首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The discoidin domain receptor DDR2 is a receptor for type X collagen.   总被引:1,自引:0,他引:1  
During endochondral ossification, collagen X is deposited in the hypertrophic zone of the growth plate. Our previous results have shown that collagen X is capable of interacting directly with chondrocytes, primarily via integrin alpha2beta1. In this study, we determined whether collagen X could also interact with the non-integrin collagen receptors, discoidin domain receptors (DDRs), DDR1 or DDR2. The widely expressed DDRs are receptor tyrosine kinases that are activated by a number of different collagen types. Collagen X was found to be a much better ligand for DDR2 than for DDR1. Collagen X bound to the DDR2 extracellular domain with high affinity and stimulated DDR2 autophosphorylation, the first step in transmembrane signalling. Expression of DDR2 in the epiphyseal plate was confirmed by RT-PCR and immunohistochemistry. The spatial expression of DDR2 in the hypertrophic zone of the growth plate is consistent with a physiological interaction of DDR2 with collagen X. Surprisingly, the discoidin domain of DDR2, which fully contains the binding sites for the fibrillar collagens I and II, was not sufficient for collagen X binding. The nature of the DDR2 binding site(s) within collagen X was further analysed. In addition to a collagenous domain, collagen X contains a C-terminal NC1 domain. DDR2 was found to recognise the triple-helical region of collagen X as well as the NC1 domain. Binding to the collagenous region was dependent on the triple-helical conformation. DDR2 autophosphorylation was induced by the collagen X triple-helical region but not the NC1 domain, indicating that the triple-helical region of collagen X contains a specific DDR2 binding site that is capable of receptor activation. Our study is the first to describe a non-fibrillar collagen ligand for DDR2 and will form the basis for further studies into the biological function of collagen X during endochondral ossification.  相似文献   

2.
Discoidin domain receptor 1 (DDR1) is a widely expressed tyrosine kinase receptor which binds to and gets activated by collagens including collagen type 1. Little is understood about the interaction of DDR1 with collagen and its possible functional implications. Here, we elucidate the binding pattern of the DDR1 extracellular domain (ECD) to collagen type 1 and its impact on collagen fibrillogenesis. Our in vitro assays utilized DDR1-Fc fusion proteins, which contain only the ECD of DDR1. Using surface plasmon resonance, we confirmed that further oligomerization of DDR1-Fc (by means of anti-Fc antibody) greatly enhances its binding to immobilized collagen type 1. Single-molecule imaging by means of atomic force microscopy revealed that DDR1 oligomers bound at overlapping or adjacent collagen molecules and were nearly absent on isolated collagen molecules. Interaction of DDR1 oligomers with collagen was found to modulate collagen fibrillogenesis both in vitro and in cell-based assays. Collagen fibers formed in the presence of DDR1 had a larger average diameter, were more cross-linked and lacked the native banded structure. The presence of DDR1 ECD resulted in "locking" of collagen molecules in an incomplete fibrillar state both in vitro and on surfaces of cells overexpressing DDR1. Our results signify an important functional role of the DDR1 ECD, which occurs naturally in kinase-dead isoforms of DDR1 and as a shedded soluble protein. The modulation of collagen fibrillogenesis by the DDR1 ECD elucidates a novel mechanism of collagen regulation by DDR1.  相似文献   

3.
We have imaged native rat tail and reconstituted bovine dermal type I collagen by atomic force microscopy, obtaining a level of detail comparable to that obtained on the same samples by transmission electron microscopy. The characteristic 60-70 nm D periodicity consists of ridges exhibiting high tip-sample adhesion alternating with 5-15-nm-deep grooves having low adhesion. We also observe an intraperiod or "minor" band consisting of 1-nm-deep grooves, and "microfibrils" arranged parallel to or inclined approximately 5 degrees to the fibril axis. In air collagen fibrils exhibit negligible compression under the forces exerted by the tip. When immersed in water the subfibrillar features disappear and the fibrils become softer, compressing by 5% of their height under an 11-nN force. Material on the surface of the sample sometimes accumulates on the atomic force microscope tip; contrary to expectation such tip contamination can improve as well as reduce resolution.  相似文献   

4.
Discoidin domain receptor I (DDR1) is a receptor tyrosine kinase (RTK) and serves as the receptor for collagen in addition to integrins. It has been well established that Madin-Darby canine kidney (MDCK) cells develop branching tubules in three-dimensional collagen gel in the presence of hepatocyte growth factor (HGF). MDCK cells normally express DDR1. However, the function of DDR1 in this in vitro model system has not been understood. We established stable-transfected MDCK cells harboring DDR1a, DDR1b, or dominant-negative (DN) DDR1 and cultured these transfectants in collagen gel with HGF (2 ng/ml) for the studies of branching tubule morphogenesis. Whether DDR1 played roles in cell growth, apoptosis, and migration was examined. We found that cells over-expressing DDR1a and DDR1b developed shorter tubules with fewer branches in collagen gel. In contrast, DN DDR1 over-expressed cells could not form tubule structure, but instead developed mostly cell aggregates with multiple long extended processes. Over-expression of DDR1a and 1b in MDCK cells resulted in reduction of cell growth when cells were cultured on collagen gel-coated dishes or collagen gel. On the other hand, DN DDR1 enhanced cell death on collagen gel, suggesting that DDR1 is involved in maintenance of cell survival. Moreover, over-expression of DDR1a and DDR1b markedly reduced collagen-induced migration capability, whereas DN DDR1 enhanced it, suggesting that DDR1a and 1b may serve as a negative regulator for alpha2beta1 integrin during migration on collagen substratum. These results indicate that DDR1 plays important role in regulation of HGF-induced branching tubulogenesis by modulating cell proliferation, survival, and cell migration.  相似文献   

5.
The discoidin domain receptors, DDR1 and DDR2, are receptor tyrosine kinases that are activated by native triple-helical collagen. Here we have located three specific DDR2 binding sites by screening the entire triple-helical domain of collagen II, using the Collagen II Toolkit, a set of overlapping triple-helical peptides. The peptide sequence that bound DDR2 with highest affinity interestingly contained the sequence for the high affinity binding site for von Willebrand factor in collagen III. Focusing on this sequence, we used a set of truncated and alanine-substituted peptides to characterize the sequence GVMGFO (O is hydroxyproline) as the minimal collagen sequence required for DDR2 binding. Based on a recent NMR analysis of the DDR2 collagen binding domain, we generated a model of the DDR2-collagen interaction that explains why a triple-helical conformation is required for binding. Triple-helical peptides comprising the DDR2 binding motif not only inhibited DDR2 binding to collagen II but also activated DDR2 transmembrane signaling. Thus, DDR2 activation may be effected by single triple-helices rather than fibrillar collagen.  相似文献   

6.
The binding and activation of the discoidin domain receptor 1 by collagen has led to the conclusion that proteins from the extracellular matrix can directly induce receptor tyrosine kinase-mediated signaling cascades. A region in the extracellular domain of DDR1 homologous to the Dictyostelium discoideum protein discoidin-I is also present in the secreted human protein RS1. Mutations in RS1 cause retinoschisis, a genetic disorder characterized by ablation of the retina. By introducing point mutations into the discoidin domain of DDR1 at positions homologous to the retinoschisis mutations, ligand binding epitopes in the discoidin domain of DDR1 were mapped. Surprisingly, some residues only affected receptor phosphorylation, whereas others influenced both collagen-binding and receptor activation. Furthermore, two truncated DDR1 variants, lacking either the discoidin domain or the stalk region between the discoidin and transmembrane domain, were generated. We showed that (i) the discoidin domain was necessary and sufficient for collagen binding, (ii) only the region between discoidin and transmembrane domain was glycosylated, and (iii) the entire extracellular domain was essential for transmembrane signaling. Using these results, we were able to predict key sites in the collagen-binding epitope of DDR1 and to suggest a potential mechanism of signaling.  相似文献   

7.
Bozec L  Horton M 《Biophysical journal》2005,88(6):4223-4231
Although the mechanical behavior of tendon and bone has been studied for decades, there is still relatively little understanding of the molecular basis for their specific properties. Thus, despite consisting structurally of the same type I collagen, bones and tendons have evolved to fulfill quite different functions in living organisms. In an attempt to understand the links between the mechanical properties of these collageneous structures at the macro- and nanoscale, we studied trimeric type I tropocollagen molecules by atomic force microscopy, both topologically and by force spectroscopy. High-resolution imaging demonstrated a mean (+/- SD) contour length of (287 +/- 35) nm and height of (0.21 +/- 0.03) nm. Submolecular features, namely the coil-pitch of the molecule, were also observed, appearing as a repeat pattern along the length of the molecule, with a length of approximately 8 nm that is comparable to the theoretical value. Using force spectroscopy, we established the stretching pattern of the molecule, where both the mechanical response of the molecule and pull-off peak are convoluted in a single feature. By interpreting this response with a wormlike chain model, we extracted the value of the effective contour length of the molecule at (202 +/- 5) nm. This value was smaller than that given by direct measurement, suggesting that the entire molecule was not being stretched during the force measurements; this is likely to be related to the absence of covalent binding between probe, sample, and substrate in our experimental procedure.  相似文献   

8.
Most polymers which comprise biological filaments assemble by two mechanisms: nucleation and elongation or a sequential, stepwise process involving a hierarchy of intermediate species. We report the application of atomic force microscopy (AFM) to the study of the early events in the sequential or stepwise mode of assembly of a macromolecular filament. Collagen monomers were assembled in vitro and the early structural intermediates of the assembly process were examined by AFM and correlated with turbidimetric alterations in the assembly mixture. The assembly of collagen involved a sequence of distinctive filamentous species which increased in both diameter and length over the time course of assembly. The first discrete population of collagen oligomers were 1-2 nm in diameter (300-500 nm in length); at later time points, filaments approximately 2-6 nm in diameter (> 10 microns in length) many with a conspicuous approximately 67-nm axial period were observed. Occasional mature collagen fibrils with a approximately 67-nm axial repeat were found late in the course of assembly. Our results are consistent with initial end-to-end axial association of monomers to form oligomers followed by lateral association into higher-order filaments. On this basis, there appears to be at least two distinctive types of structural interactions (axial and lateral) which are operative at different levels in the assembly hierarchy of collagen.  相似文献   

9.
Discoidin Domain Receptors (DDRs) have recently emerged as non-integrin-type receptors for collagen. The two mammalian gene products Discoidin Domain Receptor 1 and -2 constitute a subfamily of tyrosine kinase receptors that are selectively expressed in a number of different cell types and organs. Upon collagen activation, DDRs regulate cell adhesion, proliferation and extracellular matrix remodeling. Here we review the various signaling pathways and cellular responses evoked by activated DDRs. Additionally, we give an overview of the more recent advances in understanding the role of DDRs in various human diseases, in particular during tumor progression, atherosclerosis, inflammation and tissue fibrosis. Furthermore, we discuss potential roles of genes homologous to mammalian DDRs identified in flies, worms and sponges. We show that the structural organization of these DDR-related genes is highly conserved throughout evolution suggesting that invertebrate DDRs may also function as receptors for collagen. By highlighting current questions about these unusual collagen receptors, we hope to attract new research on DDRs from a variety of different fields.  相似文献   

10.
Intrinsic heterogeneities, represented as domain formations in biological membranes, are important to both the structure and function of the membranes. We observed domain formations in mixed lipid bilayers of dipalmitoylphosphatidylcholine (DPPC), dilauroylphosphatidylcholine (DLPC), and cholesterol (chol) in a fluid environment using an atomic force microscope (AFM). At room temperature, we demonstrated that both microscopic and nanoscopic domains coexist and the DPPC-rich domain is approximately 1.4 nm higher than the surrounding DLPC-rich membrane areas as a consequence of intrinsic phase differences. DPPC-rich microscopic domains became larger as DPPC concentration increased. In cholesterol-free mixtures, nanoscopic DPPC-rich domain sizes ranged from 26 to 46 nm depending on phospholipid concentration. Domain size varied between 33 and 48 nm in the presence of cholesterol (0 < or = [chol] < or = 40). The nanoscopic domains were markedly fragmented near [chol] = 0.135 and appeared to fuse more readily into microscopic domains at higher and lower [chol]. By phase balance analyses we demonstrated phase behavior differences between a free-vesicle GUV system studied by confocal light microscopy and a supported membrane system studied by AFM. We propose a new three-dimensional phase diagram elucidating the effects of a solid substrate support on lipid phase behavior relevant to complex membrane phase phenomena in biological systems.  相似文献   

11.
The anti-transplant rejection drug cyclosporin A (CsA) causes loss of collagen homeostasis in rapidly remodeling connective tissues, such as human gingiva. As a result of CsA treatment, collagen degradation by fibroblasts is inhibited, which leads to a net increase of tissue collagen and gingival overgrowth. Since fibrillar collagen is the primary ligand for the discoidin domain receptor 1 (DDR1), we hypothesized that CsA perturbs DDR1-associated functions that affect collagen homeostasis. For these experiments, human fibroblasts obtained from gingival explants or mouse 3T3 fibroblasts (wild type, over-expressing DDR1 or DDR1 knockdown) or mouse GD25 cells (expressing DDR1 but null for β1 integrin), were treated with vehicle (dimethyl sulfoxide) or with CsA. The effect of CsA on cell binding to collagen was examined by flow cytometry; cell-mediated collagen remodeling was analyzed with contraction, compaction and migration assays. We found that CsA inhibited cell binding to collagen, internalization of collagen, contraction of collagen gels and cell migration over collagen in a DDR1-dependent manner. CsA also enhanced collagen compaction around cell extensions. Treatment with CsA strongly reduced surface levels of β1 integrins in wild type and DDR1 over-expressing 3T3 cells but did not affect β1 integrin activation or focal adhesion formation. We conclude that CsA inhibition of collagen remodeling is mediated through its effects on both DDR1 and cell surface levels of the β1 integrin.  相似文献   

12.
Vogel WF 《FEBS letters》2002,514(2-3):175-180
Tyrosine kinases belonging to the discoidin domain receptor (DDR) family are activated upon stimulation with various types of collagen. In response to collagen treatment, immunoprecipitation of DDR1 with an antibody specific to the juxtamembrane region results in co-purification of a previously unrecognized tyrosine phosphorylated protein of 62 kDa molecular weight. Here, this protein is identified as C-terminal cleavage product of the full-length DDR1 receptor and a DDR1-specific shedding enzyme postulated. Shedding of DDR1 can be partially blocked by the furin inhibitor decanoyl-RVKR-chloromethylketone and completely inhibited by the hydroxamate-based inhibitor batimastat. The characteristic of the DDR1 sheddase to be blocked by batimastat suggests that it belongs to the membrane-bound matrix metalloproteinase or disintegrin and metalloproteinase family of proteases.  相似文献   

13.
Tapping mode atomic force microscopy was employed to study the surface structure of different protein crystals in a liquid environment. The (101) face of hen egg-white lysozyme crystals and the (111) face of horse spleen ferritin crystals were studied. On the (101) face of lysozyme crystals we observed islands delimitated by micro-steps and elongated in the [010] direction. The elongation direction coincides with the preferential growth direction predicted by a growth model reported in the literature. The islands observed on the ferritin (111) face are also delimitated by micro-steps but have circular symmetry. Sectioning of the images allowed us to measure the step heights. The surface free energy was estimated from the growth step morphology. Molecular resolution was achieved for ferritin crystals, showing a hexagonal surface packing, as expected for the molecular lattice of a (111) face in a fcc crystal.  相似文献   

14.
M F Paige  J K Rainey    M C Goh 《Biophysical journal》1998,74(6):3211-3216
Fibrous long spacing collagen (FLS) fibrils are collagen fibrils in which the periodicity is clearly greater than the 67-nm periodicity of native collagen. FLS fibrils were formed in vitro by the addition of alpha1-acid glycoprotein to an acidified solution of monomeric collagen and were imaged with atomic force microscopy. The fibrils formed were typically approximately 150 nm in diameter and had a distinct banding pattern with a 250-nm periodicity. At higher resolution, the mature FLS fibrils showed ultrastructure, both on the bands and in the interband region, which appears as protofibrils aligned along the main fibril axis. The alignment of protofibrils produced grooves along the main fibril, which were 2 nm deep and 20 nm in width. Examination of the tips of FLS fibrils suggests that they grow via the merging of protofibrils to the tip, followed by the entanglement and, ultimately, the tight packing of protofibrils. A comparison is made with native collagen in terms of structure and mechanism of assembly.  相似文献   

15.
16.
17.
Discoidin domain receptor (DDR) is a cell-surface receptor tyrosine kinase activated by the binding of its discoidin (DS) domain to fibrillar collagen. Here, we have determined the NMR structure of the DS domain in DDR2 (DDR2-DS domain), and identified the binding site to fibrillar collagen by transferred cross-saturation experiments. The DDR2-DS domain structure adopts a distorted jellyroll fold, consisting of eight beta-strands. The collagen-binding site is formed at the interloop trench, consisting of charged residues surrounded by hydrophobic residues. The surface profile of the collagen-binding site suggests that the DDR2-DS domain recognizes specific sites on fibrillar collagen. This study provides a molecular basis for the collagen-binding mode of the DDR2-DS domain.  相似文献   

18.
H Lin  D O Clegg  R Lal 《Biochemistry》1999,38(31):9956-9963
The dynamic process of synthesis and degradation of extracellular matrix molecules, including various collagens, is important in normal physiological functions and pathological conditions. Existing models of collagen enzymatic degradation reactions are derived from bulk biochemical assays. In this study, we have imaged in real-time individual collagen I molecules and their proteolysis by Clostridium histolyticum collagenases in phosphate-buffered saline (PBS) with atomic force microscopy (AFM). We have also imaged the likely binding and unbinding of collagenase molecules to single triple-helical collagen I molecules and subsequent proteolysis of subsets of the collagen molecules. The proteolysis of collagen molecules was inhibited by reduced calcium and acidification. Results from AFM study of collagen proteolysis are consistent with SDS-PAGE biochemical assays. The real-time proteolysis of single collagen I molecules followed simple Michaelis-Menton kinetics previously derived from bulk biochemical assays. This is the first report of imaging real-time proteolysis of single macromolecules and its inhibition on a molecular scale. A strong correspondence between the kinetics of proteolysis of single collagen molecules and the kinetics of proteolysis derived from bulk biochemical assays will have a wide applicability in examining real-time enzymatic reactions and their regulation at single molecule structural level. Such real-time study of single molecule proteolysis could provide a better understanding of the interactions between proteases and target proteins as well as proteases and protease inhibitors.  相似文献   

19.
The discoidin domain receptors (DDRs) are collagen binding receptor tyrosine kinases that play important roles in cell migration, invasion and adhesion. Crosstalk between growth factor signaling and components of the extracellular matrix are drivers of cellular function but the integrated signaling networks downstream of such crosstalk events have not been extensively characterized. In this report, we have employed mass spectrometry-based quantitative phosphotyrosine analysis to identify crosstalk between DDR2 and the insulin receptor. Our phosphoproteomic analysis reveals a cluster of phosphorylation sites in which collagen and insulin cooperate to enhance phosphotyrosine levels. Importantly, Y740 on the DDR2 catalytic loop was found in this cluster indicating that insulin acts to promote collagen I signaling by increasing the activity of DDR2. Furthermore, we identify two additional migration associated proteins that are candidate substrates downstream of DDR2 activation. Our data suggests that insulin promotes collagen I signaling through the upregulation of DDR2 phosphorylation which may have important consequences in DDR2 function in health and disease.  相似文献   

20.
In this study, we apply a dynamic atomic force microscopy (AFM) technique, frequency modulation (FM) detection, to the mechanical unfolding of single titin I27 domains and make comparisons with measurements made using the AFM contact or static mode method. Static mode measurements revealed the well-known force transition occurring at 100-120 pN in the first unfolding peak, which was less clear, or more often absent, in the subsequent unfolding peaks. In contrast, some FM-AFM curves clearly resolved a force transition associated with each of the unfolding peaks irrespective of the number of observed unfolded domains. As expected for FM-AFM, the frequency shift response of the main unfolding peaks and their intermediates could only be detected when the oscillation amplitudes used were smaller than the interaction lengths being measured. It was also shown that the forces measured for the dynamical interaction of the FM-AFM technique were significantly lower than those measured using the static mode. This study highlights the potential for using dynamic AFM for investigating biological interactions, including protein unfolding and the detection of novel unfolding intermediates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号