首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell envelopes prepared from an Escherichia coli tolF strain selected as resistant to phage TuIb contained a new major outer membrane protein related to outer membrane proteins Ia and Ib. The strain that produces this protein is a tolF par double mutant but contains an additional mutation leading to the production of the new major outer membrane protein. Antibiotic sensitivity lost as a result of the tolF mutation is regained in strains that contain the new major outer membrane protein. This indicates that this protein functions to restore the selective permeability of the outer membrane to low-molecular-weight hydrophilic molecules.  相似文献   

2.
We have analyzed brain coated vesicles and synaptic plasma membrane for the presence of the plasma membrane proteolipid protein. Coated vesicles were isolated from calf brain gray matter with a final purification on Sephacryl S-1000 and reisolated twice by chromatography to ensure homogeneity. Fractions were analyzed by gel electrophoresis, immunoblotting for clathrin heavy chain, and by electron microscopy. Using an immunoblotting assay we were able to demonstrate the presence of the plasma membrane proteolipid protein in these coated vesicles at a significant level (i.e., approximately 1% of the bilayer protein of these vesicles). Reisolation of coated vesicles did not diminish the concentration of the protein in this fraction. Removal of the clathrin coat proteins or exposure of the coated vesicles to 0.1 M Na2CO3 showed that the plasma membrane proteolipid protein is not removed during uncoating and lysis but is intrinsic to the membrane bilayer of these vesicles. These studies demonstrate that plasma membrane proteolipid protein represents a significant amount of the bilayer protein of coated vesicles, suggesting that these vesicles may be a transport vehicle for the intracellular movement of the plasma membrane proteolipid protein. Isolation of synaptic plasma membranes proteolipid adult rat brain and estimation of the plasma membrane proteolipid protein content using the immunoblotting method confirmed earlier studies that show this protein is present in this membrane fraction at high levels as well (approximately 1-2%). The level of this protein in the synaptic plasma membrane suggests that the synaptic plasma membrane is one major site to which these vesicles may be targeted or from which the protein is being retrieved.  相似文献   

3.
Fetzer C  Tews BA  Meyers G 《Journal of virology》2005,79(18):11901-11913
The E(rns) protein is a structural glycoprotein of pestiviruses that lacks a typical membrane anchor sequence and is known to be secreted from the infected cell. However, major amounts of the protein are retained within the cell and attached to the virion by a so far unknown mechanism. Transient-expression studies with cDNA constructs showed that in a steady-state situation, 16% of the protein is found in the supernatant of the transfected cells while 84% appears as intracellular protein. We show here that E(rns) represents a membrane-bound protein. Membrane binding occurs via the carboxy-terminal region of E(rns). By fusion of this sequence to the carboxy terminus of green fluorescent protein (GFP), the subcellular localization of the reporter protein switched from cytosolic to membrane bound. A core sequence of 11 amino acids necessary for membrane binding was elicited in truncation experiments with GFP constructs. However, this peptide is not sufficient to confer membrane anchoring but needs either upstream or downstream accessory sequences. Analyses with different extraction procedures showed that E(rns) is neither easily stripped from the membrane, like a peripheral membrane protein, nor as tightly membrane bound as a transmembrane protein.  相似文献   

4.
A Jacq  R Kern  A Tsugita    M Kohiyama 《Journal of bacteriology》1989,171(3):1409-1416
A purification procedure was devised for a low-molecular-mass (about 10-kilodalton) membrane protein from Escherichia coli that was shown to bind specifically to the chromosomal replication origin region (oriC). Nitrocellulose membrane retention assays showed the binding site to be adjacent to the right boundary of the oriC minimal sequence. We determined the amino acid sequence of the N-terminal and C-terminal regions as well as the global amino acid composition of this membrane protein. Specific antibodies against the protein were produced and used to confirm the cell membrane location of the protein. These results demonstrate that this is a new membrane protein, different from the previously described B' protein, with specific binding activity for the oriC region. We propose that this protein be called membrane oriC-binding protein 2 (MOB2 protein).  相似文献   

5.
The membrane insertion of the Sec-independent M13 Procoat protein in bacteria requires the membrane electrochemical potential and the integral membrane protein YidC. We show here that YidC is involved in the translocation but not in the targeting of the Procoat protein, because we found the protein was partitioned into the membrane in the absence of YidC. YidC can function also to promote membrane insertion of Procoat mutants that insert independently of the membrane potential, proving that the effect of YidC depletion is not due to a dissipation of the membrane potential. We also found that YidC is absolutely required for Sec-dependent translocation of a long periplasmic loop of a mutant Procoat in which the periplasmic region has been extended from 20 to 194 residues. Furthermore, when Sec-dependent membrane proteins with large periplasmic domains were overproduced under YidC-limited conditions, we found that the exported proteins pro-OmpA and pre-peptidoglycan-associated lipoprotein accumulated in the cytoplasm. This suggests for Sec-dependent proteins that YidC functions at a late stage in membrane insertion, after the Sec translocase interacts with the translocating membrane protein. These studies are consistent with the understanding that YidC cooperates with the Sec translocase for membrane translocation and that YidC is required for clearing the protein-conducting channel.  相似文献   

6.
R Binet  C Wandersman 《The EMBO journal》1995,14(10):2298-2306
The Erwinia chrysanthemi metalloprotease C and the Serratia marcescens haem acquisition protein HasA are both secreted from Gram-negative bacteria by a signal peptide-independent pathway which requires a C-terminal secretion signal and a specific ABC-transporter made up of three proteins: a membrane ATPase (the ABC-protein), a second inner membrane component belonging to the membrane fusion protein family and an outer membrane polypeptide. HasA and protease C transporters are homologous although the secreted polypeptides share no sequence homology. Whereas protease C can use both translocators, HasA is secreted only by its specific transporter. Functional analysis of protease C and HasA secretion through hybrid transporters obtained by combining components from each system demonstrates that the ABC-protein is responsible for the substrate specificity and that inhibition of protease C secretion in the presence of HasA results from a defective interaction between HasA and the ABC-protein. We also show that the outer membrane protein, TolC, can combine with the membrane fusion protein HasE in the presence of either ABC-protein to form a functional transporter but not with the membrane fusion protein, PrtE. This indicates a specific interaction between the outer membrane component and the membrane fusion protein.  相似文献   

7.
The mechanosensitive channel MscL in the inner membrane of Escherichia coli is a homopentameric complex involved in homeostasis when cells are exposed to hypo-osmotic conditions. The E. coli MscL protein is synthesized as a polypeptide of 136 amino acid residues and uses the bacterial signal recognition particle (SRP) for membrane targeting. The protein is inserted into the membrane independently of the Sec translocon. Mutants affected in the Sec-components are competent for MscL assembly. Translocation of the periplasmic domain was detected using a membrane-impermeant, sulfhydryl-specific gel-shift reagent. The modification of a single cysteine residue at position 68 indicated its translocation across the inner membrane. From these in vivo experiments, it is concluded that the electrical chemical membrane potential is not necessary for membrane insertion of MscL. However, depletion of the membrane insertase YidC inhibits translocation of the protein across the membrane. We show here that YidC is essential for efficient membrane insertion of the MscL protein. YidC is a component of a recently identified membrane insertion pathway that is evolutionarily conserved in bacteria, mitochondria and chloroplasts.  相似文献   

8.
Predicting membrane protein type is a meaningful task because this kind of information is very useful to explain the function of membrane proteins. Due to the explosion of new protein sequences discovered, it is highly desired to develop efficient computation tools for quickly and accurately predicting the membrane type for a given protein sequence. Even though several membrane predictors have been developed, they can only deal with the membrane proteins which belong to the single membrane type. The fact is that there are membrane proteins belonging to two or more than two types. To solve this problem, a system for predicting membrane protein sequences with single or multiple types is proposed. Pseudo–amino acid composition, which has proven to be a very efficient tool in representing protein sequences, and a multilabel KNN algorithm are used to compose this prediction engine. The results of this initial study are encouraging.  相似文献   

9.
1. It had been shown in previous papers that when a collodion membrane has been treated with a protein the membrane assumes a positive charge when the hydrogen ion concentration of the solution with which it is in contact exceeds a certain limit. It is pointed out in this paper that by treating the collodion membrane with a protein (e.g. oxyhemoglobin) a thin film of protein adheres to the membrane and that the positive charge of the membrane must therefore be localized in this protein film. 2. It is further shown in this paper that the hydrogen ion concentration, at which the reversal in the sign of the charge of a collodion membrane treated with a protein occurs, varies in the same sense as the isoelectric point of the protein, with which the membrane has been treated, and is always slightly higher than that of the isoelectric point of the protein used. 3. The critical hydrogen ion concentration required for the reversal seems to be, therefore, that concentration where enough of the protein lining of the membrane is converted into a protein-acid salt (e.g. gelatin nitrate) capable of ionizing into a positive protein ion (e.g. gelatin) and the anion of the acid used (e.g. NO3).  相似文献   

10.
The 2B protein of enterovirus is responsible for the alterations in the permeability of secretory membranes and the plasma membrane in infected cells. The structural requirements for the membrane association and the subcellular localization of this essential virus protein, however, have not been defined. Here, we provide evidence that the 2B protein is an integral membrane protein in vivo that is predominantly localized at the Golgi complex upon individual expression. Addition of organelle-specific targeting signals to the 2B protein revealed that the Golgi localization is an absolute prerequisite for the ability of the protein to modify plasma membrane permeability. Expression of deletion mutants and heterologous proteins containing specific domains of the 2B protein demonstrated that each of the two hydrophobic regions could mediate membrane binding individually. However, the presence of both hydrophobic regions was required for the correct membrane association, efficient Golgi targeting, and the membrane-permeabilizing activity of the 2B protein, suggesting that the two hydrophobic regions are cooperatively involved in the formation of a membrane-integral complex. The formation of membrane-integral pores by the 2B protein in the Golgi complex and the possible mechanism by which a Golgi-localized virus protein modifies plasma membrane permeability are discussed.  相似文献   

11.
H Zhao  H Garoff 《Journal of virology》1992,66(12):7089-7095
Alphaviruses mature by budding at cell surfaces. According to a prevailing hypothesis, the viral membrane protein, which is a heterodimeric protein unit, is transported to the plasma membrane (PM), where it awaits binding to the viral nucleocapsid (NC). This hypothesis predicts that the viral membrane protein heterodimers accumulate at the cell surface when expressed in the absence of NCs. We have tested this prediction by analyzing the spike protein expression phenotype of a Semliki Forest virus (SFV) variant which contains a capsid gene deletion. We found that viral membrane protein heterodimers were formed and transported to the cell surface normally. However, instead of accumulating at the PM as expected, the membrane proteins were rapidly degraded. In the case of the E1 subunit, degradation resulted in the release of a soluble E1 fragment into the medium. The fact that this pathway of protein degradation is mostly inhibited during wild-type virus infection suggests that viral membrane proteins are very efficiently captured by NCs into budding complexes and that normally no sizeable pool of free membrane protein complexes exists at the PM.  相似文献   

12.
The transforming protein of the avian sarcoma virus UR2 is a 68-kDa transmembrane tyrosine protein kinase. We examined the relationship between membrane localization and transforming activity of P68 by changing Val-168-Val-169 in its hydrophobic domain into Asp-168-Glu-169. The resulting transmembrane (TM) mutant (P68TM) lost transforming activity toward chicken embryo fibroblasts (CEF). We found that the mutant protein was expressed and rapidly degraded into a smaller form which was still membrane associated and kinase active. The instability of the TM mutant protein is a phenomenon only manifested in CEF, because the same mutant protein was expressed with efficiency and stability similar to those of the wild-type protein in a transient expression system in COS cells. However, there are several differences between the wild-type and the TM mutant proteins in COS cells. The wild-type protein is more heavily phosphorylated and associated with membrane fractions in a cotranslational manner. It is enzymatically active when recovered from membrane fractions. The TM mutant protein is less phosphorylated, more labile toward protease degradation, and delayed in membrane association, with a lag period of 30 min or longer, and has little kinase activity when recovered from membrane fractions. Most of the kinase-active TM mutant protein was found in the cytosol fractions. Despite the delay, most of the TM protein in COS cells was found to be membrane associated, and its orientation on the cell surface was similar to that of the wild-type protein. It is probable that loss of the CEF-transforming activity of the TM mutant protein is due to its susceptibility to protease degradation resulting from improper membrane association of the newly synthesized product. The differences in the kinetics of membrane association and the distribution of kinase activity in COS cells might not be directly applicable in explaining the inability of the TM mutant to transform CEF but are intriguing as regards protein biosynthesis and translocation. The difference between CEF and COS cells implies that different factors or pathways are involved in the biosynthesis and processing of the TM mutant protein in these two cellular environments. Changes of P68TM in the kinetics of membrane association indicate that the transmembrane domain of ros, besides functioning as a membrane anchor, also plays a role in directing initial membrane association.  相似文献   

13.
Functional and structural studies of membrane proteins usually require overexpression of the proteins in question. Often, however, the 'trial and error' approaches that are mainly used to produce membrane proteins are not successful. Our rapidly increasing understanding of membrane protein insertion, folding and degradation means that membrane protein overexpression can be more rationalized, both at the level of the overexpression host and the overexpressed membrane protein. This change of mindset is likely to have a significant impact on membrane protein research.  相似文献   

14.
The primary structure and hydrophobicity of the gas vacuole membrane were investigated in order to determine if this simple membrane, containing only one protein and no lipid, typifies integral membrane proteins. Peptides obtained by trypsin digestion and N-bromosuccinimide treatment of the gas vacuole protein were sequenced. Two aspects of the sequence analysis are of interest: a long stretch of 15 aliphatic residues (in peptide NPT), and a thrice repeating octapeptide. The location of the aliphatic portion of peptide NPT between the amino and carboxyl termini of the gas vacuole protein sequence means that the protein is amphipathic i.e., the protein has stretches of primarily either nonpolar residues or polar residues in its sequence. Based on this and a comparison of the relative polarities of gas vacuole protein with other integral membrane proteins, the gas vacuole protein is an integral membrane protein. The presence of the repeating octapeptide in the sequence suggests that it may serve as a structural building block for the membrane. Based on the presence of the aliphatic sequence in peptide NPT, a functional model for the gas vacuole membrane was proposed. To allow gas to pass through the membrane without a conformational change in the protein, it is speculated that either the gas must pass through the intermolecular space in the protein or through hydrophobic pores.  相似文献   

15.
Within minutes of Bdellovibrio bacteriovorus attack on prey cells, such as Escherichia coli, the cytoplasmic membrane of the prey is altered. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of purified invaded prey cell (bdelloplast) membranes revealed the appearance of a noncytoplasmic membrane protein. This protein is not observed in preparations of noninvaded E. coli membranes and migrates in a manner similar to that of E. coli OmpF. Isoelectric focusing and two-dimensional gel electrophoresis of bdelloplast cytoplasmic membrane preparations also revealed the presence of a protein with electrophoretic properties similar to those of OmpF and the major Bdellovibrio outer membrane proteins. The protein appears in cytoplasmic membrane preparations within minutes of attack and persists throughout most of the intraperiplasmic developmental cycle. The appearance of this protein is consistent with our hypothesis that bdellovibrios translocate a pore protein into the bdelloplast cytoplasmic membrane to kill their prey and to gain access to the cytoplasmic contents for growth.  相似文献   

16.
Bending membranes   总被引:1,自引:0,他引:1  
It is widely assumed that peripheral membrane proteins induce intracellular membrane curvature by the asymmetric insertion of a protein segment into the lipid bilayer, or by imposing shape by adhesion of a curved protein domain to the membrane surface. Two papers now provide convincing evidence challenging these views. The first shows that specific assembly of a clathrin protein scaffold, coupled to the membrane, seems to be the most prevalent mechanism for bending a lipid bilayer in a cell. The second reports that membrane crowding, driven by protein-protein interactions, can also drive membrane bending, even in the absence of any protein insertion into the bilayer.  相似文献   

17.
Given the sequence of a protein, how can we predict whether it is a membrane protein or non-membrane protein? If it is, what membrane protein type it belongs to? Since these questions are closely relevant to the function of an uncharacterized protein, their importance is self-evident. Particularly, with the explosion of protein sequences entering into databanks and the relatively much slower progress in using biochemical experiments to determine their functions, it is highly desired to develop an automated method that can be used to give a fast answers to these questions. By hybridizing the functional domain (FunD) and pseudo-amino acid composition (PseAA), a new strategy called FunD-PseAA predictor was introduced. To test the power of the predictor, a highly non-homologous data set was constructed where none of proteins has 25% sequence identity to any other. The overall success rates obtained with the FunD-PseAA predictor on such a data set by the jackknife cross-validation test was 85% for the case in identifying membrane protein and non-membrane protein, and 91% in identifying the membrane protein type among the following 5 categories: (1) type-1 membrane protein, (2) type-2 membrane protein, (3) multipass transmembrane protein, (4) lipid chain-anchored membrane protein, and (5) GPI-anchored membrane protein. These rates are much higher than those obtained by the other methods on the same stringent data set, indicating that the FunD-PseAA predictor may become a useful high throughput tool in bioinformatics and proteomics.  相似文献   

18.
Membrane protein is an important composition of cell membrane. Given a membrane protein sequence, how can we identify its type(s) is very important because the type keeps a close correlation with its functions. According to previous studies, membrane protein can be divided into the following eight types: single-pass type I, single-pass type II, single-pass type III, single-pass type IV, multipass, lipid-anchor, GPI-anchor, peripheral membrane protein. With the avalanche of newly found protein sequences in the post-genomic age, it is urgent to develop an automatic and effective computational method to rapid and reliable prediction of the types of membrane proteins. At present, most of the existing methods were based on the assumption that one membrane protein only belongs to one type. Actually, a membrane protein may simultaneously exist at two or more different functional types. In this study, a new method by hybridizing the pseudo amino acid composition with multi-label algorithm called LIFT (multi-label learning with label-specific features) was proposed to predict the functional types both singleplex and multiplex animal membrane proteins. Experimental result on a stringent benchmark dataset of membrane proteins by jackknife test show that the absolute-true obtained was 0.6342, indicating that our approach is quite promising. It may become a useful high-through tool, or at least play a complementary role to the existing predictors in identifying functional types of membrane proteins.  相似文献   

19.
Synaptosomal-associated protein of 25 kDa (SNAP-25) is a palmitoylated membrane protein essential for neurotransmitter release from synaptic terminals. We used neuronal cell lines to study the biosynthesis and posttranslational processing of SNAP-25 to investigate how palmitoylation contributes to the subcellular localization of the protein. SNAP-25 was synthesized as a soluble protein that underwent palmitoylation approximately 20 min after synthesis. Palmitoylation of the protein coincided with its stable membrane association. Treatment of cells with brefeldin A or other disrupters of transport inhibited palmitoylation of newly synthesized SNAP-25 and abolished membrane association. These results demonstrate that the processing of SNAP-25 and its targeting to the plasma membrane depend on an intact transport mechanism along the exocytic pathway. The kinetics of SNAP-25 palmitoylation and membrane association and the sensitivity of these parameters to brefeldin A suggest a novel trafficking pathway for targeting proteins to the plasma membrane. In vitro, SNAP-25 stably associated with membranes was not released from the membrane after chemical deacylation. We propose that palmitoylation of SNAP-25 is required for initial membrane targeting of the protein but that other interactions can maintain membrane association in the absence of fatty acylation.  相似文献   

20.
In order to study the structure and function of a protein, it is generally required that the protein in question is purified away from all others. For soluble proteins, this process is greatly aided by the lack of any restriction on the free and independent diffusion of individual protein particles in three dimensions. This is not the case for membrane proteins, as the membrane itself forms a continuum that joins the proteins within the membrane with one another. It is therefore essential that the membrane is disrupted in order to allow separation and hence purification of membrane proteins. In the present review, we examine recent advances in the methods employed to separate membrane proteins before purification. These approaches move away from solubilization methods based on the use of small surfactants, which have been shown to suffer from significant practical problems. Instead, the present review focuses on methods that stem from the field of nanotechnology and use a range of reagents that fragment the membrane into nanometre-scale particles containing the protein complete with the local membrane environment. In particular, we examine a method employing the amphipathic polymer poly(styrene-co-maleic acid), which is able to reversibly encapsulate the membrane protein in a 10?nm disc-like structure ideally suited to purification and further biochemical study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号