首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glycophorin A, the most abundant sialoglycoprotein on human red blood cells, carries several medically important blood group antigens. To study the role of glycosylation in surface expression and antigenicity of this highly glycosylated protein (1 N-linked and 15 O-linked oligosaccharides), glycophorin A cDNA (M-allele) was expressed in Chinese hamster ovary (CHO) cells. Both wild type CHO cells and mutant CHO cells with well defined glycosylation defects were used. Glycophorin A was well expressed on the surface of transfected wild type CHO cells. On immunoblots, the CHO cells expressed monomer (approximately 38 kDa) and dimer forms of glycophorin A which co-migrated with human red blood cell glycophorin A. The transfected cells specifically expressed the M blood group antigen when tested with mouse monoclonal antibodies. Tunicamycin treatment of these CHO cells did not block surface expression of glycophorin A, indicating that, in the presence of normal O-linked glycosylation, the N-linked oligosaccharide is not required for surface expression. To study O-linked glycosylation, glycophorin A cDNA was transfected into the Lec 2, Lec 8, and ldlD glycosylation-deficient CHO cell lines. Glycophorin A with truncated O-linked oligosaccharides was well expressed on the surface of ldlD cells (cultured in the presence of N-acetylgalactosamine alone), Lec 2 cells, and Lec 8 cells with monomers of approximately 25 kDa, approximately 33 kDa, and approximately 25 kDa, respectively. In contrast, non-O-glycosylated glycophorin A (approximately 19-kDa monomers) was poorly expressed on the surface of ldlD cells cultured in the absence of both galactose and N-acetylgalactosamine. Thus, under these conditions, in the absence of O-linked glycosylation, the N-linked oligosaccharide itself is not able to support appropriate surface expression of glycophorin A in transfected CHO cells.  相似文献   

2.
3.
《The Journal of cell biology》1996,132(6):1199-1208
CD44-mediated cell adhesion to hyaluronate is controlled by mechanisms which are poorly understood. In the present work we examine the role of N-linked glycosylation and Ser-Gly motifs in regulating CD44- hyaluronate interaction. Our results show that treatment of a panel of human cell lines which constitutively express CD44 with the inhibitor of N-linked glycosylation tunicamycin results in the loss of attachment of these cells to hyaluronate-coated substrate. In contrast, treatment of the same cells with deoxymannojirimycin, which inhibits the conversion of high mannose oligosaccharides to complex N-linked carbohydrates, results in either no change or an increase in CD44- mediated adhesion to hyaluronate, suggesting that complex N-linked oligosaccharides may not be required for and may even inhibit CD44-HA interaction. Using human melanoma cells stably transfected with CD44 N- linked glycosylation site-specific mutants, we show that integrity of five potential N-linked glycosylation sites within the hyaluronate recognition domain of CD44 is critical for hyaluronate binding. Mutation of any one of these potential N-linked glycosylation sites abrogates CD44-mediated melanoma cell attachment to hyaluronate-coated surfaces, suggesting that all five sites are necessary to maintain the HA-recognition domain in the appropriate conformation. We also demonstrate that mutation of serine residues which constitute the four Ser-Gly motifs in the membrane proximal domain, and provide potential sites for glycosaminoglycan side chain attachment, impairs hyaluronate binding. Taken together, these observations indicate that changes in glycosylation of CD44 can have profound effects on its interaction with hyaluronic acid and suggest that glycosylation may provide an important regulatory mechanism of CD44 function.  相似文献   

4.
The addition and endoplasmic reticulum (ER) glucosidase processing of N-linked glycans is essential for the secretion of rat hepatic lipase (HL). Human HL is distinct from rat HL by the presence of four as opposed to two N-linked carbohydrate side chains. We examined the role of N-linked glycosylation and calnexin interaction in human HL secretion from Chinese hamster ovary (CHO) cells stably expressing a human HL cDNA. Steady-state and pulse-chase labeling experiments established that human HL was synthesized as an ER-associated precursor containing high mannose N-linked glycans. Secreted HL had a molecular mass of approximately 65 kDa and contained mature N-linked sugars. Inhibition of N-linked glycosylation with tunicamycin (TM) prevented secretion of HL enzyme activity and protein mass. In contrast, incubation of cells with the ER glucosidase inhibitor, castanospermine (CST), decreased human HL protein secretion by 60%, but allowed 40% of fully active HL to be secreted. HL protein mass and enzyme activity were also recovered from the media of a CHO-derivative cell line genetically deficient in ER glucosidase I activity (Lec23) that was transiently transfected with a human HL cDNA. Co-immunoprecipitation experiments demonstrated that newly synthesized human HL bound to the lectin-like ER chaperone, calnexin, and that this interaction was inhibited by TM and CST. These results suggest that under normal conditions calnexin may increase the efficiency of HL export from the ER. Whereas a significant proportion of human HL can attain activity and become secreted in the absence of glucose trimming and calnexin association, these interrelated processes are nevertheless essential for the expression of full HL activity.  相似文献   

5.
Lec1 CHO cell glycosylation mutants are defective in N-acetylglucosaminyltransferase I (GlcNAc-TI) activity and therefore cannot convert the oligomannosyl intermediate (Man5GlcNAc2Asn) into complex carbohydrates. Lec1A CHO cell mutants have been shown to belong to the same genetic complementation group but exhibit different phenotypic properties. Evidence is presented that lec1A represents a new mutation at the lec1 locus resulting in partial loss of GlcNAc-TI activity. Structural studies of the carbohydrates associated with vesicular stomatitis virus grown in Lec1A cells (Lec1A/VSV) revealed the presence of biantennary and branched complex carbohydrates as well as the processing intermediate Man5GlcNAc2Asn. By contrast, the glycopeptides from virus grown in CHO cells (CHO/VSV) possessed only fully processed complex carbohydrates, whereas those from Lec1/VSV were almost solely of the Man5GlcNAc2Asn intermediate type. Therefore, the Lec1A glycosylation phenotype appears to result from the partial processing of N-linked carbohydrates because of reduced GlcNAc-TI action on membrane glycoproteins. Genetic experiments provided evidence that lec1A is a single mutation affecting GlcNAc-TI activity. Lec1A mutants could be isolated at frequencies of 10(-5) to 10(-6) from unmutagenized CHO cell populations by single-step selection, a rate inconsistent with two mutations. In addition, segregants selected from Lec1A X parental cell hybrid populations expressed only Lec1A or related lectin-resistant phenotypes and did not include any with a Lec1 phenotype. The Lec1A mutant should be of interest for studies on the mechanisms that control carbohydrate processing in animal cells and the effects of reduced GlcNAc-TI activity on the glycosylation, translocation, and compartmentalization of cellular glycoproteins.  相似文献   

6.
Carcinoembryonic antigen (CEA) is an oncofoetal cell surface glycoprotein that serves as an important tumour marker for colorectal and some other carcinomas. Its immunoglobulin-like structure places CEA within the immunoglobulin superfamily. CEA functions in several biological roles including homotypic and heterotypic (with other CEA family members) cell adhesion. Cell-cell interaction can be modulated by different factors, e.g., post-translational modifications such as glycosylation. The purpose of this study was to examine whether changes in carbohydrate composition of CEA oligosaccharides can influence homotypic (CEA-CEA) interactions. In order to modulate glycosylation of CEA we used two different glycosylation mutants of Chinese hamster ovary (CHO) cells, Lec2 and Lec8. Lec2 cells should produce CEA with nonsialylated N-glycans, while Lec8 cells should yield more truncated sugar structures than Lec2. Parental CHO (Pro5) cells and the glycosylation deficient mutants were stably transfected with CEA cDNA. All three CEA glycoforms, tested in a solid-phase cell adhesion assay, showed an ability to mediate CEA-dependent cell adhesion, and no qualitative differences in the adhesion between the glycoforms were observed. Thus, it may be assumed that carbohydrates do not play a role in homotypic adhesion, and the interactions between CEA molecules depend solely on the polypeptide structure.  相似文献   

7.
The glycosylation of human apolipoprotein (apo) E was examined with purified plasma apoE and apoE produced by transfected cell lines. The carbohydrate attachment site of plasma apoE was localized to a single tryptic peptide (residues 192-206). Sequence analysis and amino sugar analysis of this peptide derived from asialo-, monosialo-, or disialo-apoE indicated that the carbohydrate moiety is attached only to Thr194 in monosialo- and disialo-apoE and that asialo-apoE is not glycosylated. Mammalian cells that normally do not express apoE were transfected with human apoE plasmid expression vectors to test the utilization of potential carbohydrate attachment sites and the role of apoE glycosylation in secretion. Site-specific mutants of apoE, designed to eliminate or alter glycosylation sites, were expressed in HeLa cells by acute transfection. Apolipoprotein E(Thr194----Ala) was secreted exclusively as the asialo isoform, confirming that Thr194 is the site of carbohydrate attachment in these cells and indicating that glycosylation of apoE is not essential for secretion. Apolipoprotein E(Thr194----Asn,Gly196----Ser), which introduces a potential site for N-glycosylation at position 194, was secreted with a higher apparent molecular weight than native, O-glycosylated apoE. Studies with tunicamycin indicated that this apoE was N-glycosylated at Asn194. Stably transfected cell lines expressing human apoE were prepared from wild-type Chinese hamster ovary (CHO) cells and from CHO ldlD cells, which are defective in glycosylation. The transfected wild-type cells secreted multiply sialylated apoE. The transfected ldlD cells also secreted high levels of apoE even in the absence of glycosylation, which confirms that glycosylation is not essential for secretion of apoE.  相似文献   

8.
The lipopolysaccharide (LPS) receptor is a multi-protein complex that consists of at least three proteins, CD14, TLR4, and MD-2. Because each of these proteins is glycosylated, we have examined the functional role of N-linked carbohydrates of both MD-2 and TLR4. We demonstrate that MD-2 contains 2 N-glycosylated sites at positions Asn(26) and Asn(114), whereas the amino-terminal ectodomain of human TLR4 contains 9 N-linked glycosylation sites. Site-directed mutagenesis studies showed that cell surface expression of MD-2 did not depend on the presence of either N-linked site, whereas in contrast, TLR4 mutants carrying substitutions in Asn(526) or Asn(575) failed to be transported to the cell surface. Using a UV-activated derivative of Re595 LPS (ASD-Re595 LPS) in cross-linking assays, we demonstrated a critical role of MD-2 and TLR4 carbohydrates in LPS cross-linking to the LPS receptor. The ability of the various glycosylation mutants to support cell activation was also evaluated in transiently transfected HeLa cells. The double mutant of MD-2 failed to support LPS-induced activation of an interleukin-8 (IL-8) promoter-driven luciferase reporter to induce IL-8 secretion or to activate amino-terminal c-Jun kinase (JNK). Similar results were observed with TLR4 mutants lacking three or more N-linked glycosylation sites. Surprisingly, the reduction in activation resulting from expression of the Asn mutants of MD-2 and TLR4 can be partially reversed by co-expression with CD14. This suggests that the functional integrity of the LPS receptor depends both on the surface expression of at least three proteins, CD14, MD-2, and TLR4, and that N-linked sites of both MD-2 and TLR4 are essential in maintaining the functional integrity of this receptor.  相似文献   

9.
《The Journal of cell biology》1987,105(6):2665-2674
The relationship of N-linked glycosylation and association with heavy chain binding protein (BiP) to the secretion of Factor VIII (FVIII), von Willebrand Factor (vWF), and tissue plasminogen activator (tPA) was studied in Chinese hamster ovary (CHO) cells. FVIII has a heavily glycosylated region containing 20 clustered potential N-linked glycosylation sites. A significant proportion of FVIII was detected in a stable complex with BiP and not secreted. Deletion of the heavily glycosylated region resulted in reduced association with BiP and more efficient secretion. Tunicamycin treatment of cells producing this deleted form of FVIII resulted in stable association of unglycosylated FVIII with BiP and inhibition of efficient secretion. vWF contains 17 potential N-linked glycosylation sites scattered throughout the molecule. vWF was transiently associated with BiP and efficiently secreted demonstrating that CHO cells are competent to secrete a highly glycosylated protein. tPA, which has three utilized N-linked glycosylation sites, exhibited low level association with BiP and was efficiently secreted. Disruption of N-linked glycosylation of tPA by either site-directed mutagenesis or tunicamycin treatment resulted in reduced levels of secretion and increased association with BiP. This effect was enhanced by high levels of tPA expression. The glycosylation state and extent of association with BiP could be correlated with secretion efficiency.  相似文献   

10.
The beta subunit of human chorionic gonadotropin contains two asparagine (N)-linked oligosaccharides. To examine the structural and functional roles of these oligosaccharide units in vivo, we constructed mutant genes containing alterations in either the asparagine or threonine codons of the two glycosylation consensus sequences and inserted them into a eukaryotic expression vector. Wild-type and mutant CG beta proteins were expressed in Chinese hamster ovary cells alone or in the presence of native alpha subunit. Pulse-chase analysis of the beta-expressing clones showed that absence of the second N-linked sugar but not the first slows secretion 1.6-1.8-fold; absence of both N-linked units slows secretion 2-2.4-fold. Analysis of dimer clones reveals that greater than 80% of the native and glycosylation mutant CG beta subunits are secreted as dimer. However, pulse-chase analysis of these clones also reveals that the mutants completely devoid of N-linked sugars but not the single site mutants are slow to assemble with the alpha subunit. Thus, in vivo the two N-linked oligosaccharides of CG beta are critical for efficient secretion and assembly with the alpha subunit and are likely important for proper folding of the CG beta subunit.  相似文献   

11.
Focussing of the serine protease urokinase (uPA) to the tumor cell surface via interaction with its receptor (uPAR) is an important step in tumor invasion and metastasis. The human ovarian cancer cell line OV-MZ-6#8 was stably transfected with expression plasmids either encoding cell-associated uPAR (GPI-uPAR) or a soluble form of uPAR (suPAR) lacking its glycan lipid anchor. In vitro, high level synthesis of functionally active recombinant suPAR inhibited cell proliferation and led to reduced cell-associated fibrin matrix degradation, whereas fibrinolytic activity was increased in OV-MZ-6#8 cells overexpressing GPI-uPAR. Both OV-MZ-6#8-derived clones were inoculated into the peritoneum of nude mice and tested for tumor growth and spread. High level synthesis of recombinant suPAR (without altering the physiological expression levels of GPI-uPAR and uPA in these cells) resulted in a significant reduction of tumor burden (up to 86%) in the xenogeneic mouse model. In contrast, overexpression of GPI-uPAR in tumor cells did not affect tumor growth. Our results demonstrate that high levels of suPAR in the ovarian cancer cell vicinity can act as a potent scavenger for uPA, thereby significantly reducing tumor cell growth and cancer progression in vivo.  相似文献   

12.
Mutations in the S region of the hepatitis B virus (HBV) envelope gene are associated with immune escape, occult infection, and resistance to therapy. We previously identified naturally occurring mutations in the S gene that alter HBV virion secretion. Here we used transcomplementation assay to confirm that the I110M, G119E, and R169P mutations in the S domain of viral envelope proteins impair virion secretion and that an M133T mutation rescues virion secretion of the I110M and G119E mutants. The G119E mutation impaired detection of secreted hepatitis B surface antigen (HBsAg), suggesting immune escape. The R169P mutant protein is defective in HBsAg secretion as well and has a dominant negative effect when it is coexpressed with wild-type envelope proteins. Although the S domain is present in all three envelope proteins, the I110M, G119E, and R169P mutations impair virion secretion through the small envelope protein. Conversely, coexpression of just the small envelope protein of the M133T mutant could rescue virion secretion. The M133T mutation could also overcome the secretion defect caused by the G145R immune-escape mutation or mutation at N146, the site of N-linked glycosylation. In fact, the M133T mutation creates a novel N-linked glycosylation site ((131)NST(133)). Destroying this site by N131Q/T mutation or preventing glycosylation by tunicamycin treatment of transfected cells abrogated the effect of the M133T mutation. Our findings demonstrate that N-linked glycosylation of HBV envelope proteins is critical for virion secretion and that the secretion defect caused by mutations in the S protein can be rescued by an extra glycosylation site.  相似文献   

13.
Membrane cofactor protein (MCP) (CD46), a complement-regulatory protein, serves as a cellular receptor for measles virus. Its amino-terminal portion is composed of four short consensus repeats (SCR), three of which (SCR1, SCR2, and SCR4) carry an N-linked oligosaccharide. In order to determine the importance of the three N-glycans for the function of MCP as a measles virus receptor, we established Chinese hamster ovary (CHO) cell lines that stably express mutant MCPs lacking one of the three motifs for N glycosylation (NQ1, NQ2, and NQ4). In an additional mutant (NQ1-2), two glycosylation motifs were altered, allowing the addition of an N-linked oligosaccharide only in SCR4. The abilities of the mutant MCPs to function as measles virus receptors were analyzed with three different assays: (i) binding of measles virus hemagglutinin to MCP immobilized on nitrocellulose; (ii) binding of measles virus to CHO cells expressing wild-type or mutant MCP; and (iii) infection of the transfected CHO cells by measles virus. In all three assays, the abilities of the NQ2 and NQ1-2 mutants to serve as measles virus receptors were drastically impaired. The NQ1 and NQ4 mutants were recognized by measles virus almost as efficiently as the wild-type protein. These results indicate that the N-glycan attached to SCR2 is essential for MCP to serve as a measles virus receptor, while the oligosaccharides attached to SCR1 and SCR4 are of only minor importance.  相似文献   

14.
X Collet  C J Fielding 《Biochemistry》1991,30(13):3228-3234
The structure and function of the carbohydrate moiety of human lecithin:cholesterol acyltransferase (LCAT) were determined by using several glycosidases in reaction with the isolated plasma protein or by using specific inhibitors of glycoprotein assembly with cultured cells secreting LCAT activity. Analysis of the plasma enzyme indicated that almost all of the large carbohydrate moiety of LCAT (approximately 25% w/w) was N-linked with part of the high-mannose and part of the complex type. This analysis was confirmed with metabolic inhibitors of carbohydrate processing by using CHO cells stably transfected with the human LCAT gene. Inhibitors of the subsequent processing of the N-linked high-mannose chains formed by glucosidase activity were without effect on either the secretion rate or the catalytic activity of LCAT. The inhibition of catalytic activity by glucosidase inhibitors applied to both the phospholipase and the acyltransferase activities of LCAT. The reduction of the LCAT catalytic rate by terminal glycosidase inhibitors was without effect on apparent Km and did not affect enzyme stability. These data indicate an unusual specific role for high-mannose carbohydrates in the catalytic mechanism of LCAT.  相似文献   

15.
Bence M  Sahin-Tóth M 《The FEBS journal》2011,278(22):4338-4350
Human chymotrypsin C (CTRC) plays a protective role in the pancreas by mitigating premature trypsinogen activation through degradation. Mutations that abolish activity or secretion of CTRC increase the risk for chronic pancreatitis. The aim of the present study was to determine whether human CTRC undergoes asparagine-linked (N-linked) glycosylation and to examine the role of this modification in CTRC folding and function. We abolished potential sites of N-linked glycosylation (Asn-Xaa-Ser/Thr) in human CTRC by mutating the Asn residues to Ser individually or in combination, expressed the CTRC mutants in HEK 293T cells and determined their glycosylation state using PNGase F and endo H digestion. We found that human CTRC contains a single N-linked glycan on Asn52. Elimination of N-glycosylation by mutation of Asn52 (N52S) reduced CTRC secretion about 10-fold from HEK 293T cells but had no effect on CTRC activity or inhibitor binding. Overexpression of the N52S CTRC mutant elicited endoplasmic reticulum stress in AR42J acinar cells, indicating that N-glycosylation is required for folding of human CTRC. Despite its important role, Asn52 is poorly conserved in other mammalian CTRC orthologs, including the rat which is monoglycosylated on Asn90. Introduction of the Asn90 site in a non-glycosylated human CTRC mutant restored full glycosylation but only partially rescued the secretion defect. We conclude that N-linked glycosylation of human CTRC is required for efficient folding and secretion; however, the N-linked glycan is unimportant for enzyme activity or inhibitor binding. The position of the N-linked glycan is critical for optimal folding, and it may vary among the otherwise highly homologous mammalian CTRC sequences.  相似文献   

16.
The alpha and beta subunits of meprins, mammalian zinc metalloendopeptidases, are extensively glycosylated; approximately 25% of the total molecular mass of the subunits is carbohydrate. The aim of this study was to investigate the roles of the N-linked oligosaccharides on the secreted form of mouse meprin A. Recombinant meprin alpha and mutants in which one of the 10 potential Asn glycosylation sites was mutated to Gln were all secreted and sorted exclusively into the apical medium of polarized Madin-Darby canine kidney cells, indicating that no specific N-linked oligosaccharide acts as a determinant for apical targeting of meprin alpha. Several of the mutant proteins had decreased enzymatic activity using a bradykinin analog as substrate, and deglycosylation of the wild-type protein resulted in loss of 75-100% activity. Some of the mutants were also more sensitive to heat inactivation. In studies with agents that inhibit glycosylation processes in vivo, tunicamycin markedly decreased secretion of meprin, whereas castanospermine and swainsonine had little effect on secretion, sorting, or enzymatic properties of meprin. When all the potential glycosylation sites on a truncated form of meprin alpha (alpha-(1-445)) were mutated, the protein was not secreted into the medium, but was retained within the cells even after 10 h. These results indicate that there is no one specific glycosylation site or type of oligosaccharide (high mannose- or complex-type) that determines apical sorting, but that core N-linked carbohydrates are required for optimal enzymatic activity and for secretion of meprin alpha.  相似文献   

17.
可溶性尿激酶受体的表达、纯化和结晶   总被引:2,自引:0,他引:2  
克隆尿激酶受体可溶区域(suPAR)到果蝇胚胎细胞分泌表达载体pMT/Bip/v5-his,重组质粒与pCoHygro共转染果蝇S2细胞,筛选多拷贝稳定表达细胞系suPARS2.suPAR表达蛋白经尿激酶N端片段亲和柱、ResourceQ阴离子交换柱两步纯化后,得到高纯度的、稳定的suPAR单体.纯化后的蛋白质,与其抗体ATN615及尿激酶N端片段结构域等摩尔混合,浓缩至10g/L,以透析法进行该三元复合物晶体生长,获得衍射分辨率为1.9#的蛋白质晶体.  相似文献   

18.
The Saccharomyces cerevisiae DPM1 gene product, dolichol-phosphate-mannose (Dol-P-Man) synthase, is involved in the coupled processes of synthesis and membrane translocation of Dol-P-Man. Dol-P-Man is the lipid-linked sugar donor of the last four mannose residues that are added to the core oligosaccharide transferred to protein during N-linked glycosylation in the endoplasmic reticulum. We present evidence that the S. cerevisiae gene DPM1, when stably transfected into a mutant Chinese hamster ovary cell line, B4-2-1, is able to correct the glycosylation defect of the cells. Evidence for complementation includes (i) fluorescence-activated cell sorter analysis of differential lectin binding to cell surface glycoproteins, (ii) restoration of Dol-P-Man synthase enzymatic activity in crude cell lysates, (iii) isolation and high-performance liquid chromatography fractionation of the lipid-linked oligosaccharides synthesized in the transfected and control cell lines, and (iv) the restoration of endoglycosidase H sensitivity to the oligosaccharides transferred to a specific glycoprotein synthesized in the DPM1 CHO transfectants. Indirect immunofluorescence with a primary antibody directed against the DPM1 protein shows a reticular staining pattern of protein localization in transfected hamster and monkey cell lines.  相似文献   

19.
Strategies that prevent the attachment of N-linked carbohydrates to nascent glycoproteins often impair intracellular transport and secretion. In the present study, we describe a method to rescue the intracellular transport and secretion of glycoproteins mutagenized to delete N-linked glycosylation sites. Site-directed mutagenesis was used to delete N-linked glycosylation sites from a chimeric protein, TNFR-IgG1. Deletion of any of the three glycosylation sites in the TNFR portion of the molecule, alone or in combination, resulted in a moderate or near total blockade of TNFR-IgG1 intracellular transport and secretion. Pulse chase experiments suggested that the glycosylation site mutants accumulated in the endoplasmic reticulum (ER) and were inefficiently exported to the Golgi apparatus (GA). Replacement of the TNFR signal sequence with the signal/pro sequence of human tissue plasminogen activator (tPA) overcame the blockade to intracellular transport, and restored secretion to levels comparable to those achieved with the fully glycosylated molecule. Ligand binding studies suggested that the secreted glycosylation variants possessed binding characteristics similar to the fully glycosylated protein. This study demonstrates that N-terminal sequences of tPA are unexpectedly efficient in facilitating transport from the ER to the GA and suggests that these sequences contain a previously unrecognized structural element that promotes intracellular transport.  相似文献   

20.
To investigate a role for surface carbohydrates in cellular malignancy, 15 different glycosylation-defective CHO cell mutants were examined for their tumorigenic and metastatic capacities after subcutaneous injection into nude mice. Most of the glycosylation mutants displayed similar or slightly decreased tumorigenicity compared with parental CHO cells. Neither parental CHO cells nor any of the mutants were observed to metastasize. However, independent isolates of one mutant type, Lec9, showed a dramatic reduction in tumor formation. The altered carbohydrates expressed at the surface of Lec9 cells appeared to be responsible for their loss of tumorigenicity, because revertants for lectin resistance were able to form tumors, and a double mutant (Lec9.Lec1) that expressed a Lec1 glycosylation phenotype also formed tumors. Finally, Lec9 cells were able to form tumors in gamma-irradiated nude mice, suggesting that recognition by an irradiation-sensitive host cell(s) was responsible for their reduced tumorigenicity in untreated nude mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号