首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electron-transfer reactions and thermodynamic equilibria involving the quinone acceptor complex in bacterial reaction centers from R. sphaeroides were investigated. The reactions are described by the scheme: (Formula: see text). We found that the charge recombination pathway of D+QAQ(-)B proceeds via the intermediate state D+Q(-)AQB, the direct pathway contributing less than approx. 5% to the observed recombination rate. The method used to obtain this result was based on a comparison of the kinetics predicted for the indirect pathway (given by the product kAD-times the fraction of reaction centers in the Q-AQB state) with the observed recombination rate, kobsD+----D. The kinetic measurements were used to obtain the pH dependence (6.1 smaller than or equal to pH smaller than or equal to 11.7) of the free energy difference between the states Q(-)AQB and QAQ(-)B. At low pH (less than 9) QAQ(-)B is stabilized relative to Q(-)AQB by 67 meV, whereas at high pH Q(-)AQB is energetically favored. Both Q(-)A and Q(-)B associate with a proton, with pK values of 9.8 and 11.3, respectively. The stronger interaction of the proton with Q(-)B provides the driving force for the forward electron transfer.  相似文献   

2.
3.
E G Alexov  M R Gunner 《Biochemistry》1999,38(26):8253-8270
Reaction centers from Rhodobacter sphaeroides were subjected to Monte Carlo sampling to determine the Boltzmann distribution of side-chain ionization states and positions and buried water orientation and site occupancy. Changing the oxidation states of the bacteriochlorophyll dimer electron donor (P) and primary (QA) and secondary (QB) quinone electron acceptors allows preparation of the ground (all neutral), P+QA-, P+QB-, P0QA-, and P0QB- states. The calculated proton binding going from ground to other oxidation states and the free energy of electron transfer from QA-QB to form QAQB- (DeltaGAB) compare well with experiment from pH 5 to pH 11. At pH 7 DeltaGAB is measured as -65 meV and calculated to be -80 meV. With fixed protein positions as in standard electrostatic calculations, DeltaGAB is +170 meV. At pH 7 approximately 0.2 H+/protein is bound on QA reduction. On electron transfer to QB there is little additional proton uptake, but shifts in side chain protonation and position occur throughout the protein. Waters in channels leading from QB to the surface change site occupancy and orientation. A cluster of acids (GluL212, AspL210, and L213) and SerL223 near QB play important roles. A simplified view shows this cluster with a single negative charge (on AspL213 with a hydrogen bond to SerL233) in the ground state. In the QB- state the cluster still has one negative charge, now on the more distant AspL210. AspL213 and SerL223 move so SerL223 can hydrogen bond to QB-. These rearrangements plus other changes throughout the protein make the reaction energetically favorable.  相似文献   

4.
L Baciou  E Rivas  P Sebban 《Biochemistry》1990,29(12):2966-2976
The P+QA- and P+QB- charge recombination decay kinetics were studied in reaction centers from Rhodopseudomonas viridis reconstituted in phosphatidylcholine bilayer vesicles (proteoliposomes) and in chromatophores. P represents the primary electron donor, a dimer of bacteriochlorophyll; QA and QB are the primary and secondary stable quinone electron acceptors, respectively. In agreement with recent findings for reaction centers isolated in detergent [Sebban, P., & Wraight, C.A. (1989) Biochim. Biophys. Acta 974, 54-65] the P+QA- decay kinetics were biphasic (kfast and kslow). Arrhenius plots of the kinetics were linear, in agreement with the hypothesis of a thermally activated process (probably via P+I-; I is the first electron acceptor, a bacteriopheophytin) for the P+QA- charge recombination. Similar activation free energies (delta G) for this process were found in chromatophores and in proteoliposomes. Significant pH dependences of kfast and kslow were observed in chromtophores and in proteoliposomes. In the pH range 5.5-11, the pH titration curves of kfast and kslow were interpreted in terms of the existence of three protonable groups, situated between I- and QA-, which modulate the free energy difference between P+I- and P+QA-. In proteoliposomes, a marked effect of o-phenanthroline was observed on two of the three pKs, shifting one of them by more than 2 pH units. On the basis of recent structural data, we suggest a possible interpretation for this effect, which is much smaller in Rhodobacter sphaeroides. The decay kinetics of P+QB- were also biphasic. Marked pH dependences of the rate constants and of the relative proportions of both phases were also detected for these decays. The major conclusion of this work comes from the biphasicity of the P+QB- decay kinetics. We had suggested previously that biphasicity of the P+QA- charge recombination in Rps. viridis comes from nonequilibrium between protonation states of the reaction centers due to comparable rates of the protonation events and charge recombination. This hypothesis does not hold since the P+QB- decays occur on a time scale (tau approximately 300 ms at pH 8) much longer than protonation events. This leads to the conclusion that kfast and kslow (for both P+QA- and P+QB-) are related to conformational states of the reaction centers, existing before the flash. In addition, the fast and slow decays of P+QB- are related to those measured for P+QA-, via the calculations of the QA-QB in equilibrium QAQB- apparent equilibrium constants, K2.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Bacterial reaction centers (RCs) convert light energy into chemical free energy via the double reduction and protonation of the secondary quinone electron acceptor, QB, to the dihydroquinone QBH2. Two RC mutants (M266His --> Leu and M266His --> Ala) with a modified ligand of the non-heme iron have been studied by flash-induced absorbance change spectroscopy. No important changes were observed for the rate constants of the first and second electron transfers between the first quinone electron acceptor, QA, and QB. However, in the M266HL mutant a destabilization of approximately 40 meV of the free energy level of QA- was observed, at variance with the M266HA mutant. The superposition of the three-dimensional X-ray structures of the three proteins in the QA region provides no obvious explanation for the energy modification in the M266HL mutant. The shift of the midpoint redox potential of QA/QA- in M266HL caused accelerated recombination of the charges in the P+ QA- state of the RCs where the native QA was replaced by a low potential anthraquinone (AQA). As previously reported for the native RCs, in the M266HL we observed a biphasicity of the P+ AQA- --> P AQA charge recombination. Interestingly, both phases present a similar acceleration in the M266HL mutant with respect to the wild type. The pH dependencies of the proton uptake upon QA- and QB- formations are superimposable in both mutants but very different from those of native RCs. The data measured in mutants are similar to those that we previously obtained on strains modified at various sites of the cytoplasmic region. The similarity of the response to these different mutations is puzzling, and we propose that it arises from a collective behavior of multiple acidic residues resulting in strongly anticooperative proton binding. The unspecific disappearance of the high pH band of proton uptake observed in all these mutants appears as the natural consequence of removing any member of an interactive proton cluster. This long range interaction also accounts for the similar responses to mutations of the proton uptake pattern induced by either QA- or QB-. We surmise that the presence of an extended protonated water H-bond network providing protons to QB is responsible for these effects.  相似文献   

6.
The kinetics of the charge recombination D+QA-----DQA was used to probe the protonation of the primary acceptor in reaction centers from Rhodopseudomonas sphaeroides, in which the native ubiquinone was replaced by anthraquinone. We found that QA- is stabilized by the rapid (t less than 10(-2) s) binding of a proton, with a pK of 9.8. The distance between QA- and the proton binding site was estimated to be larger than approximately 5 A.  相似文献   

7.
We studied the kinetics of proton uptake and release by photoactive yellow protein (PYP) from Ectothiorhodospira halophila in wild type and the E46Q and E46A mutants by transient absorption spectroscopy with the pH-indicator dyes bromocresol purple or cresol red in unbuffered solution. In parallel, we investigated the kinetics of chromophore protonation as monitored by the rise and decay of the blue-shifted state I(2) (lambda(max) = 355 nm). For wild type the proton uptake kinetics is synchronized with the fast phase of I(2) formation (tau = 500 micros at pH 6.2). The transient absorption signal from the dye also contains a slower component which is not due to dye deprotonation but is caused by dye binding to a hydrophobic patch that is transiently exposed in the structurally changed and partially unfolded I(2) intermediate. This conclusion is based on the wavelength, pH, and concentration dependence of the dye signal and on dye measurements in the presence of buffer. SVD analysis, moreover, indicates the presence of two components in the dye signal: protonation and dye binding. The dye binding has a rise time of about 4 ms and is coupled kinetically with a transition between two I(2) intermediates. In the mutant E46Q, which lacks the putative internal proton donor E46, the formation of I(2) is accelerated, but the proton uptake kinetics remains kinetically coupled to the fast phase of I(2) formation (tau = 100 micros at pH 6.3). For this mutant the protein conformational change, as monitored by the dye binding, occurs with about the same time constant as in wild type but with reduced amplitude. In the alkaline form of the mutant E46A the formation of the I(2)-like intermediate is even faster as is the proton uptake (tau = 20 micros at pH 8.3). No dye binding occurred in E46A, suggesting the absence of a conformational change. In all of the systems proton release is synchronized with the decay of I(2). Our results support mechanisms in which the chromophore of PYP is protonated directly from the external medium rather than by the internal donor E46.  相似文献   

8.
I Vass  S Styring 《Biochemistry》1991,30(3):830-839
The effect of protonation events on the charge equilibrium between tyrosine-D and the water-oxidizing complex in photosystem II has been studied by time-resolved measurements of the EPR signal IIslow at room temperature. The flash-induced oxidation of YD by the water-oxidizing complex in the S2 state is a monophasic process above pH 6.5 and biphasic at lower pHs, showing a slow and a fast phase. The half-time of the slow phase increases from about 1 s at pH 8.0 to about 20 s at pH 5.0, whereas the half-time of the fast phase is pH independent (0.4-1 s). The dark reduction of YD+ was followed by measuring the decay of signal IIslow at room temperature. YD+ decays in a biphasic way on the tens of minutes to hours time scale. The minutes phase is due to the electron transfer to YD+ from the S0 state of the water-oxidizing complex. The half-time of this process increases from about 5 min at pH 8.0 to 40 min at pH 4.5. The hours phase of YD+ has a constant half-time of about 500 min between pH 4.7 and 7.2, which abruptly decreases above pH 7.2 and below pH 4.7. This phase reflects the reduction of YD+ either from the medium or by an unidentified redox component of PSII in those centers that are in the S1 state. The titration curve of the half-times for the oxidation of YD reveals a proton binding with a pK around 7.3-7.5 that retards the electron transfer from YD to the water-oxidizing complex. We propose that this monoprotic event reflects the protonation of an amino acid residue, probably histidine-190 on the D2 protein, to which YD is hydrogen bonded. The titration curves for the oxidation of YD and for the reduction of YD+ show a second proton binding with pK approximately 5.8-6.0 that accelerates the electron transfer from YD to the water-oxidizing complex and retards the process in the opposite direction. This protonation most probably affects the water-oxidizing complex. From the measured kinetic parameters, the lowest limits for the equilibrium constants between the S0YD+ and the S1YD as well as between the S1YD+ and S2YD states were estimated to be 5 and 750-1000, respectively.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Transmembrane proton translocation in the photosynthetic membranes of the purple bacterium Rhodobacter sphaeroides is driven by light and performed by two transmembrane complexes; the photosynthetic reaction center and the ubiquinol-cytochrome c oxidoreductase complex, coupled by two mobile electron carriers; the cytochrome and the quinone. This paper focuses on the kinetics and thermodynamics of the interaction between the lipophylic electron carrier ubiquinone-10 and the photosynthetic enzyme reconstituted in liposomes. The collected data were simulated with an existing recognized kinetic scheme and the kinetic constants of the uptake (7.2 x 107 M(-1) x s(-1)) and release (40 s(-1)) processes of the ligand were inferred. The results obtained for the quinone release kinetic constant are comparable to the rate of the charge recombination reaction from the state D(+)QA(-). Values for the kinetic constants are discussed as part of the overall photocycle, suggesting that its bottleneck may not be the quinone uptake reaction in agreement with a previous report.  相似文献   

10.
The transition of rhodopsin from the inactive to the active state is associated with proton uptake at Glu(134) (1), and recent mutagenesis studies suggest that protonation of the homologous amino acid in the alpha(1B) adrenergic receptor (Asp(142)) may be involved in its mechanism of activation (2). To further explore the role of protonation in G protein-coupled receptor activation, we examined the effects of pH on the rate of ligand-induced conformational change and on receptor-mediated G protein activation for the beta(2) adrenergic receptor (beta(2)AR). The rate of agonist-induced change in the fluorescence of NBD-labeled, purified beta(2)AR was 2-fold greater at pH 6.5 than at pH 8, even though agonist affinity was lower at pH 6.5. This biophysical analysis was corroborated by functional studies; basal (agonist-independent) activation of Galpha(s) by the beta(2)AR was greater at pH 6.5 compared with pH 8.0. Taken together, these results provide evidence that protonation increases basal activity by destabilizing the inactive state of the receptor. In addition, we found that the pH sensitivity of beta(2)AR activation is not abrogated by mutation of Asp(130), which is homologous to the highly conserved acidic amino acids that link protonation to activation of rhodopsin (Glu(134)) and the alpha(1B) adrenergic receptor (Asp(142)).  相似文献   

11.
12.
Xu Q  Gunner MR 《Biochemistry》2002,41(8):2694-2701
Both large- and small-scale conformational changes are needed as proteins carry out reactions. However, little is known about the identity, energy of, and barriers between functional substates on protein reaction coordinates. In isolated bacterial photosynthetic reaction centers, the electron transfer from the reduced primary quinone, Q(A)(-), to the secondary quinone, Q(B), is rate limited by conformational changes at low pH and by proton binding at high pH. The kinetics and thermodynamics of this reaction were determined between 200 and 300 K from pH 6 to pH 10.5. A model with two substates of the reactant, P(+)Q(A)(-)Q(B), one protonated (state A) and one unprotonated (alpha), and one state of the product, P(+)Q(A)Q(B)(-) (B), was able to simulate the dependence of the rate on temperature and pH fairly well. The equilibrium between the three states were measured in situ at each temperature. Proton binding (alpha to A transition) has a favorable DeltaH and unfavorable DeltaS as does the conformational changes required for electron transfer at low pH (A to B). The pK for the A to alpha transition is 9.7 at room temperature, consistent with previous measurements, and equivalent to 13.5 at 200 K. The activation barriers were determined for each transition. Both the alpha to A and the A to B transitions are limited primarily by the activation enthalpy with modest DeltaS.  相似文献   

13.
In the photosynthetic reaction center (RC) from the purple bacterium Rhodobacter sphaeroides, proton-coupled electron-transfer reactions occur at the secondary quinone (QB) site. Involved in the proton uptake steps are carboxylic acids, which have characteristic infrared vibrations in the 1770-1700 cm-1 spectral range that are sensitive to 1H/2H isotopic exchange. With respect to the native RC, a novel protonation pattern for carboxylic acids upon QB photoreduction has been identified in the Glu-L212 --> Asp/Asp-L213 --> Glu mutant RC using light-induced FTIR difference spectroscopy (Nabedryk, E., Breton, J., Okamura, M. Y., and Paddock, M. L. (2004) Biochemistry 43, 7236-7243). These carboxylic acids are structurally close and have been implicated in proton transfer to reduced QB. In this work, we extend previous studies by measuring the pH dependence of the QB-/QB FTIR difference spectra of the mutant in 1H2O and 2H2O. Large pH dependent changes were observed in the 1770-1700 cm-1 spectral range between pH 8 and pH 4. The IR fingerprints of the protonating carboxylic acids upon QB- formation were obtained from the calculated double-difference spectra 1H2O minus 2H2O. These IR fingerprints are specific for each pH, indicative of the contribution of different titrating groups. In particular, the 1752 cm-1 signal indicates that Glu-L213 protonates upon QB- formation at pH >or= 5, whereas the 1746 cm-1 signal indicates protonation of Asp-L212 even at pH 4. An unidentified carboxylic acid absorbing at approximately 1765 cm-1 could be the proton donor between pH 8 and 5. The observation that in the swap mutant there are several uniquely behaving carboxylic acids shows that electrostatic interactions occurring between them are sufficiently modified from the native RC to reveal their IR signatures.  相似文献   

14.
The pH dependence of binding and oxidation of Mn2+ in highly oxidizing reaction centers with designed metal-binding sites was characterized by light-minus-dark optical difference spectroscopy and direct measurements of proton uptake/release. These mutants bind a Mn2+ ion that can efficiently transfer an electron to the oxidized bacteriochlorophyll dimer, as described earlier [Thielges et al. (2005) Biochemistry 44, 7389-7394]. The dissociation constant, KD, significantly increased with decreasing pH. The pH dependence of KD between pH 7 and pH 8 was consistent with the binding of Mn2+ being stabilized by the electrostatic release of two protons. The strong pH dependence of proton release upon Mn2+ binding, with a maximal release of 1.4 H+ per reaction center, was interpreted as being a result of a shift in the pKa values of the coordinating residues and possibly other nearby residues. A small amount of proton release associated with Mn2+ oxidation was observed upon illumination. These results show that functional metal-binding sites can be incorporated into proteins upon consideration of both the metal coordination and protonation states of the ligands.  相似文献   

15.
For a model system consisting of a special pair of bacteriochlorophyll molecules (P) and a primary quinone with the nearest environment (QA) (which are acceptor and donor in the recombination reaction in Rhodobacter sphaeroides reaction center, respectively), energies of P+QA(-) and PQA states were calculated. Calculations were performed using several stable QA conformations differing by the positions of hydrogen bond protons. Essential influence of proton positions on the energy of vertical transition P+QA(-) --> PQA was shown.  相似文献   

16.
Proton and electron transfer events in reaction centers (RCs) from Rhodobacter sphaeroides were investigated by site-directed mutagenesis of glutamic acid at position 212 and aspartic acid at 213 in the secondary quinone (QB) binding domain of the L subunit. These residues were mutated singly to the corresponding amides (mutants L212EQ and L213DN) and together to give the double mutant (L212EQ/L213DN). In the double mutant RCs, the rate of electron transfer from the primary (QA) to the secondary (QB) acceptor quinones is fast (tau approximately 300 microseconds) and is pH independent from pH 5 to 11. The rate of recombination between the oxidized primary donor, P+, and QB- is also pH independent and much slower (tau approximately 10 s) than in the wild type (Wt), indicating a significant stabilization of the QB- semiquinone. In the double mutant, and in L213DN mutant RCs at low pH, the P+QB- decay is suggested to occur significantly via a direct recombination rather than by repopulating the P+QA- state, as in the Wt. Comparison of the behavior of Wt and the three mutant RC types leads to the following conclusions: the pK of AspL213 in the Wt is approximately 4 for the QAQB state (pKQB) and approximately 5 for the QAQB-state (pKQB-); for GluL212, pKQB approximately 9.5 and pKQB- approximately 11. In L213DN mutant RCs, pKQB of GluL212 is less than or equal to 7, indicating that the high pK values of GluL212 in the Wt are due largely to electrostatic interaction with the ionized AspL213 which contributes a shift of at least 2.5 pH units. Transfer of the second electron and all associated proton uptake to form QBH2 is drastically inhibited in double mutant and L213DN mutant RCs. At pH greater than or equal to 8, the rates are at least 10(4)-fold slower than in Wt RCs. In L212EQ mutant RCs the second electron transfer and proton uptake are biphasic. The fast phase of the electron transfer is similar to that of the Wt, but the extent of rapid transfer is pH dependent, revealing the pH dependence of the equilibrium QA(-)QB- in equilibrium with QAQBH-. The estimated limits on the pK values--pKQA-QB-less than or equal to 7.3, pKQAQB2- greater than or equal to 10.4--are similar to those derived earlier for Wt RCs [Kleinfeld et al. (1985) Biochim. Biophys. Acta 809, 291-310] and may pertain to the quinone head group, per se.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
G Váró  J K Lanyi 《Biochemistry》1990,29(29):6858-6865
Transient pH changes were measured with phenol red and chlorophenol red in the 30-microseconds-50-ms time range during the photocycle of bacteriorhodopsin (BR), the light-driven proton pump. At pH greater than or equal to 7, the results confirmed earlier data and suggestions that one proton is released during the L----M reaction, and taken up again during the decay of N. These are likely to be steps in the proton transport process. At pH less than 7, however, the time-resolved pH traces were complex and indicated additional protonation reactions. The data were explained by a model which assumed pH-dependent protonation states for M and N which varied from -1 to 0, and for O which varied from 0 to + 2, relative to BR. If the kinetics of the vectorial proton translocation process were taken as pH independent, this treatment of the data suggested that a residue with a pKa of 5.9 was made protonable in M and N and two residues with pKa's of 6.5 were made cooperatively protonable in O. The additional protons detected are not necessarily in the vectorial proton transfer pathway (i.e., they are probably "Bohr protons"), and while they must reflect conformational and/or neighboring ionization changes in the BR as it passes through the M, N, and O states, their role, if any, in the transport is uncertain.  相似文献   

18.
O A Gopta  A Y Semenov  D A Bloch 《FEBS letters》2001,499(1-2):116-120
An electrometric technique was used to investigate the effect of coenzyme Q(10) (UQ), substitution by decylubiquinone (dQ) at the Q(B) binding site of reaction centers (UQ-RC and dQ-RC, respectively) on the electrogenic proton transfer kinetics upon Q(B) reduction in Rhodobacter sphaeroides chromatophores. Unlike dQ-RC, the kinetics of the second flash-induced proton uptake in UQ-RC clearly deviated from the mono-exponential one. The activation energy (about 30 kJ/mol) and the pH profile of the kinetics in dQ-RC were similar to those in UQ-RC, with the power law approximation used in the latter case. The interpretation of the data presumed the quinone translocation between the two binding positions within the Q(B) site. It is proposed that the native isoprenyl side chain (in contrast to decyl chain) favors the equilibrium binding of neutral quinone at the redox-active 'proximal' position, but causes a higher barrier for the hydroquinone movement from 'proximal' to 'distal' position.  相似文献   

19.
Rapid-scan Fourier transform infrared (FTIR) difference spectroscopy was used to investigate the electron transfer reaction Q(A-)Q(B)-->Q(A)Q(B-) (k(AB)(1)) in mutant reaction centers of Rhodobacter sphaeroides, where Asp-L210 and/or Asp-M17 have been replaced with Asn. Mutation of both residues decreases drastically k(AB)(1)), attributed to slow proton transfer to Glu-L212, which becomes rate limiting for electron transfer to Q(B) [M.L. Paddock et al., Biochemistry 40 (2001) 6893]. In the double mutant, the FTIR difference spectrum recorded during the time window 4-29 ms following a flash showed peaks at 1670 (-), 1601 (-) and 1467 (+) cm(-1), characteristic of Q(A) reduction. The time evolution of the spectra shows reoxidation of Q(A-) and concomitant reduction of Q(B) with a kinetics of about 40 ms. In native reaction centers and in both single mutants, formation of Q(B-) occurs much faster than in the double mutant. Within the time resolution of the technique, protonation of Glu-L212, as characterized by an absorption increase at 1728 cm(-1) [E. Nabedryk et al., Biochemistry 34 (1995) 14722], was found to proceed with the same kinetics as reduction of Q(B) in all samples. These rapid-scan FTIR results support the model of proton uptake being rate limiting for the first electron transfer from Q(A-) to Q(B) and the identification of Glu-L212 as the main proton acceptor in the state Q(A)Q(B-).  相似文献   

20.
Reaction Centers (RCs) from the photosynthetic bacterium Rhodopseudomonas sphaeroides were incorporated in planar bilayers made from monolayers derived from liposomes reconstituted with purified RCs. The photocurrents associated with the charge recombination process between the reduced primary quinone (QA-) and the oxidized bacteriochlorophyll donor (D+) were measured as a function of voltage (-150 mV less than V less than 150 mV) applied across the bilayer. When QA was the native ubiquinone (UQ) the charge recombination was voltage independent. However, when UQ was replaced by anthraquinone (AQ), the recombination time depended on the applied voltage V according to the relation tau = 8.5 X 10(-3) eV/0.175S. These results were explained by a simple model in which the charge recombination from UQ- proceeds directly to D+ while that from AQ occurs via a thermally activated intermediate state, D+I-QA, where I is the intermediate acceptor. The voltage dependence arises from an electric field induced change in the energy gap, delta G0, between the states D+I-QA and D+IQA-. This model is supported by the measured temperature dependence of the charge recombination time, which for RCs with AQ gave a value of delta G0 = 340 +/- 20 meV. In contrast, delta G0 for RCs with UQ as the primary acceptor, is sufficiently large (approximately 550 meV) so that even in the presence of the field, the direct pathway dominates. The voltage dependence shows that the electron transfer from I- to QA is electrogenic. From a quantitative analysis of the voltage dependence on the recombination rate it was concluded that the component of the distance between I and QA along the normal to the membrane is about one-seventh of the thickness of the membrane. This implies that the electron transfer from I to Q contributes at least one-seventh to the potential generated by the charge separation between D+ and QA-.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号