首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The goal of this study was to determine the effects of Fe supplementation on the anemia of Cu deficiency in rats. In addition, we observed changes in serum and organ Cu and Fe during the development of Cu deficiency. In Experiment 1, weanling male Sprague-Dawley rats were fed AIN-93G diets containing either <0.3 mg Cu [Cu deficient (CuD)] or 6.0 mg Cu [Cu adequate (CuA)] per kilogram diet, and 35 mg Fe/kg. Five rats from each group were killed at intervals for the analysis of hematologic parameters and mineral content of various organs. In Experiment 2, two groups of 24 rats each were fed either the CuA diet or the CuD diet for 14 days. Then, three sets of eight rats in each group received three separate Fe treatments: (1) daily intraperitoneal injections of 400 mug Fe (Cu-free ferric citrate) per rat for another 14 days, (2) fed similar diets that contained three times the normal amount of Fe (105 mg/kg) for 14 days, or (3) received no further Fe treatment. At day 21, all rats were fed a 1-g meal labeled with (59)Fe to determine Fe absorption. After 28 days, rats were killed for the analyses of Fe and Cu status. Results of Experiment 1 showed that within 14 days, CuD rats had lower blood hemoglobin (Hgb), red blood cell count, and mean corpuscular volume than CuA rats. Copper concentrations in all tissues measured were lower in the CuD rats than in controls. Serum ceruloplasmin (Cp) activity in CuD rats was only 0.8% of CuA rats at day 7. During this period, enterocyte and liver Fe concentrations were elevated and serum Fe was reduced, but there was no change in spleen Fe. Results of Experiment 2 showed that CuD rats absorbed less Fe than CuA rats. Supplemental Fe by diet or by intraperitoneal injections did not prevent anemia in the CuD rats or affect other parameters of Cu status. Serum total iron binding capacity [transferrin (Tf)] was not changed by Cu deficiency or by Fe supplementation; however, percent Tf saturation was reduced in CuD rats but was not enhanced by Fe supplementation. These data suggest that anemia of Cu deficiency occurs because of reduced Fe absorption, and it inhibits release of Fe from the liver and inefficient loading of Fe into Tf because of very low plasma Cp activity. The latter then leads to inefficient delivery of Fe to the erythroid cells for heme and Hgb synthesis.  相似文献   

2.
The hypothesis that nonenzymatic glycosylation of proteins (glycation) contributes to damage associated with dietary copper deficiency has depended largely on indirect evidence. Thus far, the observation of an elevated percentage of glycated hemoglobin in copper-deficient rats has provided the only direct evidence of an increase in glycation. We sought further direct evidence of increased glycation in copper deficiency. Male weanling rats were fed a copper-adequate (CuA, 6.4 mg Cu/kg diet) or copper-deficient diet (CuD, 0.4 mg Cu/kg diet) for 5 weeks. Rats fed the CuD diet were copper deficient as judged by depressed organ copper concentrations and a variety of indirect indices. Measurements of hemoglobin A(1) and serum fructosamine (both early glycation end-products) as well as serum pentosidine (an advanced glycation end-product) indicated that all three compounds were elevated in CuD rats relative to CuA rats. This finding further supports the view that glycation is enhanced and thus may contribute to defects associated with dietary copper deficiency.  相似文献   

3.
Dietary copper deficiency increases the accumulation of circulating neutrophils in the rat lung microcirculation. This process includes neutrophil adhesion to, migration along, and emigration though the vascular endothelium. The current study was designed to examine the role of copper in each of these steps. Neutrophils were isolated from rats fed either a copper-adequate (CuA, 6.1 microg Cu/g diet) or copper-deficient diet (CuD, 0.3 microg Cu/g diet) for 4 weeks. First, transient and firm adhesion of neutrophils to P-selectin in a flow chamber showed there were more adhered CuD neutrophils than CuA ones. This effect is probably caused by the increased expression of CD11b that was observed in the current study. Second, the evaluation of neutrophil migration under agarose showed that the CuD neutrophils moved farther than the CuA group in response to IL-8 but not fMLP; this suggests an increased sensitivity to a CD11/CD18-independent signalling pathway. Third, the contractile mechanism of endothelial cells was studied. Elevated F-actin formation in Cu-chelated lung microvascular endothelial cells suggests that neutrophil emigration may be promoted by enhanced cytoskeletal reorganization of the endothelium during copper deficiency. Combined, these results support the theory that dietary copper deficiency has proinflammatory effects on both neutrophils and the microvascular endothelium that promote neutrophil-endothelial interactions.  相似文献   

4.
Copper (Cu) deficiency in rats reduces the relative concentration of duodenal hephaestin (Hp), reduces iron (Fe) absorption, and causes anemia. An experiment was conducted to determine whether these effects could be reversed by dietary Cu repletion. Five groups of eight weanling male rats each were used. Group 1 was fed a Cu-adequate diet (5.0 mg Cu/kg; CuA) and Group 2 was fed a Cu-deficient diet (0.25 mg Cu/kg; CuD) for 28 days. The rats were fed 1.0 g each of their respective diets labeled with 59Fe (37 kBq/g), and the amount of label retained was measured one week later by whole-body-counting (WBC). Group 3 was fed a CuA diet and Groups 4 and 5 were fed a CuD diet for 28 days. Group 5 was then fed the CuA diet for another week while Groups 3 and 4 continued on their previous regimens. Rats in Groups 3, 4, and 5 were fed 1.0 g of diet labeled with 59Fe, and the amount of label retained was measured by WBC one week later. Rats were killed and duodenal enterocytes isolated for Hp protein analysis, whole blood was analyzed for hematological parameters, and various organs for 59Fe content. CuD rats absorbed less (P<0.05) Fe than CuA rats, the relative amount of duodenal Hp was less (P<0.05) in CuD rats, and the CuD rats developed anemia. After the CuD rats had been repleted with Cu for one week, Fe retention rose to values even higher (P<0.05) than those in CuA rats. After two weeks, the relative amount of duodenal Hp was higher (P<0.05) than normal, and most signs of anemia were reversed. Liver 59Fe was elevated in CuD rats, but was restored to normal upon Cu repletion. These findings suggest a strong association between duodenal Hp abundance and Fe absorption in the CuD rat, and that reduced Fe absorption is an important factor in the cause of anemia.  相似文献   

5.
The lymphatic absorption of cholesterol and plasma clearance of chylomicrons were investigated in Cu-deficient rats (CuD) fed 0.5 mg Cu/kg diet, as compared with Cu-adequate control rats (CuA) fed 7.5 mg/kg diet. Cholesterol absorption was measured by the 14C-radioactivity appearing in the mesenteric lymph at hourly intervals for 8 hr after an intraduodenal dose of [14C]cholesterol. The plasma clearance of chylomicrons was measured at 3, 6, and 10 min after an intravenous dose of chylomicrons labeled in vivo with [3H]retinyl ester. Cumulative [14C]cholesterol absorption and total lymphatic output of cholesterol were significantly decreased in CuD at 4 hr and thereafter, with no change in percentage distribution of free and esterified cholesterol. Over an 8-hr period, 7.3% of the dose was absorbed by CuD and 9.2% by CuA. When [3H]chylomicrons, obtained from a CuD or CuA donor rat, were injected into CuD and CuA recipient rats, the label was cleared faster in CuD during the first 3 min. At 6 and 10 min, however, no significant difference in percentage clearance of the dose was observed between the groups. The half-life (t1/2) of [3H]chylomicrons and the total 3H-radioactivity taken up by the liver during the entire 10-min period did not differ between the groups, regardless of the source of chylomicrons. The activities of both endothelial lipoprotein lipase (LPL) and hepatic lipase (HL) in postheparin plasma were markedly lower in CuD. As expressed in micromoles fatty acid released/hr/ml plasma, the activities of LPL in CuD and CuA were 32.6 +/- 1.9 and 45.6 +/- 1.3, respectively. A similar magnitude of difference was also observed in HL activity. The data provide evidence that copper deficiency impairs the intestinal transport of cholesterol and the peripheral lipolysis of chylomicrons. The data, however, strongly suggest that the hepatic uptake of chylomicron remnants via the apo-E-dependent mechanism may not be impaired in Cu deficiency.  相似文献   

6.
Impaired deformability of copper-deficient neutrophils   总被引:1,自引:0,他引:1  
We have previously shown that dietary copper deficiency augments neutrophil accumulation in the lung microvasculature. The current study was designed to determine whether a diet deficient in copper promotes neutrophil chemoattraction within the lung vasculature or if it alters the mechanical properties of the neutrophil, thus restricting passage through the microvessels. Sprague-Dawley rats were fed purified diets that were either copper adequate (6.3 microg Cu/g diet) or copper deficient (0.3 microg Cu/g diet) for 4 weeks. To assess neutrophil chemoattraction, bronchoalveolar lavage fluid was assayed for the neutrophil chemokine macrophage inflammatory protein-2 (MIP-2) by enzyme-linked immunosorbent assay. Neutrophil deformability was determined by measuring the pressure required to pass isolated neutrophils through a 5-microm polycarbonate filter. The MIP-2 concentration was not significantly different between the dietary groups (Cu adequate, 435.4 +/- 11.9 pg/ml; Cu deficient, 425.6 +/- 14.8 pg/ml). However, compared with controls, more pressure was needed to push Cu-deficient neutrophils through the filter (Cu adequate, 0.150 +/- 0.032 mm Hg/sec; Cu deficient, 0.284 +/- 0.037 mm Hg/sec). Staining of the filamentous actin (F-actin) with FITC-Phalloidin showed greater F-actin polymerization and shape change in the Cu-deficient group. These results suggest that dietary copper deficiency reduces the deformability of neutrophils by promoting F-actin polymerization. Because most neutrophils must deform during passage from arterioles to venules in the lungs, we propose that copper-deficient neutrophils accumulate in the lung because they are less deformable.  相似文献   

7.
This study aimed to characterize the impact of dietary copper on the biochemical and hepatic metabolite changes associated with fructose toxicity in a Wistar rat model of fructose-induced liver disease. Twenty-four male and 24 female, 6-week-old, Wister rats were separated into four experimental dietary treatment groups (6 males and 6 females per group), as follows: (1) a control diet: containing no fructose with adequate copper (i.e., CuA/0% Fruct); (2) a diet regimen identical to the control and supplemented with 30% w/v fructose in the animals' drinking water (CuA/30% Fruct); (3) a diet identical to the control diet but deficient in copper content (CuD/0% Fruct) and (4) a diet identical to the control diet but deficient in copper content and supplemented with 30% w/v fructose in the drinking water (CuD/30% Fruct). The animals were fed the four diet regimens for 5 weeks, followed by euthanization and assessment of histology, elemental profiles and identification and quantitation of liver metabolites. Results from 1H nuclear magnetic resonance metabolomics revealed mechanistic insights into copper modulation of fructose hepatotoxicity through identification of distinct metabolic phenotypes that were highly correlated with diet and sex. This study also identified previously unknown sex-specific responses to both fructose supplementation and restricted copper intake, while the presence of adequate dietary copper promoted most pronounced fructose-induced metabolite changes.  相似文献   

8.
9.
The purpose of this study was to further examine the hypothesis that variations in hepatic fructose-metabolizing enzymes between males and females might account for the differences in the severity of copper (Cu) deficiency observed in fructose-fed male rats. Weanling rats of both sexes were fed high-fructose diets either adequate or deficient in copper for 45 days. Cu deficiency decreased sorbitol dehydrogenase activity and dihydroxyacetone phosphate levels and increased glyceraldehyde levels in both sexes. Gender effects were expressed by higher activities of glycerol 3-phosphate dehydrogenase and aldehyde dehydrogenase in male than in female rats and higher levels of dihydroxyacetone phosphate and fructose 1,6-diphosphate (F1,6DP) in female than in male rats. The interactions between dietary Cu and gender were as follows: alcohol dehydrogenase activities were higher in female rats and were further increased by Cu deficiency in both sexes; aldehyde dehydrogenase activities were decreased by Cu deficiency only in male rats; sorbitol levels were higher in male rats and were further increased by Cu deficiency in male rats; fructose 1-phosphate (F1P) levels were increased by Cu deficiency in both sexes, but to a greater extent in male rats; glyceraldehyde 3-phosphate levels were higher in female rats, but were decreased by Cu deficiency in female and increased in male rats. Though most of the examined hepatic fructose-metabolizing enzymes and metabolites showed great differences between rats fed diets either adequate or deficient in Cu, it is the activity of fructokinase and aldolase-B, and the concentrations of their common metabolites, F1P and notably F1,6DP, that could be in part responsible for differences in the severity of pathologies associated with Cu deficiency observed between female and male rats.  相似文献   

10.
Endothelium-dependent relaxation of aortas was studied in dietary copper (Cu) deficiency. Male, weanling Sprague-Dawley rats were fed diets deficient (CuD, less than 0.5 ppm) or adequate (CuA, 5.0-5.5 ppm) in Cu for 4 weeks. Aortic rings from paired Cu-deficient and Cu-adequate rats were isolated from the descending thoracic aorta, placed in tandem tissue baths, and attached to force transducers. Aortas were contracted with phenylephrine (3 x 10(-7) M) and the degree of force reduction was measured after successively increasing the dose of acetylcholine (10(-8)-10(-5) M), histamine 10(-6)-10(-3) M), or sodium nitroprusside (10(-9)-10(-6) M). Cu deficiency was found to significantly reduce the relaxation responses of each relaxing agent at the highest three of the four doses tested. The ability of Cu-adequate and Cu-deficient aortas to relax was not different, as indicated by their complete relaxation in response to 10(-4) or 10(-5) M papaverine. Because the relaxation responses to both acetylcholine and histamine in rat aorta are dependent on the presence of endothelium, the reduction of these responses suggests that endothelium, or its interaction with smooth muscle, was disrupted in dietary Cu deficiency. The reduction in response to sodium nitroprusside, an endothelium-independent analog of endothelium-derived relaxing factor, indicates that the interaction of endothelium-derived relaxing factor with smooth muscle was disrupted. These findings have implications regarding blood pressure regulation in Cu deficiency.  相似文献   

11.
Carbohydrates (CHO) such as fructose (FR) or sucrose, but not starch (ST), aggravate the consequences of dietary copper (Cu) deficiency in rats. To evaluate whether this Cu X CHO interaction is pertinent to human health, the pig was used as an animal model. In two studies, 66 weanling pigs were fed dried skim milk (DSM)-based diets for 10 wk with 20% of the total calories provided as either FR, glucose, or ST and containing either deficient (1.0-1.3 micrograms/g diet) or adequate (7.1 micrograms/g) levels of Cu. Plasma and tissue levels of Cu, the activities of plasma ceruloplasmin ferroxidase and erythrocyte Cu, Zn-superoxide dismutase, and hematocrits were lower (p less than 0.05) in animals fed Cu-deficient diets. The relative cardiac mass of all Cu-deficient groups was greater (p less than 0.05) than that of animals fed Cu-adequate diets. These effects were in general unaffected by type of CHO. For comparison, weaned male rats were also fed DSM-based containing diets ST or FR with adequate or deficient Cu for as long as 10 wk. Rats consuming the Cu-deficient diets were characterized by significantly lower hematocrits, decreased tissue Cu levels, and enlarged hearts, regardless of the CHO source. Together, these data demonstrate that DSM-based diets are not suitable for delineation of potential Cu X CHO interactions, and one or more components of DSM may exacerbate the consequences of dietary Cu deficiency.  相似文献   

12.
The purpose of this study was to examine, by transmission electron microscopy (TEM), the nature of the protective effect of dimethyl sulfoxide (DMSO) on hearts of copper-deficient (CuD) rats. Male, weanling Sprague-Dawley rats were fed, in a two-way design, CuD (0.45 micrograms/g) or copper-sufficient (CuS, 5.4 micrograms/g) diets with or without 5% DMSO in their drinking water. After 28 d, CuD rats showed typical signs of copper deficiency, including reduced liver and heart Cu, enlarged hearts, and anemia. DMSO-treated, CuD rats had lower heart weights and higher hematocrits than CuD rats. DMSO enhanced organ Cu concentrations in CuS, but not in CuD rats. TEM of CuD hearts showed myofibrillar distortion and enlarged, vacuolated mitochondria with fragmented cristae; morphometric measurements indicated an enhanced mitochondrial/myofibrillar ratio (mito/myo), but an increase of both mitochondrial and myofibrillar mass relative to CuS hearts. Compared to CuD hearts, DMSO-treated CuD hearts showed better mitochondrial morphology and myofibrillar organization, as well as a greater mito/myo, but lower mitochondrial and myofibrillar masses. Its function as a hydroxyl radical scavenger indicates that DMSO could protect CuD hearts, in particular their mitochondria, against oxidative damage. However, because measurements of thiobarbituric acid reactive substances were not consistent with this theory, other metabolic mechanisms, direct and indirect, must be examined.  相似文献   

13.
Copper deficiency was induced in rats by feeding diets containing either 62% starch, fructose or glucose deficient in copper for 6 weeks. All copper deficient rats, regardless of the dietary carbohydrate, exhibited decreased ceruloplasmin activity and decreased serum copper concentrations. Rats fed the fructose diet exhibited a more severe copper deficiency as compared to rats fed either starch or glucose. The increased severity of the deficiency was characterized by reduced body weight, serum copper concentration and hematocrit. In all rats fed the copper adequate diets, blood pressure was unaffected by the type of dietary carbohydrate. Significantly reduced systolic blood pressure was evident only in rats fed the fructose diet deficient in copper. When comparing the three carbohydrate diets, the physiological and biochemical lesions induced by copper deprivation could be magnified by feeding fructose.  相似文献   

14.
Copper, iron and iodine/thyroid hormone (TH) deficiencies disrupt brain development. Neonatal Cu deficiency causes Fe deficiency and may impact thyroidal status. One purpose of these studies was to determine the impact of improved iron status following Cu deficiency by supplementing the diet with iron. Cu deficiency was produced in pregnant Holtzman [Experiment 1 (Exp. 1)] or Sprague-Dawley [Experiment 2 (Exp. 2)] rats using two different diets. In Exp. 2, dietary Fe content was increased from 35 to 75 mg/kg according to NRC guidelines for reproduction. Cu-deficient (CuD) Postnatal Day 24 (P24) rats from both experiments demonstrated lower hemoglobin, serum Fe and serum triiodothyronine (T3) concentrations. However, brain Fe was lower only in CuD P24 rats in Exp. 1. Hemoglobin and serum Fe were higher in Cu adequate (CuA) P24 rats from Exp. 2 compared to Exp. 1. Cu- and TH-deficient rats from Exp. 2 exhibited a similar sensorimotor functional deficit following 3 months of repletion. Results suggest that Cu deficiency may impact TH status independent of its impact on iron biology. Further research is needed to clarify the individual roles for Cu, Fe and TH in brain development.  相似文献   

15.
This study was conducted to determine the effects of nutrient interactions between dietary carbohydrates and copper levels on fructose-metabolizing hepatic enzymes in male and female rats. Male and female rats were fed diets for 5 weeks that were either adequate or deficient in copper that contained either starch or fructose. Rats of both sexes fed fructose as compared with those fed starch showed higher activity of hepatic fructose metabolizing enzymes. There were also significant differences in fructose metabolism of liver between the male and female rats. Female rats had lower hepatic ketohexokinase and triose kinase but higher triosephosphate isomerase activities compared with male rats. Male rats fed copper-deficient diets had lower aldolase B activity compared with those fed copper-adequate diets. Female rats fed copper-deficient diets had higher triosephosphate isomerase activity compared with rats fed copper-adequate diets. Our data suggest that gender differences in hepatic fructose metabolism may not be the primary reason for the severity of copper deficiency syndrome in male rats fed copper-deficient diet with fructose.  相似文献   

16.
The effects of severe, moderate, and mild copper deficiencies on cellular and humoral immunity were studied. Fifty male Sprague-Dawley rats, 5 wk of age, were fed diets containing 0.5, 2.0, 3.5, or 5.0 micrograms Cu/g for either 4 or 8 wk. Ten of the rats were fed the control diet, but were pair-fed with the 0.5-micrograms/g treatment group. All rats were immunized once with sheep red blood cells. Mean plasma-copper concentration reflected the dietary levels of copper, and ceruloplasmin activity correlated highly to plasma copper. Rats consuming suboptimal levels of copper responded differently to the deficiencies, so copper status varied among those animals. After 8 wk, cell proliferation, when stimulated by phytohemagglutinin, was dependent on the copper status of the animal. Severely deficient rats had consistently lower lymphocyte stimulation indexes for phytohemagglutinin and concanavalin A, but specific antibody response was not reduced. Immunoglobulin G (IgG) concentrations were variable for all rats, and immunoglobulin M (IgM) concentrations were lower for the severely deficient rats. Suboptimal dietary copper may alter immune function in rats, depending on the ensuing effect on copper status.  相似文献   

17.
Evidence is accumulating which indicates that copper-deficient animals are prone to oxidative damage. To investigate this possibility further, we measured the production of breath ethane, a hydrocarbon by-product of lipid peroxidation, in copper-deficient rats. Male, weanling Sprague-Dawley rats were fed either a purified diet which was deficient in copper (CuD) or the same diet made sufficient with 5 ppm of copper (CuS). After 33 to 34 days the rats were placed individually in gastight metabolic cages through which ethane-free air or 100% O2 was passed. Expired ethane was absorbed onto cold, activated charcoal, liberated by heating, and measured by gas chromatography. Ethane production rates (pmoles/min/100 g +/- SD) were 3.3 +/- 0.8 (CuS-air), 4.3 +/- 1.4 (CuD-air), 8.3 +/- 2.5 (CuS-O2), and 12.2 +/- 4.3 (CuD-O2). Repeated measures analysis of variance indicated that both copper deficiency (P less than 0.01) and breathing 100% O2 (P less than 0.0001) enhanced ethane production, with no interaction between treatments. This finding complements previous evidence that increased lipid peroxidation occurs in copper-deficient rats.  相似文献   

18.
Low dietary copper has been shown to decrease the expression of various protein kinase C (PKC) isozymes and increase the risk of colon cancer development in experimental animals. The purpose of this study was to investigate the relationship between dietary copper and carcinogen administration on PKC isozyme accumulation and aberrant crypt foci (ACF) formation in rats fed 0.9 and 7.7 microg Cu/g diet. After 24 and 31 d on the diets, the rats were injected with either dimethylhydrazine (DMH) (25 mg/kg i.p.) or saline and killed at two time points (2 wk and 8 wk after DMH). Rats fed low dietary copper had significantly lower (p<0.0001) hematocrits, hemoglobin, ceruloplasmin activity and plasma and liver copper concentrations than rats fed adequate dietary copper. Ingestion of low dietary copper significantly (p<0.005) increased the formation of DMH-induced ACF (116.8 vs 59.6). Low dietary copper significantly (p<0.05) decreased the concentration of PKC alpha, delta, and zeta in the colon at 2 wk but not at 8 wk. Thus, changes in PKC isoform protein concentration may be related to increased susceptibility of copper-deficient animals to colon cancer.  相似文献   

19.
Perturbations in copper (Cu) metabolism are a characteristic of diabetes, for example, elevated plasma Cu and compromised oxidant defense related to diabetes-induced effects on Cu-containing enzymes. Herein, the redistribution of Cu in selected tissues is described in response to diabetic and nondiabetic states in rats that were fed diets adequate in (12 mg Cu/kg of diet) or deficient in (no added Cu) Cu. Diabetes was induced by intravenous administration of streptozotocin (40 mg/kg body weight). After 5 weeks, rats were gavaged with (67)Cu (0.74 MBq per rat) using the Cu-deficient diet as a vehicle (suspended 1:3 in water) and killed at various time points. The use of (67)Cu allowed for the assessment of short-term Cu distribution and its comparison to the steady-state Cu distribution, as determined by direct Cu analysis. In contrast to control rats, the adaptive mechanisms for Cu homeostasis in diabetic rats were impaired. In general, measures of Cu retention were reduced in diabetic rats compared to corresponding values for control rats. Moreover, diabetic rats had low copper, zinc superoxide dismutase activity that was reduced even further when diabetic rats were fed with low-Cu diets. However, liver and kidney metallothionein and plasma ceruloplasmin levels were elevated in diabetic rats compared to control rats. Such diabetes-related metabolic alterations were taken as measures of increased oxidative stress and inflammation, which may have implications in the progression of diabetes-related pathologies.  相似文献   

20.
Dietary copper deficiency has been shown to significantly reduce acetylcholine (Ach)-induced vascular smooth muscle relaxation. The current study was designed to examine the relative relationship between dietary copper and the vasodilator response to Ach in the microcirculation of the rat. Male weanling rats were fed a purified basal diet supplemented with 6.0, 3.0, 1.5 or 0.0 microg Cu/g diet for 4 weeks to provide an adequate, two marginal, and deficient intakes of dietary copper. Arteriole dilation in response to increasing concentrations of acetylcholine (10(-7) to 10(-4) M) was measured in the in vivo cremaster muscle microcirculation for each dietary group. Liver copper and both aortic and erythrocyte Cu,Zn-SOD activity were used as indices of systemic copper status. Dilation to the increasing concentrations of Ach was only different in the 0 microg Cu supplemented group compared to the copper-adequate control values. However, the combined results showed an exponential increase in 10(-5) M Ach-induced vasodilation as liver copper concentration increases from 0 microg Cu/g dry wt. This relationship suggests that dilation is attenuated at liver Cu concentrations below 5 microg/g dry wt. The results indicate that Ach-induced vasodilation is copper-dependent but that the pathway is not very sensitive to short-term marginal restriction of copper intake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号