isolated from potato tuber mitochondria. These two phosphoproteins were identified by mass spectrometry as formate dehydrogenase (FDH) and the E1alpha-subunit of pyruvate dehydrogenase (PDH). Isoelectric focusing/SDS-PAGE two-dimensional gels separated FDH and PDH and resolved several different phosphorylated forms of FDH. By using combinations of matrix-assisted laser desorption/ionization mass spectrometry and electrospray ionization tandem mass spectrometry, several phosphorylation sites were identified for the first time in FDH and PDH. FDH was phosphorylated on Thr76 and Thr333, whereas PDH was phosphorylated on Ser294. Both Thr76 and Thr333 in FDH were accessible to protein kinases, as demonstrated by protein structure homology modeling. The extent of phosphorylation of both FDH and PDH was strongly decreased by NAD+, formate, and pyruvate, indicating that reversible phosphorylation of FDH and PDHs was regulated in a similar fashion. At low oxygen concentrations inside the intact potato tubers, FDH activity was strongly increased relative to cytochrome c oxidase activity pointing to a possible involvement of FDH in hypoxic metabolism. Computational sequence analysis indicated that a conserved local sequence motif of pyruvate formate-lyase is found in the Arabidopsis thaliana genome, and this enzyme might be the source of formate for FDH in plants.  相似文献   

7.
Due to hydrophobicity, structural analysis of integral membrane proteins poses a formidable challenge for current mass spectrometry-based proteomics approaches. Herein, we demonstrate results from optimized sample preparation and enzymatic proteolysis procedures for the complete primary structure determination of a targeted integral membrane protein, lens aquaporin 0 (AQP0). Plasma membrane from bovine lens tissue was alkali treated and tryptic digestion was performed in optimized acetonitrile-ammonium bicarbonate solution. Full sequence coverage of AQP0 was observed as tryptic peptides using both matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) and capillary liquid chromatography tandem mass spectrometry (cLC/MS/MS). An amino acid mutation of Thr to Ile/Leu at residue 199 was deduced based on MS/MS results. In a complementary effort to fully sequence the protein, peptic digestion was developed to take advantage of hydrophobic protein solubility in organic acid as well as the decreased activity of pepsin at low pH. Peptic digestion in 10% formic acid (pH 1.2) generated peptides of 500 to 3000 Da and gave 100% sequence coverage by cLC/MS/MS. In addition to post-translational modifications reported previously, a new phosphorylation site at serine 229 and two oxidation sites at tryptophan 202 and 205 were detected on the protein. These methodologies provide complementary detergent- and CNBr-free procedures for detailed analysis of this important membrane channel protein and offer promise for analysis of the integral membrane proteome.  相似文献   

8.
BRASSINOSTEROID-INSENSITIVE 1 (BRI1) encodes a putative Leucine-rich repeat receptor kinase in Arabidopsis that has been shown by genetic and molecular analysis to be a critical component of brassinosteroid signal transduction. In this study we examined some of the biochemical properties of the BRI1 kinase domain (BRI1-KD) in vitro, which might be important predictors of in vivo function. Recombinant BRI1-KD autophosphorylated on serine (Ser) and threonine (Thr) residues with p-Ser predominating. Matrix-assisted laser desorption/ionization mass spectrometry identified a minimum of 12 sites of autophosphorylation in the cytoplasmic domain of BRI1, including five in the juxtamembrane region (N-terminal to the catalytic KD), five in the KD (one each in sub-domains I and VIa and three in sub-domain VIII), and two in the carboxy terminal region. Five of the sites were uniquely identified (Ser-838, Thr-842, Thr-846, Ser-858, and Thr-872), whereas seven were localized on short peptides but remain ambiguous due to multiple Ser and/or Thr residues within these peptides. The inability of an active BRI1-KD to transphosphorylate an inactive mutant KD suggests that the mechanism of autophosphorylation is intramolecular. It is interesting that recombinant BRI1-KD was also found to phosphorylate certain synthetic peptides in vitro. To identify possible structural elements required for substrate recognition by BRI1-KD, a series of synthetic peptides were evaluated, indicating that optimum phosphorylation of the peptide required R or K residues at P - 3, P - 4, and P + 5 (relative to the phosphorylated Ser at P = 0).  相似文献   

9.
Huwiler KG  Vestling MM  Annis DS  Mosher DF 《Biochemistry》2002,41(48):14329-14339
Thrombospondin-1 (TSP1), a modular secreted glycoprotein, possesses anti-angiogenic activity both in vitro and in vivo. This activity has been localized to the thrombospondin type 1 repeats/domains (TSR). A TSP1 monomer contains three TSRs, each with a hydrophobic cluster with three conserved tryptophans (WxxWxxW), a basic cluster with two conserved arginines (RxR), and six conserved cysteines. Using the baculovirus system, we expressed TSRs of human TSP1 as either the three domains in tandem (P123) or the third domain alone (P3) and demonstrated that both P123 and P3 at nanomolar concentrations inhibit either basic fibroblast-growth-factor or sphingosine-1-phosphate induced endothelial cell migration. Far-UV circular dichroism (CD) indicated that P123 and P3 have a common global fold that is very similar to properdin, a protein with six TSRs. Near-UV CD and fluorescence quenching studies indicated the conserved tryptophans are in a structured, partially solvent-accessible, positively charged environment. N-terminal sequence and mass spectrometry analysis of trypsin-digested TSRs indicated that the RFK linker sequence between P1 and P2 is readily proteolyzed and the conserved arginines are solvent accessible. By a combination of proteolysis and mass spectrometry, the recombinant TSRs were determined to be fully disulfide bonded with a connectivity of 1-5, 2-6, and 3-4 (cysteines are numbered sequentially from N- to C-terminus). TSRs are found in numerous extracellular proteins. These TSRs share the hydrophobic and basic clusters of the TSP TSRs but some have quite different placement of cysteine residues. We propose a sorting of TSRs into six groups that reconciles our results with information about other TSRs.  相似文献   

10.
The baculovirus expression vector system is recognized as a powerful and versatile tool for producing large quantities of recombinant proteins that cannot be obtained in Escherichia coli. Here we report (i) the purification of the recombinant cyclin-dependent kinase (CDK)-activating kinase (CAK) complex, which includes CDK7, cyclin H, and MAT1 proteins, and (ii) the functional characterization of CAK together with a detailed analysis and mapping of the phosphorylation states and sites using mass spectrometry (MS). In vitro kinase assay showed that recombinant CAK is able to phosphorylate the cyclin-dependent kinase CDK2 implicated in cell cycle progression and the carboxy-terminal domain (CTD) of the eukaryotic RNA polymerase II. An original combination of MS techniques was used for the determination of the phosphorylation sites of each constitutive subunit at both protein and peptide levels. Liquid chromatography (LC)-MS analysis of intact proteins demonstrated that none of the CAK subunits was fully modified and that the phosphorylation pattern of recombinant CAK is extremely heterogeneous. Finally, matrix-assisted laser desorption/ionization (MALDI)-MS and nanoLC-tandem mass spectrometry (MS/MS) techniques were used for the analysis of the major phosphorylation sites of each subunit, showing that all correspond to Ser/Thr phosphorylation sites. Phosphorylations occurred on Ser164 and Thr170 residues of CDK7, Thr315 residue of cyclin H, and Ser279 residue of MAT1.  相似文献   

11.
We propose here a new strategy for the exhaustive mapping of phosphorylation sites in the Xenopus laevis Cdc25 phosphatase, which regulates cell cycle progression in eukaryotic cells. Two different MS analyses in a linear IT were used to identify the phosphorylated residues. First, a data-dependent neutral loss (DDNL) analysis triggered the fragmentation of peptides that show enhanced neutral loss of phosphoric acid. Second, a targeted product ion scanning (TPIS) mass analysis was carried out in which MS2 events are triggered for specific m/z values. Full coverage of the protein sequence was obtained by combining the two analyses with two enzymatic digestions, trypsin and chymotrypsin, yielding a comprehensive map of the phosphorylation sites. Previous reports have shown Cdc25C to be phosphorylated by Cdc2-cyclin B at four residues (Thr48, Thr67, Thr138 and Ser205). By using this combination of scan modes, we have identified four additional phosphorylation sites (Thr86, Ser99, Thr112 and Ser163) in a recombinant Cdc25C protein containing 198 residues of the NH2-terminal noncatalytic domain. The sensitivity of this combined approach makes it extremely useful for the comprehensive characterization of phosphorylation sites, virtually permitting complete coverage of the protein sequence with peptides within the mass detection range of the linear IT.  相似文献   

12.
Shewanella oneidensis MR-1 is a gram-negative facultative aerobic bacterium living at oxic-anoxic interfaces in nature. The plasticity of terminal electron-acceptors used under anaerobic conditions is huge, but the adaptation to these different environmental conditions remains unclear. In this work, we used a proteomic approach to study the protein content when the organism is grown under anaerobic respiration conditions on insoluble ferric oxide. By analysis of two-dimensional gel patterns of soluble protein extracts, we discovered 20 differentially displayed proteins. The protein spots were further analyzed by mass spectrometry for which we used, in addition to nano-high-performance liquid chromatography coupled to an electrospray ionization-quadrupole-time of flight instrument, a recently introduced matrix-assisted laser desorption/ionization (MALDI) tandem-time of flight mass spectrometer. The instrument allows the acquisition of high quality spectra, in both the mass spectrometry and tandem mass spectrometry mode, and is therefore able to identify protein spots unambiguously. Advantageous to electrospray ionization is a minimised sample handling, inherent to MALDI ionization, and the presence of high energy fragmentation ions, generating sequence information that also can differentiate isobaric amino acids. With this strategy, we could point out a regulatory protein that is up-regulated under iron(III) respiration. This protein, the aerobic respiration control protein (ArcA), has been reported as being a regulator during anaerobiosis in other species. To our knowledge, this is the first report of the possible involvement of ArcA from S. oneidensis MR-1 in the reduction of ferric oxide.  相似文献   

13.
The dramatic progress in mass spectrometry-based methods of protein identification has triggered a new quest for disease-associated biomarkers. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and its variant surface-enhanced laser desorption/ionization mass spectrometry, provide effective means to explore the less studied information slice of the human serum proteome -- low-molecular-weight proteins and peptides. These low-molecular-weight proteins and peptides are promising for the detection of important biomarkers. Due to the significant experimental problems imposed by high-abundance and high-molecular-weight proteins, it is important to effectively remove these species prior to mass spectrometry analysis of the low-molecular-weight serum and plasma proteomes. In this review, the advantages afforded by recently introduced methods for prefractionation of serum, as they pertain to the detection and identification of biomarkers, will be discussed.  相似文献   

14.
15.
The dramatic progress in mass spectrometry-based methods of protein identification has triggered a new quest for disease-associated biomarkers. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and its variant surface-enhanced laser desorption/ionization mass spectrometry, provide effective means to explore the less studied information slice of the human serum proteome – low-molecular-weight proteins and peptides. These low-molecular-weight proteins and peptides are promising for the detection of important biomarkers. Due to the significant experimental problems imposed by high-abundance and high-molecular-weight proteins, it is important to effectively remove these species prior to mass spectrometry analysis of the low-molecular-weight serum and plasma proteomes. In this review, the advantages afforded by recently introduced methods for prefractionation of serum, as they pertain to the detection and identification of biomarkers, will be discussed.  相似文献   

16.
17.
Cyclooxygenase is involved in the biosynthesis and function of prostaglandins. It is a glycoprotein located in the endoplasmic reticulum and in the nuclear envelope, and it has been found to have two isoforms termed COX-1 and COX-2. This paper reports on the glycosylation site analysis of recombinant COX-2 using matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) and nanoelectrospray (nanoESI) quadrupole-TOF (Q-TOF) MS. The nanoESI MS analysis of COX-2 revealed the presence of three glycoforms at average molecular masses of 71.4, 72.7, and 73.9 kDa. Each glycoform contained a number of peaks differing by 162 Da indicating heterogeneity and suggesting the presence of high-mannose sugars. The masses of the glycoforms indicate that oligosaccharides occupy two to four sites and a single N-acetylglucosamine (GlcNAc) residue occupied up to two sites. The MALDI MS analysis of a tryptic digest of the protein showed a number of potential glycopeptides. The peptides differed by 162 Da which further suggested high-mannose sugars. Nanoelectrospray MS/MS experiments confirmed glycosylation at the Asn 53 and Asn 130 sites and confirmed the presence of the peptides Asn 396-Arg 414 + GlcNAc and Thr 576-Arg 587 + GlcNAc containing Asn 580. It was not possible to conclusively determine whether the Asn 396 site was glycosylated via an MS/MS experiment, so the tryptic digest was deglycosylated to confirm the presence of the glycopeptides. Finally, a non-glycosylated tryptic peptide was observed containing the Asn 592.  相似文献   

18.
Although recent advances in gel electrophoresis and mass spectrometry have greatly facilitated separation, purification, and identification of proteins, significant challenges remain in relation to phosphoprotein analysis. Here we introduce a powerful method for analysis of protein phosphorylation in which phosphorylation sites are labeled with guanidinoethanethiol (GET) by beta-elimination/Michael addition prior to proteolysis and mass spectrometry (MS) analysis. This technique is especially useful in conjunction with gel-based technology in that all of the processes involved, including GET labeling, washing, and phosphospecific enzymatic hydrolysis, can be carried out in excised gel slices, thereby minimizing sample loss and contamination. The novel GET tag, which has a highly basic guanidine group, increases the peak intensities for the GET-labeled tryptic peptides by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS. In addition, phosphospecific proteolytic cleavage occurs at guanidinoethylcysteine (Gec) residue, which is arginine-mimic formed by GET tagging of phosphorylated serine residues. Thus, GET tagging is especially useful in analysis of long tryptic phosphopeptides. To illustrate the utility of the in-gel GET tagging and digestion approach, we used it to precisely analyze the phosphorylation sites of human glutathione S-transferase P1 (GSTP1), an enzyme involved in phase II metabolism of many carcinogens and anticancer drugs. The in-gel GET tagging/digestion technique significantly enhances the analytical potential of gel electrophoresis/MS in studies of proteome phosphorylation.  相似文献   

19.
Pharmacodynamic (PD) biomarkers are an increasingly valuable tool for decision-making and prioritization of lead compounds during preclinical and clinical studies as they link drug-target inhibition in cells with biological activity. They are of particular importance for novel, first-in-class mechanisms, where the ability of a targeted therapeutic to impact disease outcome is often unknown. By definition, proximal PD biomarkers aim to measure the interaction of a drug with its biological target. For kinase drug discovery, protein substrate phosphorylation sites represent candidate PD biomarkers. However, substrate phosphorylation is often controlled by input from multiple converging pathways complicating assessment of how potently a small molecule drug hits its target based on substrate phoshorylation measurements alone. Here, we report the use of quantitative, differential mass-spectrometry to identify and monitor novel drug-regulated phosphorylation sites on target kinases. Autophosphorylation sites constitute clinically validated biomarkers for select protein tyrosine kinase inhibitors. The present study extends this principle to phosphorylation sites in serine/threonine kinases looking beyond the T-loop autophosphorylation site. Specifically, for the 3'-phosphoinositide-dependent protein kinase 1 (PDK1), two phospho-residues p-PDK1(Ser410) and p-PDK1(Thr513) are modulated by small-molecule PDK1 inhibitors, and their degree of dephosphorylation correlates with inhibitor potency. We note that classical, ATP-competitive PDK1 inhibitors do not modulate PDK1 T-loop phosphorylation (p-PDK1(Ser241)), highlighting the value of an unbiased approach to identify drug target-regulated phosphorylation sites as these are complementary to pathway PD biomarkers. Finally, we extend our analysis to another protein Ser/Thr kinase, highlighting a broader utility of our approach for identification of kinase drug-target engagement biomarkers.  相似文献   

20.
Phosphoamino acid modifications on substrate proteins are critical components of protein kinase signaling pathways. Thus, diverse methodologies have been developed and applied to identify the sites of phosphorylated amino acids within proteins. Despite significant progress in the field, even the determination of phosphorylated residues in a given highly purified protein is not a matter of routine and can be difficult and time-consuming. Here we present a practicable approach that integrates into a liquid chromatography matrix-assisted laser desorption/ionization mass spectrometry (LC–MALDI MS) workflow and allows localization and quantification of phosphorylated peptides on the MALDI target plate prior to MS analysis. Tryptic digests of radiolabeled proteins are fractionated by reversed-phase LC directly onto disposable MALDI target plates, followed by autoradiographic imaging. Visualization of the radiolabel enables focused analysis of selected spots, thereby accelerating the process of phosphorylation site mapping by decreasing the number of spectra to be acquired. Moreover, absolute quantification of the phosphorylated peptides is permitted by the use of appropriate standards. Finally, the manual sample handling is minimal, and consequently the risk of adsorptive sample loss is very low. Application of the procedure allowed the targeted identification of six novel autophosphorylation sites of AMP-activated protein kinase (AMPK) and displayed additional unknown phosphorylated peptide species not amenable to detection by MS. Furthermore, autoradiography revealed topologically inhomogeneous distribution of phosphorylated peptides within individual spots. However, accurate analysis of defined areas within single spots suggests that, rather than such quantitative differences, mainly the manner of matrix crystallization significantly affects ionization of phosphopeptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号