首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
This study used whole cell patch clamp recordings in rat hypothalamic slice preparations to evaluate the effects of GABA(B) receptor activation on GABA(A)-mediated inhibitory postsynaptic currents (IPSCs) in paraventricular nucleus magnocellular neurons evoked by electrical stimulation in the suprachiasmatic nucleus (SCN). Baclofen induced a dose-dependent (1-10 microM) and reversible reduction in SCN-evoked IPSC amplitude (11/11 cells), blockable with 2-hydroxysaclofen (300 microM; 3/3 cells). IPSCs displayed paired-pulse depression (PPD), attenuated by both baclofen and 2-hydroxysaclofen, but neither altered resting membrane conductances or IPSC time constants of decay. Baclofen induced a significant dose-dependent (1-100 microM) reduction in frequency, but not amplitude, of spontaneous IPSCs and miniature IPSCs, reversible with 2-hydroxysaclofen pretreatment. Baclofen effects and PPD persisted in slices pretreated with pertussis toxin (PTX) and N-ethylmaleimide, implying that these GABA(B) receptors are coupled to PTX-insensitive G proteins. Responses were unaltered by barium (2 mM) or nimodipine, ruling out involvement of K(+) channels and L-type Ca(2+) channels. Thus pre- and postsynaptic GABA(B) and GABA(A) receptors participate in SCN entrainment of paraventricular neurosecretory neurons.  相似文献   

2.
The release of vasopressin and oxytocin from the supraoptic nucleus (SON) neurons is tonically regulated by excitatory glutamatergic and inhibitory GABAergic synaptic inputs. Acetylcholine is known to excite SON neurons and to elicit vasopressin release. Cholinergic receptors are located pre- and postsynaptically in the SON, but their functional significance in the regulation of SON neurons is not fully understood. In this study, we determined the role of presynaptic cholinergic receptors in regulation of the excitatory glutamatergic inputs to the SON neurons. The magnocellular neurons in the rat hypothalamic slices were identified microscopically, and the spontaneous miniature excitatory postsynaptic currents (mEPSCs) were recorded using the whole cell voltage-clamp technique. The mEPSCs were abolished by the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (20 microM). Acetylcholine (100 microM) significantly increased the frequency of mEPSCs of 38 SON neurons from 1.87 +/- 0.36 to 3.42 +/- 0.54 Hz but did not alter the amplitude (from 19.61 +/- 0.90 to 19.34 +/- 0.84 pA) and the decay time constant of mEPSCs. Furthermore, the nicotinic receptor antagonist mecamylamine (10 microM, n = 16), but not the muscarinic receptor antagonist atropine (100 microM, n = 12), abolished the excitatory effect of acetylcholine on the frequency of mEPSCs. These data provide new information that the excitatory effect of acetylcholine on the SON neurons is mediated, at least in part, by its effect on presynaptic glutamate release. Activation of presynaptic nicotinic, but not muscarinic, receptors located in the glutamatergic terminals increases the excitatory synaptic input to the SON neurons of the hypothalamus.  相似文献   

3.
GABA(B) receptor function is upregulated in the paraventricular nucleus (PVN) of the hypothalamus in spontaneously hypertensive rats (SHR), but it is unclear whether this upregulation occurs pre- or postsynaptically. We therefore determined pre- and postsynaptic GABA(B) receptor function in retrogradely labeled spinally projecting PVN neurons using whole cell patch-clamp recording in brain slices in SHR and Wistar-Kyoto (WKY) rats. Bath application of the GABA(B) receptor agonist baclofen significantly decreased the spontaneous firing activity of labeled PVN neurons in both SHR and WKY rats. However, the magnitude of reduction in the firing rate was significantly greater in SHR than in WKY rats. Furthermore, baclofen produced larger membrane hyperpolarization and outward currents in labeled PVN neurons in SHR than in WKY rats. The baclofen-induced current was abolished by either including G protein inhibitor GDPbetaS in the pipette solution or bath application of the GABA(B) receptor antagonist in both SHR and WKY rats. Blocking N-methyl-d-aspartic acid receptors had no significant effect on baclofen-elicited outward currents in SHR. In addition, baclofen caused significantly greater inhibition of glutamatergic excitatory postsynaptic currents (EPSCs) in labeled PVN neurons in brain slices from SHR than WKY rats. By contrast, baclofen produced significantly less inhibition of GABAergic inhibitory postsynaptic currents (IPSCs) in labeled PVN neurons in SHR than in WKY rats. Although microinjection of the GABA(B) antagonist into the PVN increases sympathetic vasomotor tone in SHR, the GABA(B) antagonist did not affect EPSCs and IPSCs of the PVN neurons in vitro. These findings suggest that postsynaptic GABA(B) receptor function is upregulated in PVN presympathetic neurons in SHR. Whereas presynaptic GABA(B) receptor control of glutamatergic synaptic inputs is enhanced, presynaptic GABA(B) receptor control of GABAergic inputs in the PVN is attenuated in SHR. Changes in both pre- and postsynaptic GABA(B) receptors in the PVN may contribute to the control of sympathetic outflow in hypertension.  相似文献   

4.
The results of present work demonstrate significant modulating effects mediated by group II and III mGluRs on miniature postsynaptic potentials (mPSP) of the frog spinal motoneurons. The mode of group II and III mGluRs ligands influences, i. e. the changes in the mPSPs average frequency without significant changes in their average amplitude, suggests the presynaptic mechanism of modulation by the change in transmitter release. Selective antagonists of group II and III mGluRs (EGLU and MAP4) increased the average frequency of mPSPs by 52.8 +/- 30.2% (in 4 of 6 motoneurons) and by 54.7 +/- 23.7% (in all 7 motoneurons), respectively. Application of the group III mGluRs agonist LAP4 decreased the mPSPs frequency by 21.8 +/- 5.2% in 3 of 5 motoneurons. The efficiency of the antagonist usage and comparative low efficiency of the agonist suggest that presynaptic mGluRs at motoneuronal synapses under normal condition possess some level of tonic activity. The lack of group II mGluR antagonist effect on some motoneurons appears to be explained by specific localization of the group II mGluRs in preterminal area which is distant from the transmitter release site. The hetero-receptor modulation of pharmacologically isolated inhibitory miniature activity and its glycine- and GABAergic fractions by group III mGluRs was investigated. MAP4 application has been shown to increase the glycine-mediated mlPSPs frequency more than GABA-mediated mlPSPs frequency: in average by 97.6 +/- 20.7% (n = 7) and 54.6 +/- 20.8% (n = 5), respectively. This difference may be due to the segregation of the postsynaptic glycine- and GABA-receptors. The preliminary examination of the convergence of the presynaptic mGluRs and metabotropic GABA(B) receptors influences on GABA-mediated IPSPs was undertaken. It has been shown that presynaptic GABA(B) receptors are tonically active under normal condition. Under condition of GABA(B) receptor blockage by phaclofen, the application of group III mGluR agonist L-AP4 elicited typical effect which was completely taken off by subsequent application of the group III mGluRs antagonist MAP4. This result is in accordance with the assumption that the effects mediated by GABA(B) receptors and mGluRs are independent.  相似文献   

5.
GABA(B) receptors are the G-protein-coupled receptors for gamma-aminobutyric acid (GABA), the main inhibitory neurotransmitter in the brain. GABA(B) receptors are promising drug targets for a wide spectrum of psychiatric and neurological disorders. Receptor subtypes exhibit no pharmacological differences and are based on the subunit isoforms GABA(B1a) and GABA(B1b). GABA(B1a) differs from GABA(B1b) in its ectodomain by the presence of a pair of conserved protein binding motifs, the sushi domains (SDs). Previous work showed that selectively GABA(B1a) contributes to heteroreceptors at glutamatergic terminals, whereas both GABA(B1a) and GABA(B1b) contribute to autoreceptors at GABAergic terminals or to postsynaptic receptors. Here, we describe GABA(B1j), a secreted GABA(B1) isoform comprising the two SDs. We show that the two SDs, when expressed as a soluble protein, bind to neuronal membranes with low nanomolar affinity. Soluble SD protein, when added at nanomolar concentrations to dissociated hippocampal neurons or to acute hippocampal slices, impairs the inhibitory effect of GABA(B) heteroreceptors on evoked and spontaneous glutamate release. In contrast, soluble SD protein neither impairs the activity of GABA(B) autoreceptors nor impairs the activity of postsynaptic GABA(B) receptors. We propose that soluble SD protein scavenges an extracellular binding partner that retains GABA(B1a)-containing heteroreceptors in proximity of the presynaptic release machinery. Soluble GABA(B1) isoforms like GABA(B1j) may therefore act as dominant-negative inhibitors of heteroreceptors and control the level of GABA(B)-mediated inhibition at glutamatergic terminals. Of importance for drug discovery, our data also demonstrate that it is possible to selectively impair GABA(B) heteroreceptors by targeting their SDs.  相似文献   

6.
The adenosinergic modulation of GABAergic spontaneous miniature inhibitory postsynaptic currents (mIPSCs) was investigated in mechanically dissociated rat tuberomammillary nucleus (TMN) neurons using a conventional whole-cell patch clamp technique. Adenosine (100 microM) reversibly decreased mIPSC frequency without affecting the current amplitude, indicating that adenosine acts presynaptically to decrease the probability of spontaneous GABA release. The adenosine action on GABAergic mIPSC frequency was completely blocked by 1 microM DPCPX, a selective A(1) receptor antagonist, and mimicked by 1 microM CPA, a selective A(1) receptor agonist. This suggests that presynaptic A(1) receptors were responsible for the adenosine-mediated inhibition of GABAergic mIPSC frequency. CPA still decreased GABAergic mIPSC frequency even either in the presence of 200 microM Cd(2+), a general voltage-dependent Ca(2+) channel blocker, or in the Ca(2+)-free external solution. However, the inhibitory effect of CPA on GABAergic mIPSC frequency was completely occluded by 1 mM Ba(2+), a G-protein coupled inwardly rectifying K(+) (GIRK) channel blocker. In addition, the CPA-induced decrease in mIPSC frequency was completely occluded by either 100 microM SQ22536, an adenylyl cyclase (AC) inhibitor, or 1 muM KT5720, a specific protein kinase A (PKA) inhibitor. The results suggest that the activation of presynaptic A(1) receptors decreases spontaneous GABAergic transmission onto TMN neurons via the modulation of GIRK channels as well as the AC/cAMP/PKA signal transduction pathway. This adenosine A(1) receptor-mediated modulation of GABAergic transmission onto TMN neurons may play an important role in the fine modulation of the excitability of TMN histaminergic neurons as well as the regulation of sleep-wakefulness.  相似文献   

7.
We have used RNA interference (RNAi) to knock down the expression of the gamma2 subunit of the GABA(A) receptors (GABA(A)Rs) in pyramidal neurons in culture and in the intact brain. Two hairpin small interference RNAs (shRNAs) for the gamma2 subunit, one targeting the coding region and the other one the 3'-untranslated region (UTR) of the gamma2 mRNA, when introduced into cultured rat hippocampal pyramidal neurons, efficiently inhibited the synthesis of the GABA(A) receptor gamma2 subunit and the clustering of other GABA(A)R subunits and gephyrin in these cells. More significantly, this effect was accompanied by a reduction of the GABAergic innervation that these neurons received. In contrast, the gamma2 shRNAs had no effect on the clustering of postsynaptic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, postsynaptic density protein 95 (PSD-95) or presynaptic glutamatergic innervation. A gamma2-enhanced green fluorescent protein (EGFP) subunit construct, whose mRNA did not contain the 3'-UTR targeted by gamma2 RNAi, rescued both the postsynaptic clustering of GABA(A)Rs and the GABAergic innervation. Decreased GABA(A)R clustering and GABAergic innervation of pyramidal neurons in the post-natal rat cerebral cortex was also observed after in utero transfection of these neurons with the gamma2 shRNAs. The results indicate that the postsynaptic clustering of GABA(A)Rs in pyramidal neurons is involved in the stabilization of the presynaptic GABAergic contacts.  相似文献   

8.
Yang YM  Chung JM  Rhim H 《Life sciences》2006,79(18):1702-1711
The peptide cholecystokinin (CCK) is one of the major neurotransmitters modulating satiety, nociception, and anxiety behavior. Although many behavioral studies showing anti-analgesic and anxiogenic actions of CCK have been reported, less is known about its cellular action in the central nervous system (CNS). Therefore, we examined the action of CCK in rat dorsolateral periaqueductal gray (PAG) neurons using slice preparations and whole-cell patch-clamp recordings. Application of CCK-8S produced an inward current accompanied by increased spontaneous synaptic activities. The CCK-8S-induced inward current (I(CCK)) was recovered after washout and reproduced by multiple exposures. Current-voltage plots revealed that I(CCK) reversed near the equilibrium potential for K(+) ions with a decreased membrane conductance. When several K(+) channel blockers were used, application of CdCl(2), TEA, or apamin significantly reduced I(CCK). I(CCK) was also significantly reduced by the CCK(2) receptor antagonist, L-365,260, while it was not affected by the CCK(1) receptor antagonist, L-364,718. Furthermore, we examined the effects of CCK-8S on miniature excitatory postsynaptic currents (mEPSCs) in order to determine the mechanism of CCK-mediated increase on synaptic activities. We found that CCK-8S increased the frequency of mEPSCs, but had no effect on mEPSC amplitude. This presynaptic effect persisted in the presence of CdCl(2) or Ca(2+)-free bath solution, but was completely abolished by pre-treatment with BAPTA-AM, thapsigargin or L-365,260. Taken together, our results indicate that CCK can excite PAG neurons at both pre- and postsynaptic loci via the activation of CCK(2) receptors. These effects may be important for the effects of CCK on behavior and autonomic function that are mediated via PAG neurons.  相似文献   

9.
The median preoptic nucleus (MnPO) in the lamina terminalis receives a prominent catecholaminergic innervation from the dorsomedial and ventrolateral medulla. The present investigation used whole cell patch-clamp recordings in rat brain slice preparations to evaluate the hypothesis that presynaptic adrenoceptors could modulate GABAergic inputs to MnPO neurons. Bath applications of norepinephrine (NE; 20-50 microM) induced a prolonged and reversible suppression of inhibitory postsynaptic currents (IPSCs) and reduced paired-pulse depression evoked by stimulation in the subfornical organ and organum vasculosum lamina terminalis. These events were not correlated with any observed changes in membrane conductance arising from NE activity at postsynaptic alpha(1)- or alpha(2)-adrenoceptors. Consistent with a role for presynaptic alpha(2)-adrenoceptors, responses were selectively mimicked by an alpha(2)-adrenoceptor agonist (UK-14304) and blockable with an alpha(2)-adrenoceptor antagonist (idazoxan). Although the alpha(1)-adrenoceptor agonist cirazoline and the alpha(1)-adrenoceptor antagonist prazosin were without effect on these evoked IPSCs, NE was noted to increase (via alpha(1)-adrenoceptors) or decrease (via alpha(2)-adrenoceptors) the frequency of spontaneous and tetrodotoxin-resistant miniature IPSCs. Collectively, these observations imply that both presynaptic and postsynaptic alpha(1)- and alpha(2)-adrenoceptors in MnPO are capable of selective modulation of rapid GABA(A) receptor-mediated inhibitory synaptic transmission along the lamina terminalis and therefore likely to exert a prominent influence in regulating cell excitability within the MnPO.  相似文献   

10.
In rat neocortical slices maintained in Mg2+-free Kreb's medium, the effects of Ca2+ concentration on repetitive spontaneous discharges and on GABA(B) receptor-mediated responses were investigated. Over a concentration range of 0.3-2.4 mM Ca2+, there was a reduction of discharge amplitude, with a 50 +/- 6.5% reduction in 0.3 mM Ca2+, whilst the burst frequency remained unaffected. Baclofen, the GABA(B) receptor agonist, produced a concentration-dependent depression of discharge frequency, reversibly antagonised by the antagonist (+)-(S)-5,5-dimethylmorpholinyl-2-acetic acid (Sch 50911). The EC50 value for baclofen in 2.4 mM Ca2+ was 11 microM, while the EC50 values in 0.3, 0.6, 1.2, and 1.8 mM Ca2+ were 1.3, 2.5, 3.6, and 10 microM, respectively, resulting in 8.5, 4.4, 3.1, and 1.1-fold leftward shifts. This enhanced action of baclofen in low extracellular Ca2+ concentrations in the neocortex may be the result of a lower concentration gradient which reinforces the action of baclofen.  相似文献   

11.
Because urethane is a widely used anesthetic in animal experimentation, in the present study, we evaluated its effects on neurons of the nucleus of the solitary tract (NTS) in brain stem slices from young rats (25-30 days old). Using the whole cell configuration of the patch-clamp technique, spontaneous postsynaptic currents (sPSCs) and evoked excitatory postsynaptic currents (eEPSCs) were recorded. Urethane (20 mM) decreased by approximately 60% the frequency of GABAergic sPSCs (1.0 +/- 0.2 vs. 0.4 +/- 0.1 Hz) but did not change the frequency, amplitude, or half-width of glutamatergic events or TTX-resistant inhibitory sPSCs [miniature inhibitory postsynaptic currents (IPSCs)]. Miniature IPSCs were measured in the presence of urethane plus 1 mM diazepam (1 mM), and no changes were seen in their amplitude. This suggests that the GABA concentration in the NTS synapses is set at saturating level. We also evaluated the effect of urethane on eEPSCs, and no significant change was observed in the amplitude of N-methyl-d-aspartate [NMDA; 44.2 +/- 11.5 vs. 37.6 +/- 10.6 pA (holding potential = 40 mV)] and non-NMDA currents [204.4 +/- 35.5 vs. 196.6 +/- 31.2 pA (holding potential = -70 mV)]. Current-clamp experiments showed that urethane did not alter the action potential characteristics and passive membrane properties. These data suggest that urethane has an inhibitory effect on GABAergic neurons in the NTS but does not change the spontaneous or evoked excitatory responses.  相似文献   

12.
In the present study we examine the mechanism by which thaligrisine, a bisbenzyltetrahydroisoquinoline alkaloid, inhibits the contractile response of vascular smooth muscle. The work includes functional studies on rat isolated aorta and tail artery precontracted with noradrenaline or KCl. In other experiments rat aorta was precontracted by caffeine in the presence or absence of extracellular Ca2+. In order to assess whether thaligrisine interacts directly with calcium channel binding sites or with alpha-adrenoceptors we examined the effect of the alkaloid on [3H]-(+)-cis diltiazem, [3H]-nitrendipine and [3H]-prazosin binding to cerebral cortical membranes. The functional studies showed that the alkaloid inhibited in a concentration-dependent manner the contractile response induced by depolarization in rat aorta (IC50 = 8.9+/-2.9 microM, n=5) and in tail artery (IC50 = 3.04+/-0.3 microM, n=6) or noradrenaline induced contraction in rat aorta (IC50 = 23.0+/-0.39 microM, n=9) and in tail artery (IC50 = 3.8+/-0.9 microM, n=7). In rat aorta, thaligrisine concentration-dependently inhibited noradrenaline-induced contraction in Ca2+-free solution (IC50 = 13.3 microM, n=18). The alkaloid also relaxed the spontaneous contractile response elicited by extracellular calcium after depletion of noradrenaline-sensitive intracellular stores (IC50 = 7.7 microM, n=4). The radioligand receptor-binding study showed that thaligrisine has higher affinity for [3H]-prazosin than for [3H]-(+)-cis-diltiazem binding sites, with Ki values of 0.048+/-0.007 microM and 1.5+/-1.1 microM respectively. [3H]-nitrendipine binding was not affected by thaligrisine. The present work provides evidence that thaligrisine shows higher affinity for [3H]-prazosin binding site than [3H]-(+)-cis-diltiazem binding sites, in contrast with tetrandrine and isotetrandrine that present similar affinity for both receptors. In functional studies thaligrisine, acted as an alpha1-adrenoceptor antagonist and as a Ca2+ channel blocker, relaxing noradrenaline or KCl-induced contractions in vascular smooth muscle. This compound specifically inhibits the refilling of internal Ca2+-stores sensitive to noradrenaline, by blocking Ca2+-entry through voltage-dependent Ca2+-channels.  相似文献   

13.
Zilberter Y  Kaiser KM  Sakmann B 《Neuron》1999,24(4):979-988
GABAergic, somatostatin-containing bitufted interneurons in layer 2/3 of rat neocortex are excited via glutamatergic excitatory postsynaptic potentials (EPSPs) by pyramidal neurons located in the same cortical layer. Pair recordings showed that short bursts of backpropagating dendritic action potentials (APs) reduced the amplitude of unitary EPSPs. EPSP depression was dependent on a rise in dendritic [Ca2+]. The effect was blocked by the GABA(B) receptor (GABA(B)-R) antagonist CGP55845A and was mimicked by the GABA(B)-R agonist baclofen. As presynaptic GABA(B)-Rs were activated neither by somatostatin nor by GABA released from axon collaterals of the bitufted cell, we conclude that GABA(B)-Rs were activated by a retrograde messenger, most likely GABA, released from the dendrite. Because synaptic depression was prevented by loading bitufted neurons with GDP-beta-S, it is likely to be caused by exocytotic GABA release from dendrites.  相似文献   

14.
Hu L  Zhu DN  Wang JQ  Sun ZJ  Yao T 《生理学报》2001,53(5):385-390
用脊髓(T8)中间外侧柱(IML)微透析方法结合高效液相色谱(HPLC)技术,研究延髓头端腹外侧区(RVLM)微量注射血管紧张素Ⅱ(ANGⅡ,100pmol,n=11)后脊髓IML氨基酸递质释放的变化.在RVLM区微量注射ANGⅡ(100pmol,n=11),能显著增加(P<0.01)脊髓(T8)内天门冬氨酸(ASP,从4.75±1.01升至8.90±2.28pmol/20μl)和谷氨酸(GLU,从18.99±8.64升至73.88±29.26pmol/20μl)的释放.在同一RVLM部位注射losartan(10nmol,n=8)可以显著抑制注射ANGⅡ引起的GLU释放升高反应(P<0.05).免疫荧光双标记结合共聚焦显微镜观察到RVLM内62%~91%的谷氨酸能神经元呈AT1受体免疫阳性.此结果提示ANGⅡ诱发的脊髓内谷氨酸释放可能来源于RVLM内AT1受体免疫阳性的谷氨酸能脊髓投射神经元.  相似文献   

15.
GABAergic neurons in the caudal ventrolateral medulla (CVLM) are driven by baroreceptor inputs relayed via the nucleus tractus solitarius (NTS), and they inhibit neurons in rostral ventrolateral medulla to reduce sympathetic nerve activity (SNA) and arterial pressure (AP). After arterial baroreceptor denervation or lesions of the NTS, inhibition of the CVLM continues to increase AP, suggesting additional inputs also tonically activate the CVLM. This study examined whether the NTS contributes to baroreceptor-independent drive to the CVLM and whether glutamate promotes baroreceptor- and NTS-independent activation of the CVLM to tonically reduce SNA. In addition, we evaluated whether altering central respiratory drive, a baroreceptor-independent regulator of CVLM neurons, influences glutamatergic inputs to the CVLM. Splanchnic SNA and AP were measured in chloralose-anesthetized, ventilated, paralyzed rats. The infusion of nitroprusside decreased AP below threshold for baroreceptor afferent firing (<50 mmHg) and increased SNA to 209+/-22% (P<0.05), but the subsequent inhibition of the NTS by microinjection of the GABA(A) agonist muscimol did not further increase SNA. In contrast, after inhibition of the NTS, blockade of glutamatergic inputs to CVLM by microinjection of kynurenate increased SNA (274+/-54%; P<0.05; n=7). In vagotomized rats with baroreceptors unloaded, inhibition of glutamatergic inputs to CVLM evoked a larger rise in SNA when central respiratory drive was increased (219+/-16% vs. 271+/-17%; n=5; P<0.05). These data suggest that baroreceptor inputs provide the major drive for the NTS-mediated excitation of the CVLM. Furthermore, glutamate tonically activates the CVLM to reduce SNA independent of the NTS, and this excitatory input appears to be affected by the strength of central respiratory drive.  相似文献   

16.
Graf ER  Zhang X  Jin SX  Linhoff MW  Craig AM 《Cell》2004,119(7):1013-1026
Formation of synaptic connections requires alignment of neurotransmitter receptors on postsynaptic dendrites opposite matching transmitter release sites on presynaptic axons. beta-neurexins and neuroligins form a trans-synaptic link at glutamate synapses. We show here that neurexin alone is sufficient to induce glutamate postsynaptic differentiation in contacting dendrites. Surprisingly, neurexin also induces GABA postsynaptic differentiation. Conversely, neuroligins induce presynaptic differentiation in both glutamate and GABA axons. Whereas neuroligins-1, -3, and -4 localize to glutamate postsynaptic sites, neuroligin-2 localizes primarily to GABA synapses. Direct aggregation of neuroligins reveals a linkage of neuroligin-2 to GABA and glutamate postsynaptic proteins, but the other neuroligins only to glutamate postsynaptic proteins. Furthermore, mislocalized expression of neuroligin-2 disperses postsynaptic proteins and disrupts synaptic transmission. Our findings indicate that the neurexin-neuroligin link is a core component mediating both GABAergic and glutamatergic synaptogenesis, and differences in isoform localization and binding affinities may contribute to appropriate differentiation and specificity.  相似文献   

17.
Pugh JR  Raman IM 《Biophysical journal》2005,88(3):1740-1754
Neurons of the cerebellar nuclei receive GABAergic input from Purkinje cells. Purkinje boutons have several closely spaced presynaptic densities without GABA transporters, raising the possibility that neurotransmitter released by one presynaptic site diffuses to multiple postsynaptic sites. To test whether such local spillover may contribute to transmission, we studied gating of GABA(A) receptors at 31-33 degrees C in cerebellar nuclear neurons acutely dissociated from mice. Currents were evoked by rapid application of long steps, brief pulses, and high-frequency trains of GABA to outside-out patches. Receptors desensitized and deactivated rapidly, and dose-response measurements estimated an EC(50) of approximately 30 microM. From these data, a kinetic scheme was developed that replicated the recorded currents. Next, we simulated diffusion of GABA in the synaptic cleft, constrained by previous electron microscopic data, and drove the kinetic GABA(A) receptor model with modeled concentration transients. Simulations predicted receptor occupancies of approximately 100% directly opposite the release site and approximately 50% at distant postsynaptic densities, such that receptors up to 700 nm from a release site opened on the timescale of the inhibitory postsynaptic currents before desensitizing. Further simulations of probabilistic release from multiple-site boutons suggested that local spillover-mediated transmission slows the onset and limits the extent of depression during high-frequency signaling.  相似文献   

18.
Adenosine has been implicated as a modulator of retinohypothalamic neurotransmission in the suprachiasmatic nucleus (SCN), the seat of the light-entrainable circadian clock in mammals. Intracellular recordings were made from SCN neurons in slices of hamster hypothalamus using the in situ whole-cell patch clamp method. A monosynaptic, glutamatergic, excitatory postsynaptic current (EPSC) was evoked by stimulation of the optic nerve. The EPSC was blocked by bath application of the adenosine A(1) receptor agonist cyclohexyladenosine (CHA) in a dose-dependent manner with a half-maximal concentration of 1.7 microM. The block of EPSC amplitude by CHA was antagonized by concurrent application of the adenosine A(1) receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). The adenosine A(2A) receptor agonist CGS21680 was ineffective in attenuating the EPSC at concentrations up to 50 microM. Trains of four consecutive stimuli at 25 ms intervals usually depressed the EPSC amplitude. However, after application of CHA, consecutive responses displayed facilitation of EPSC amplitude. The induction of facilitation by CHA suggested a presynaptic mechanism of action. After application of CHA, the frequency of spontaneous EPSCs declined substantially, while their amplitude distribution was unchanged or slightly reduced, again suggesting a mainly presynaptic site of action for CHA. Application of glutamate by brief pressure ejection evoked a long-lasting inward current that was unaffected by CHA at concentrations sufficient to reduce the evoked EPSC amplitude substantially (1 to 5 microM), suggesting that postsynaptic glutamate receptor-gated currents were unaffected by the drug. Taken together, these observations indicate that CHA inhibits optic nerve-evoked EPSCs in SCN neurons by a predominantly presynaptic mechanism.  相似文献   

19.
Dani JA  Zhou FM 《Neuron》2004,42(4):522-524
Corticostriatal glutamate afferents and mesostriatal dopamine afferents commonly converge onto the same postsynaptic spines of medium projection neurons. The consequent synaptic triad provides an ideal configuration for dopamine modulation of glutamatergic transmission. In this issue of Neuron, Bamford et al. report that dopamine inhibits glutamate release in a selective manner by activating presynaptic D2 receptors.  相似文献   

20.
5-HT(3) (serotonin type 3) receptors are targets of antiemetics, antipsychotics, and antidepressants and are believed to play a role in cognition. Nevertheless, contrasting results have been obtained with respect to their functions in the CNS and in the control of transmitter release. We used rat hippocampal neurons in single-neuron microcultures to identify the roles of presynaptic 5-HT(3) receptors at central synapses. 5-HT (10 microm) caused a transient > 10-fold increase in the frequency of miniature inhibitory postsynaptic currents without affecting amplitudes or kinetics. This effect was abolished by tropisetron (30 nm) and when Ca(2+) channels were blocked by 100 microm Cd(2+) it was mimicked and occluded when neurons were depolarized by 20 mm, but not 10 mm, K(+). Thus, activation of presynaptic 5-HT(3) receptors increased spontaneous GABA release by causing depolarization and opening of voltage-gated Ca(2+) channels. In microculture neurons, 5-HT transiently reduced action potential-evoked inhibitory autaptic currents by > 50%; this effect was blocked by tropisetron and mimicked by 20 mm, but not 10 mm, K(+). Miniature excitatory postsynaptic currents were not altered by 5-HT. Excitatory autaptic currents were tonically reduced, an effect attenuated by 5-HT(1A) antagonists. Thus, presynaptic 5-HT(3) receptors control GABA, but not glutamate, release and mediate opposite effects on spontaneous and action potential-dependent release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号