首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The terrestrial birds of La Graciosa The small island La Graciosa is part of an archipelago north of Lanzarote, the northern‐ and easternmost of the Canary Islands. Its habitats are mainly semi‐desert made up of sand dunes covered with dry shrubbery. They house only a small number of terrestrial birds, among them endemic species and subspecies of the Canary Islands. Birds are more common around the settlement of Caleta del Sebo where fresh water and more plant species are available.  相似文献   

2.
European island shrews are either relicts of the endemic Pleistocene fauna, e.g.,. Crocidura zimmermanni, or were introduced from continental source populations. In order to clarify the taxonomic status and the origin of the two shrew species from the Canary islands, a 981bp fragment of cytochrome b gene was investigated in all European Crocidura species and compared with the Canary shrew (Crocidura canariensis) and the Osorio shrew (Crocidura osorio). The first shares its karyotype with the Sicilian shrew Crocidura sicula (2N=36), the second with the Greater white-toothed shrew Crocidura russula (2N=42), suggesting possible sister species relationships. Results confirm the monophyly of taxa sharing the same karyotype. Genetic distances between C. sicula and C. canariensis suggest a separation since 5 Myr. The first was probably isolated from the North African ancestor after the Messinian desiccation; the second arrived on the Canary islands by natural jump dispersal. Within the 2N=42 cluster, a first split separated an Eastern line (Tunisia) from a western line (Morocco/Europe) of C. russula. C. osorio clusters together with C. russula from Spain, indicating conspecificy. This suggests a recent introduction from Spain by human.  相似文献   

3.
The flightless beetle genus Tarphius Erichson (Coleoptera: Colydiidae) is a distinctive element of the beetle fauna of the Canary Islands with 29 species distributed across the five western islands. The majority of Tarphius species are rare and intimately associated with the monteverde forest and only two species occur on more than one island. In this study we investigate the phylogeography of the Canary Island Tarphius, and their relationship to Tarphius from the more northerly archipelagos of Madeira and the Azores using maximum parsimony and Bayesian inference analysis of mitochondrial cytochrome oxidase I and II sequence data. We use geological datings for the Canary Islands, Azores, and Madeira to calibrate specific nodes of the tree for the estimation of divergence times using a penalized likelihood method. Data suggest that the Canary Island species assemblage is of some antiquity, however, much of this species diversity is relatively recent in origin. The phylogenetic relationships of species inhabiting the younger islands of El Hierro and La Palma indicate that colonization events between islands have probably been a significant factor in the evolutionary history of the Canary Island species assemblage. A comparison of molecular phylogenetic studies of arthropods on the Canary Islands suggests that, in the evolution of the arthropod species community of an island, the origin of endemic species is initially the result of colonizing lineages differentiating from their source populations. However, as an island matures a greater proportion of endemic species originate from intra-island speciation.  相似文献   

4.
Species richness and endemicity in the Spanish vascular flora   总被引:1,自引:0,他引:1  
Data from an updated and revised checklist of the Spanish flora is analyzed. The Spanish vascular plant flora is composed of 204 families, 1433 genera and 7071 species. Floristic data are analysed by considering three regions: mainland Spain with 5984 species, the Balearic Islands with 1521 species and Canary Islands with 2066 species. Extinct species are included in the analysis, with an extinction rate of 0.35% of the flora. A total of 1488 endemic species are recognized, which account for 21% of the Spanish flora. The rate of endemism in the Canary Islands is 25.9%, considerably higher than for the Balearic Islands (6.9%) and for mainland Spain (13.8%). A list of the 35 strict endemic genera is compiled, of which 65.7% are Canarian, and another list of 27 subendemic genera of which 48.1% are also Canarian. An estimated 12% of the Spanish flora is non‐native, with large variation between the 20.7% of the Canary flora, 10.5% of mainland Spain and 9.7% of the Balearic Islands. Finally, the composition of the Spanish flora for large groups and families is ana lysed. The data show that species richness and endemicity rates have been overestimated by previous authors, and are similar to other Mediterranean countries. It is concluded that a complete revision of the Macaronesian flora is strongly needed to obtain an accurate comparison with the flora of other areas.  相似文献   

5.
Natural areas near human-modified landscapes experience factors that may affect local biodiversity at levels commensurate with natural environmental factors. The land snails of the Canary Islands provide excellent opportunities to evaluate the importance of anthropogenic agents in mediating the diversity and distribution of species. Land snails are particularly sensitive to disturbance and are an integral part of terrestrial ecosystems. This study analyzed the distributions and abundances of terrestrial macrosnail shell assemblages at 60 localities throughout the coastal scrub biome of the Canary Islands. This was accomplished using data on natural and anthropogenic variables to assess their relative importance in governing land snail diversity. A total of 34,801 dead shells represented a diverse malacofauna with highly localized endemism. Due to uncertain species identifications, samples from the 18 sites from the two easternmost islands are described, but excluded from statistical analyses. Regression tree analysis indicated that proximity to agricultural sites was the most important predictor of species diversity. Sites with no or very little agricultural area (≤ 0.167 km2) within a 1 km radius had significantly higher richness and diversity. These results have implications for Canary Islands conservation. Protected areas that are patchworks of natural and agricultural landscapes are still subject to native biodiversity loss because of anthropogenic impacts even when the footprint of agriculture is small.  相似文献   

6.
The Canary Islands have proven to be an interesting archipelago for the phylogeographic study of colonization and diversification with a number of recent studies reporting evolutionary patterns and processes across a diversity of floral and faunal groups. The Canary Islands differ from the Hawaiian and Galapagos Islands by their close proximity to a continental land mass, being 110 km from the northwestern coast of Africa. This close proximity to a continent obviously increases the potential for colonization, and it can be expected that at the level of the genus some groups will be the result of more than one colonization. In this study we investigate the phylogeography of a group of carabid beetles from the genus Calathus on the Canary Islands and Madeira, located 450 km to the north of the Canaries and 650 km from the continent. The Calathus are well represented on these islands with a total of 29 species, and on the continent there are many more. Mitochondrial cytochrome oxidase I and II sequence data has been used to identify the phylogenetic relationships among the island species and a selection of continental species. Specific hypotheses of monophyly for the island fauna are tested with parametric bootstrap analysis. Data suggest that the Canary Islands have been colonized three times and Madeira twice. Four of these colonizations are of continental origin, but it is possible that one Madeiran clade may be monophyletic with a Canarian clade. The Calathus faunas of Tenerife and Madeira are recent in origin, similar to patterns previously reported for La Gomera, El Hierro, and Gran Canaria.  相似文献   

7.
Abstract A molecular phylogenetic study of Bystropogon L'Her. (Lamiaceae) is presented. We performed a cladistic analysis of nucleotide sequences of the internal transcribed spacers (ITS), of the nuclear ribosomal DNA, and of the trnL gene and trnL-trnF intergenic spacer of the chloroplast DNA. Bystropogon odoratissimus is the only species endemic to the Canary Islands that occurs in the three palaeo-islands of Tenerife. This species is not part of an early diverging lineage of Bystropogon and we suggest that it has a recent origin. This phylogenetic pattern is followed by most of the species endemic to the palaeo-islands of Tenerife. The two sections currently recognized in Bystropogon form two monophyletic groups. Taxa belonging to the section Bystropogon clade show interisland colonization limited to the Canary Islands with ecological shifts among three ecological zones. Taxa from the section Canariense clade show interisland colonization both within the Canary Islands and between the Canary Islands and Madeira. Speciation events within this clade are mostly limited to the laurel forest. The genus has followed a colonization route from the Canaries towards Madeira. This route has also been followed by at least five other plant genera with species endemic to Macaronesia. Major incongruences were found between the current infrasectional classification and the molecular phylogeny, because the varieties of Bystropogon origanifolius and Bystropogon canariensis do not form two monophyletic groups. The widespread B. origanifolius appears as progenitor of the other species in section Bystropogon with a more restricted distribution.  相似文献   

8.
Abstract.  We investigated the phylogenetic patterns, evolutionary processes, and their taxonomic implications, of two closely related shield-backed katydid genera endemic to the Macaronesian archipelagos: the monotypic Psalmatophanes Chopard, 1938 endemic to Madeira and Calliphona Krauss, 1892, which includes three species restricted to the Canary Islands. Two main hypotheses have been proposed to explain the origin and colonization pathways of these two genera: a single origin with subsequent sequential colonization of the islands, or three independent colonization waves from continental Africa. We used DNA sequence information from the mitochondrial genes cox1, tRNAleucine, rrnL and nad1 to infer phylogenetic relationships among Psalmatophanes and Calliphona species. Our results provide support for the independent colonization of Madeira and the Canary Islands, and suggest that Psalmatophanes is actually more closely related to the continental genus Tettigonia than to the Canarian representatives. Deep genetic divergence among Canarian species provides further support for the assignment of the Canarian species into two subgenera. Tree topology along with Bayesian-based estimates of lineage age suggest a pattern of colonization from Tenerife to La Palma, and from Tenerife to Gran Canaria with subsequent dispersal to La Gomera. We report the first collection of a Calliphona specimen in the island of El Hierro, which molecular data suggest is a recent immigrant from La Gomera. We hypothesize that the patterns of distribution and genetic divergence exhibited by Calliphona in the Canary Islands are compatible with a taxon cycle process. Our results have further implications for the higher level phylogeny of the subfamily Tettigoniinae and suggest that some of the tribes as currently delimited may not correspond to natural groups.  相似文献   

9.
Two octopod species are reported from the Canary Islands (eastern Atlantic Ocean) for the first time: the deep sea four-horn octopus, Pteroctopus tetracirrhus (Delle Chiaje, 1830) and the gelatinous giant octopus, Haliphron atlanticus Steenstrup, 1861. Both female specimens were caught in Tenerife. Haliphron atlanticus is described from fresh remains found floating close to the southwest coast and the second species, P. tetracirrhus, is described from a specimen captured in a shrimp trap at 200 m depth on the southeastern coast of Tenerife. With these two additions the revised and updated list of octopod species of the Canary Islands now comprises eight families and 18 species, all of them incirrate octopods. The zoogeographic relationships of octopod species from other Atlantic regions, including the Mediterranean Sea, were studied. The likely directions of faunal flows were inferred based on affinity indices, showing that Mauritania could be the most probable source of the octopod species of the Canary Islands and the rest of the Macaronesian archipelagos.  相似文献   

10.
Data on opportunistic sightings of diamond-shaped squid Thysanoteuthis rhombus egg masses in the Canary Islands (Atlantic Ocean) are presented. A total of 16 egg masses of this species were recorded and photographed from 2000 to 2010 around the western islands of the archipelago (El Hierro, Tenerife and La Gomera). These data reveal the existence of an important spawning area for diamond-shaped squid around the Canary Islands, in subtropical east Atlantic waters. We provide preliminary data for the potential development of an artisanal fishery focused on this species, and a discussion on its potential impacts on the marine ecosystem.  相似文献   

11.
Tolpis consists of ~13 species native to Africa, Europe, and Macaronesia, with at least one species endemic to each of the four major archipelagos of the Azores, Madeira Islands, Canary Islands, and Cape Verde Islands. All but two of these species develop woody stems by maturity. Chloroplast DNA restriction site variation was analyzed for all species of Tolpis and four outgroups in order to understand the patterns of island colonization and evolution of woodiness in this genus. Parsimony analyses revealed a strongly supported monophyletic Tolpis. Within the genus, the following three well-supported groups were detected: all species from the Canary Islands and Cape Verde Islands, both Azorean species, and both continental species. The Canary Island/Cape Verde clade was sister to the two continental species, and the Azorean clade was sister to this group. The two Madeiran species of Tolpis occupied the basalmost positions within the genus. When biogeography was mapped onto this phylogeny, nine equally parsimonious reconstructions (five steps each) of dispersal history were detected, which fell into two groups: eight reconstructions implied that Tolpis colonized Madeira from the continent, followed by continental extinction and subsequent continental recolonization, while one reconstruction implied that Tolpis colonized Macaronesia four times. Two of the reconstructions involving continental extinction required the least amount of overall dispersal distance. The cpDNA phylogeny also suggests that woodiness arose in the common ancestor of all extant Tolpis, followed by two independent reversals to an herbaceous habit. Assuming that one of the eight reconstructions favoring continental extinction and recolonization is true, our results suggest that Tolpis may represent the first documented example of a woody plant group in Macaronesia that has recolonized the mainland in herbaceous form.  相似文献   

12.
The genus Calathus Bonelli comprises 24 species on the Canary Islands. Sequences of 927 and 687 bp of the mitochondrial cytochrome oxidase I and II genes, respectively, as well as the intervening tRNA leu gene in 21 of the 24 species, have identified three genetically divergent and unequivocally monophyletic groupings. A phylogeographic analysis is presented for the major monophyletic group comprising all the species of Gran Canaria, La Gomera, and El Hierro, and two Tenerifean species. A distance-based phylogenetic analysis and maximum parsimony analysis have clearly shown that this clade is composed of four distinct lineages. DNA sequence data suggest a recent origin for this clade and that lineages have not evolved at the same rate. Compared with diversification patterns observed in other Coleoptera on the Canary Islands, diversification has been recent relative to the time of colonization within the islands of Gran Canaria and La Gomera. Calathus diversification on La Gomera has been greater than on Gran Canaria. The influences of geological and ecological history are discussed in relation to Calathus diversification.  相似文献   

13.
Studies conducted on volcanic islands have greatly contributed to our current understanding of how organisms diversify. The Canary Islands archipelago, located northwest of the coast of northern Africa, harbours a large number of endemic taxa. Because of their low vagility, mygalomorph spiders are usually absent from oceanic islands. The spider Titanidiops canariensis, which inhabits the easternmost islands of the archipelago, constitutes an exception to this rule. Here, we use a multi-locus approach that combines three mitochondrial and four nuclear genes to investigate the origins and phylogeography of this remarkable trap-door spider. We provide a timeframe for the colonisation of the Canary Islands using two alternative approaches: concatenation and species tree inference in a Bayesian relaxed clock framework. Additionally, we investigate the existence of cryptic species on the islands by means of a Bayesian multi-locus species delimitation method. Our results indicate that T. canariensis colonised the Canary Islands once, most likely during the Miocene, although discrepancies between the timeframes from different approaches make the exact timing uncertain. A complex evolutionary history for the species in the archipelago is revealed, which involves two independent colonisations of Fuerteventura from the ancestral range of T. canariensis in northern Lanzarote and a possible back colonisation of southern Lanzarote. The data further corroborate a previously proposed volcanic refugium, highlighting the impact of the dynamic volcanic history of the island on the phylogeographic patterns of the endemic taxa. T. canariensis includes at least two different species, one inhabiting the Jandia peninsula and central Fuerteventura and one spanning from central Fuerteventura to Lanzarote. Our data suggest that the extant northern African Titanidiops lineages may have expanded to the region after the islands were colonised and, hence, are not the source of colonisation. In addition, T. maroccanus may harbour several cryptic species.  相似文献   

14.
Quaternary climatic oscillations have been considered decisive in shaping much of the phylogeographic structure around the Mediterranean Basin. Within this paradigm, peripheral islands are usually considered as the endpoints of the colonization processes. Here, we use nuclear and mitochondrial markers to investigate the phylogeography of the blue tit complex (blue tit Cyanistes caeruleus, Canary blue tit C. teneriffae and azure tit C. cyanus), and assess the role of the Canary Islands for the geographic structuring of genetic variation. The Canary blue tit exhibits strong genetic differentiation within the Canary Islands and, in combination with other related continental species, provides an ideal model in which to examine recent differentiation within a closely related group of continental and oceanic island avian species. We analysed DNA sequences from 51 breeding populations and more than 400 individuals in the blue tit complex. Discrepancies in the nuclear and mitochondrial gene trees provided evidence of a complex evolutionary process around the Mediterranean Basin. Coalescent analyses revealed gene flow between C. caeruleus and C. teneriffae suggesting a dynamic process with multiple phases of colonization and geographic overlapping ranges. Microsatellite data indicated strong genetic differentiation among the Canary Islands and between the Canary archipelago and the close continental areas, indicating limited contemporary gene flow. Diversification of the blue tit complex is estimated to have started during the early Pliocene (≈ 5 Ma), coincident with the end of Messinian salinity crisis. Phylogenetic analyses indicated that the North African blue tit is derived from the Canary blue tits, a pattern is avian 'back colonization' that contrasts with more traditionally held views of islands being sinks rather than sources.  相似文献   

15.
The volcanic archipelago of the Canary Islands, 100 km off the northwestern coast of Africa, harbors 43 endemic species of the mostly circum-Mediterranean spider genus Dysdera (Araneae, Dysderidae). This amounts to approximately one-fourth of all known Dysdera species in an area that represents 0.1% of the range of the genus. In order to address the origin of this extraordinary number of endemic species, the phylogenetic relationships among all the endemic taxa and a sample of 27 continental species were reconstructed. A simultaneous cladistic analysis was performed on 66 morphological characters, 471 bp of the cytochrome oxidase I and 424 bp of the 16S rRNA mitochondrial genes. The preferred most parsimonious tree supports a single origin for most of the endemic species (84%), although this tree is ambiguous regarding the total number of overseas colonizations (allowing a minimum of two and a maximum of four colonization events). Our data suggest that the Canary Islands have been the source of the colonizers of some of the remaining Macaronesian archipelagoes (certainly for the Selvagem Islands and the Cape Verdes and possibly for Madeira); the Azores have been independently colonized by dysderids from the continent. The present study provides a phylogenetic framework for an exceptional case of insular species radiation, an essential tool for unraveling the factors that have promoted this amazing diversification. Species radiations in oceanic archipelagoes are excellent models for the study of speciation processes.  相似文献   

16.
Plants endemic to oceanic islands represent some of the most unusual and rare taxa in the world. Enzyme electrophoresis was used to assess genetic diversity within and divergence among all endemic species of a small genus of plants on the Canary Islands. Our results show that the genus Tolpis is similar to many other island groups in having generally low allozyme divergence among species, with the highest divergence found among four groups of endemics. The two rare and highly localized species T. glabrescens and T. crassiuscula are each divergent from all other species in the Canaries. Tolpis coronopifolia is also divergent at allozyme loci; this is the only endemic species that is a self-compatible annual (or weak biennial). A large, morphologically variable species complex consisting of T. laciniata and T. lagopoda together with several named and unnamed morphological variants shows low allozyme divergence among its elements. The evolution of polyploidy from diploid ancestors in situ in oceanic archipelagos is uncommon, but the tetraploid T. glabrescens is an exception. Allozyme data do not implicate any extant diploid Tolpis species as parents of the polyploid. It is possible that T. glabrescens originated early in the evolution of Tolpis in the Canary Islands and that its parents are now extinct. The nonendemic T. barbata shows no greater divergence from the Canary Island endemics than some endemics exhibit among themselves. Both changes in allele frequencies and unique alleles are responsible for genetic divergence among species of Tolpis.  相似文献   

17.

Aim

Oceanic islands possess unique floras with high proportions of endemic species. Island floras are expected to be severely affected by changing climatic conditions as species on islands have limited distribution ranges and small population sizes and face the constraints of insularity to track their climatic niches. We aimed to assess how ongoing climate change affects the range sizes of oceanic island plants, identifying species of particular conservation concern.

Location

Canary Islands, Spain.

Methods

We combined species occurrence data from single-island endemic, archipelago endemic and nonendemic native plant species of the Canary Islands with data on current and future climatic conditions. Bayesian Additive Regression Trees were used to assess the effect of climate change on species distributions; 71% (n = 502 species) of the native Canary Island species had models deemed good enough. To further assess how climate change affects plant functional strategies, we collected data on woodiness and succulence.

Results

Single-island endemic species were projected to lose a greater proportion of their climatically suitable area (x ̃ = −0.36) than archipelago endemics (x ̃ = −0.28) or nonendemic native species (x ̃ = −0.26), especially on Lanzarote and Fuerteventura, which are expected to experience less annual precipitation in the future. Moreover, herbaceous single-island endemics were projected to gain less and lose more climatically suitable area than insular woody single-island endemics. By contrast, we found that succulent single-island endemics and nonendemic natives gain more and lose less climatically suitable area.

Main Conclusions

While all native species are of conservation importance, we emphasise single-island endemic species not characterised by functional strategies associated with water use efficiency. Our results are particularly critical for other oceanic island floras that are not constituted by such a vast diversity of insular woody species as the Canary Islands.  相似文献   

18.
Phylogenetic relationships within Limonium (Plumbaginaceae) are evaluated using sequence data from three plastid regions (rbcL, the trnL intron, and the trnL-trnF intergenic spacer). Sixty-six species representing the major genera of Staticoideae, including representatives of all sections and genera formerly included in Limonium, have been analyzed using four species of Plumbaginoideae as an outgroup. Analyses of each separate and combined data set yield similar results. Afrolimon is embedded in Limonium and related to L. vulgare, the type of Limonium. Limonium is split into two major clades corresponding to subgenera, but otherwise the current infrageneric classification proved to be artificial. Some groups restricted to particular areas can be recognized, and their synapomorphies are discussed. The presence of an isolated taxon in the Canary Islands is used as a calibration point for age estimates of the major events in the genus, including migrations to the Southern Hemisphere, the Canary Islands, and Asia. The rapid radiation of Limonium in the Mediterranean basin appears to coincide with the desiccation of the Mediterranean Sea in the Messinian (late Miocene).  相似文献   

19.
This study compares the phylogenetic structure in the Canary Islands and Hawaii by means of the distributions of the species number for plant families (Taxonomic evenness) and lineages (Phylogenetic evenness) across archipelagos and across habitats in both archipelagos using the Gini coefficient. We then investigate phylogenies to identify particular habitats contributing to such differences using Taxonomic distinctness (AvTD) and its variation (VarTD).Our results show that the distribution of species number among Hawaiian lineages is much more uneven than the Canary Islands. In contrast, Hawaii produces a more even distribution of species number by family than the Canary Islands. This may be due to the Hawaiian Flora being derived from considerably fewer colonists than the Canarian Flora as a result of its much greater degree of isolation. At the same time, Hawaii is represented by the same number of families as the Canary Islands. This may stem from Hawaii's flora being derived from a greater range of source areas despite its isolation. Finally, there is much more diversification spread across a larger number of lineages in Hawaii. The higher degree of Hawaiian diversification may be due to a greater range of habitats, more diverse and phylogenetically distinct floristic sources, and low initial species diversity resulting from extreme isolation.Two Canarian habitats (Rock communities and Thermophilous habitats) and one Hawaiian habitat (Wet communities) contribute to the differences in phylogenetic structure between the two archipelagos. These habitats exhibit disproportionate levels of unevenness and may represent centres of diversification. We propose a combination of two habitat properties, high receptivity and low stability, to explain these results.  相似文献   

20.
The helminth fauna of the barbary partridge (Alectoris barbara) in Tenerife Island (Canary Archipelago) was studied from 2001 to 2002, as there were no records of helminths from this host in the Canary Islands. Seven helminth species were identified: two cestodes Choanotaenia infundibulum and Lyruterina nigropunctata, and five nematodes Aonchotheca caudinflata, Baruscapillaria obsignata, Eucoleus annulatus, Ascaridia galli and Heterakis gallinarum. Lyruterina nigropunctata, A. galli and E. annulatus are recorded for first time in A. barbara. An analysis of available data on Alectoris spp. reveals the importance of intermediate hosts such as arthropods and earthworms in the diet of partridges. Terrestrial helminths are dominant species, with monoxenous and heteroxenous species being present in similar numbers in different Alectoris species along their geographical distribution. Helminth species found in Tenerife from A. barbara are poor indicators of the host colonization from North Africa because these helminths are species that are commonly found in fowl with a cosmopolitan distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号