首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Predicting and improving oxygen transport within bioartificial liver (BAL) devices continues to be an important engineering challenge since oxygen is one of the critical nutrients necessary for maintaining hepatocyte viability and function. Such a computational model would not only help predict outcomes but it would also allow system modifications to be analyzed prior to developing experimental protocols. This would help to facilitate future design improvements while reducing both experimental time and capital resource costs, and is the focus of the current study. Specifically, a computational model of O(2) transport through collagen and microporous collagen ECMs is analyzed for hollow fiber (HF), flat plate (FP), and spheroid BAL designs. By modifying the O(2) boundary conditions, hepatocyte O(2) consumption levels, O(2) permeability of the ECM, and ECM void fractions, O(2) transport predictions are determined for each system as a function of time and distance. Accuracy of the predictive model is confirmed by comparing computational vs. experimental results for the HF BAL system. The model's results indicate that O(2) transport within all three BAL designs can be improved significantly by incorporating the enhancement technique. This technique modifies a diffusion-dominant gel ECM into a porous matrix with diffusive and convective flows that mutually transport O(2) through the ECMs. Although tortuous pathways increase the porous ECM's overall effective length of O(2) travel, the decreased transport resistances of these pathways allow O(2) to permeate more effectively into the ECMs. Furthermore, because the HF design employs convective flow on both its inner and outer ECM surfaces, greater control of O(2) transport through its ECM is predicted, as compared with the single O(2) source inputs of the flat plate and spheroid systems. The importance of this control is evaluated by showing how modifying the O(2) concentration and/or transfer coefficients of the convective flows can affect O(2) transport.  相似文献   

2.
To investigate the mechanism(s) of hepatocyte radioresistance (D0 2.7 Gy), the radiosensitivities of respiring (37 degrees C) and nonrespiring (0 degrees C) hepatocytes were determined as a function of oxygen concentration. Fischer 344 female rat hepatocytes were isolated by liver perfusion, equilibrated in Leibowitz-15 media with different oxygen tensions, and exposed to 60Co radiation at either 37 or 0 degrees C. Cell survival and DNA single-strand breaks were used as the biological end points of radiosensitivity. The K value for respiring hepatocytes (37 degrees C) was 14.3 +/- 0.5 mm Hg O2 (18.8 +/- 0.7 mumol O2/liter), demonstrating that the K value for freshly isolated parenchymal hepatocytes is significantly greater than those previously obtained for cultured cells. In contrast, the K value for nonrespiring hepatocytes (0 degree C) is 1.4 +/- 0.4 mm Hg O2 (3.7 +/- 1.0 mumol O2/liter) indicating that hepatocyte respiration results in a plasma membrane-to-nucleus oxygen gradient of approximately 12.9 +/- 0.6 mm Hg (15.1 +/- 1.2 microns O2/liter). The hypothesis that the hepatic nucleus typically resides in a hypoxic condition, although the liver is uniformly perfused with well-oxygenated blood, is supported by (1) the nonradom perinuclear distribution of the mitochondria, (2) the high cellular respiration rate, and (3) the large intracellular oxygen diffusion distance in hepatocytes (25 microns diameter).  相似文献   

3.
An extracellular matrix microarray for probing cellular differentiation   总被引:2,自引:0,他引:2  
We present an extracellular matrix (ECM) microarray platform for the culture of patterned cells atop combinatorial matrix mixtures. This platform enables the study of differentiation in response to a multitude of microenvironments in parallel. The fabrication process required only access to a standard robotic DNA spotter, off-the-shelf materials and 1,000 times less protein than conventional means of investigating cell-ECM interactions. To demonstrate its utility, we applied this platform to study the effects of 32 different combinations of five extracellular matrix molecules (collagen I, collagen III, collagen IV, laminin and fibronectin) on cellular differentiation in two contexts: maintenance of primary rat hepatocyte phenotype indicated by intracellular albumin staining and differentiation of mouse embryonic stem (ES) cells toward an early hepatic fate, indicated by expression of a beta-galactosidase reporter fused to the fetal liver-specific gene, Ankrd17 (also known as gtar). Using this technique, we identified combinations of ECM that synergistically impacted both hepatocyte function and ES cell differentiation. This versatile technique can be easily adapted to other applications, as it is amenable to studying almost any insoluble microenvironmental cue in a combinatorial fashion and is compatible with several cell types.  相似文献   

4.
Rat hepatocytes, freshly isolated with a collagenase perfusion technique, were found to attach within 1 h on collagen substrates and on culture dishes coated with cold insoluble globulin (CIG) or asialoceruloplasmin (AC). Spreading was observed on collagen and CIG but not on AC. Both attachment and spreading occurred in a simple balanced salt solution in the absence of serum. In the absence of serum no attachment was observed on plain plastic dishes or on dishes coated with serum albumin or other plasma proteins, unless divalent manganese ions were present. In the presence of manganese the hepatocytes attached to all surfaces tested, but no spreading occurred. Attachment to collagen occurred equally well to collagens type I or type III both in the native, fibrillar state and in the denatured state. Collagen attachment required magnesium ions but did not appear to involve the collagen-linked carbohydrates. Different mechanisms were found to operate in hepatocyte attachment to collagen and to AC; the latter is most likely mediated by the hepatocyte surface receptor involved in recognition and uptake of asialoglycoproteins. The role of CIG in hepatocyte attachment to collagen was investigated. Data are presented suggesting that this glycoprotein, which mediates the adhesion of fibroblasts to collagen, is not required for hepatocyte attachment to collagen.  相似文献   

5.
In vitro drug testing requires long‐term maintenance of hepatocyte liver specific functions. Hepatocytes cultured at a higher seeding density in a sandwich configuration exhibit an increased level of liver specific functions when compared to low density cultures due to the better cell to cell contacts that promote long term maintenance of polarity and liver specific functions. However, culturing hepatocytes at high seeding densities in a standard 24‐well plate poses problems in terms of the mass transport of nutrients and oxygen to the cells. In view of this drawback, we have developed a polydimethylsiloxane (PDMS) bioreactor that was able to maintain the long‐term liver specific functions of a hepatocyte sandwich culture at a high seeding density. The bioreactor was fabricated with PDMS, an oxygen permeable material, which allowed direct oxygenation and perfusion to take place simultaneously. The mass transport of oxygen and the level of shear stress acting on the cells were analyzed by computational fluid dynamics (CFD). The combination of both direct oxygenation and perfusion has a synergistic effect on the liver specific function of a high density hepatocyte sandwich culture over a period of 9 days. Biotechnol. Bioeng. 2013; 110: 1663–1673. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
The incorporation of monolayers of cultured hepatocytes into an extracorporeal perfusion system has become a promising approach for the development of a temporary bioartificial liver (BAL) support system. In this paper we present a numerical investigation of the oxygen tension, shear stress, and pressure drop in a bioreactor for a BAL composed of plasma-perfused chambers containing monolayers of porcine hepatocytes. The chambers consist of microfabricated parallel disks with center-to-edge radial flow. The oxygen uptake rate (OUR), measured in vitro for porcine hepatocytes, was curve-fitted using Michaelis-Menten kinetics for simulation of the oxygen concentration profile. The effect of different parameters that may influence the oxygen transport inside the chambers, such as the plasma flow rate, the chamber height, the initial oxygen tension in the perfused plasma, the OUR, and K(m) was investigated. We found that both the plasma flow rate and the initial oxygen tension may have an important effect upon oxygen transport. Increasing the flow rate and/or the inlet oxygen tension resulted in improved oxygen transport to cells in the radial-flow microchannels, and allowed significantly greater diameter reactor without oxygen limitation to the hepatocytes. In the range investigated in this paper (10 microns < H < 100 microns), and for a constant plasma flow rate, the chamber height, H, had a negligible effect on the oxygen transport to hepatocytes. On the contrary, it strongly affected the mechanical stress on the cells that is also crucial for the successful design of the BAL reactors. A twofold decrease in chamber height from 50 to 25 microns produced approximately a fivefold increase in maximal shear stress at the inlet of the reactor from 2 to 10 dyn/cm2. Further decrease in chamber height resulted in shear stress values that are physiologically unrealistic. Therefore, the channel height needs to be carefully chosen in a BAL design to avoid deleterious hydrodynamic effects on hepatocytes.  相似文献   

7.
Preclinical studies for boron neutron capture therapy (BNCT) using epithermal neutrons are ongoing at several laboratories. The absorbed dose in tumor cells is a function of the thermal neutron flux at depth, the microscopic boron concentration, and the size of the cell. Dosimetry is therefore complicated by the admixture of thermal, epithermal, and fast neutrons, plus gamma rays, and the array of secondary high-linear-energy-transfer particles produced within the patient from neutron interactions. Microdosimetry can be a viable technique for determining absorbed dose and radiation quality. A 2.5-cm-diameter tissue-equivalent gas proportional counter has been built with 50 parts per million (ppm) 10B incorporated into the walls and counting gas to simulate the boron uptake anticipated in tumors. Measurements of lineal energy (y) spectra for BNCT in simulated volumes of 1-10 microns diameter show a dose enhancement factor of 4.3 for 30 ppm boron, and a "y" of 250 keV/microns for the boron capture process. Chamber design plus details of experimental and calculated linear energy spectra will be presented.  相似文献   

8.
We quantitatively evaluated two recently-developed novel techniques for hepatocyte cultivation in a dish level; that is, spheroid culture and membrane-supported collagen (CN) gel sandwich culture, in terms of cellular maintenance, albumin secretion and 7-ethoxycoumarin (7EC) metabolism to 7-hydroxycoumarin (7HC) as a marker for cytochrome P450 IA1 activity in the presence and absence of rat liver epithelial cell line (RLEC) during one month of culture, together with conventional coculture with RLEC in CN-coated dishes as a control. RLEC prevented spheroid loss caused by its detachment from the culture dishes often occurring in pure culture. CN-gel sandwich by itself improved remarkably hepatocyte maintenance when compared with CN-gel free systems, thereby resulting in enhancement of overall functional expressions as compared with CN-gel free systems. RLEC in CN-gel sandwhich, however, reduced cellular sustainment probably due to its suppression of hepatocyte growth. Although there were no significant differences in albumin secretion per cell among the five cultures examined, CN-gel sandwich expressed markedly higher 7EC metabolizing activity per cell, where RLEC presence had a preferable influence. Consequently, membrane-supported CN-gel sandwich was the most superior technique for hepatocyte cultivation from the standpont of both cellular maintenance and its functional expressions per cell.  相似文献   

9.
We studied pH regulation in freshly isolated rainbow trout hepatocytes using microspectrofluorometry with the fluorescent dye BCECF. In accordance with earlier data on rainbow trout hepatocytes, ion substitution (N-methyl D-glucamine for sodium and gluconate for chloride) and transport inhibitor [10 microM M methyl isobutyl amiloride (MIA) to inhibit sodium/proton exchange and 100 microM DIDS to inhibit bicarbonate transport] studies in either Hepes-buffered or bicarbonate/carbon dioxide-buffered media (extracellular pH 7.6) indicated a role for sodium/proton exchange, sodium-dependent bicarbonate transport, and sodium-independent anion exchange in the regulation of hepatocyte pH. In Hepes-buffered medium, the activity of the sodium/proton exchanger (i.e. proton extrusion inhibited by MIA) was greater at 1% than at 21% oxygen. The oxygen dependency of the sodium/proton exchange is not caused by hydroxyl radicals, which appear to mediate the oxygen sensitivity of potassium-chloride cotransport in erythrocytes.  相似文献   

10.
Hepatocyte spheroids have been proposed for drug metabolism studies and in bioartificial liver devices. However, the optimal conditions required to meet the aerobic demands of mitochondria-rich hepatocyte spheroids is not well studied. We hypothesized that an optimal concentration of oxygen could be identified and that the health of hepatocyte spheroids might be further improved by antioxidant therapy. Rat hepatocyte spheroids were maintained in suspension culture for 7 days under a mixture of 5% CO(2) plus O(2):N(2) to achieve fractional oxygen contents of 6%(C1), 21%(C2), 58%(C3), and 95%(C4). Spheroid health was assessed under each condition by vital staining, TEM, oxygen consumption, and mitochondrial counts. Hepatocyte differentiation was assessed by expression of 10 liver-related genes (HNF4a, HNF6, Cyp1A1, albumin, Nags, Cps1, Otc, Ass, Asl, Arg1). Functional markers (albumin and urea) were measured. The influence of oxygen tension and antioxidant treatment on the production of reactive oxygen species (ROS) was assessed by confocal microscopy. We observed that the hepatocyte spheroids were healthiest under normal atmospheric (C2) conditions with antioxidants ascorbic acid and L-carnitine. Cell death and reduced functionality of hepatocyte spheroids correlated with the formation of ROS. Normal atmospheric conditions provided the optimal oxygen tension for suspension culture of hepatocyte spheroids. The formation and deleterious effects of ROS were further reduced by adding antioxidants to the culture medium. These findings have direct application to development of the spheroid reservoir bioartificial liver and the use of hepatocyte spheroids in drug metabolism studies.  相似文献   

11.
The ability of TGF-β1 (transforming growth factor-beta 1) to suppress growth factor induced proliferation of many cell types in vitro is well documented; however, TGF-β1 increases within a similar time frame as the hepatocyte mitogens HGF (hepatocyte growth factor), EGF (epidermal growth factor), and TGF-α(transforming growth factor-alpha) prior to hepatocyte proliferation during liver regeneration. This has raised the issue that TGF-β1 may have effects on hepatocytes additional to mito-inhibition and that these effects may be relevant to the regenerative process. To this end, we examined the effect of TGF-β1 on both the mitogenesis and the motility of growth factor stimulated primary rat hepatocytes and the hepatoblastoma cell line HepG2 in vitro. TGF-β1 significantly enhanced the chemotactic motility of EGF or TGF-α, and not HGF, stimulated hepatocytes on a collagen I substratum. TGF-β1 was not chemotactic when added alone and decreased the DNA synthesis of all hepatocyte cultures to near control levels. HepG2 cells were chemotactic toward HGF, EGF, and TGF-β1 alone and displayed an additive chemotactic response when TGF-β1 was added to either HGF or EGF. Additionally, HepG2 cells were refractory to the growth stimulatory effects of HGF or EGF and the growth inhibitory effects of TGF-β1. Hepatocytes plated onto other collagen-containing substrates (collagen IV, Matrigel, or ECL, an entactin-collagen IV-laminin matrix), but not on fibronectin or laminin alone, also displayed enhanced EGF stimulated motility by TGF-β1. The data indicate that an additional, novel role for TGF-β1 during liver tissue remodeling following PHx may include the synergistic enhancement EGF stimulated hepatocyte motility responses, and this enhancement is observed only on collagen-containing extra-cellular matrices. J Cell Physiol 170:57–68, 1997 © 1997 Wiley-Liss, Inc.  相似文献   

12.
The elucidation of the effect of extracellular matrices on hepatocellular metabolism is critical to understand the mechanism of functional upregulation. We have developed a system using natural extracellular matrices [Adipogel] for enhanced albumin synthesis of rat hepatocyte cultures for a period of 10 days as compared to collagen sandwich cultures. Primary rat hepatocytes isolated from livers of female Lewis rats recover within 4 days of culture from isolation induced injury while function is stabilized at 7 days post-isolation. Thus, the culture period can be classified into three distinct stages viz. recovery stage [day 0-4], pre-stable stage [day 5-7] and the stable stage [day 8-10]. A Metabolic Flux Analysis of primary rat hepatocytes cultured in Adipogel was performed to identify the key metabolic pathways modulated as compared to collagen sandwich cultures. In the recovery stage [day 4], the collagen-soluble Adipogel cultures shows an increase in TriCarboxylic Acid [TCA] cycle fluxes; in the pre-stable stage [day 7], there is an increase in PPP and TCA cycle fluxes while in the stable stage [day 10], there is a significant increase in TCA cycle, urea cycle fluxes and amino acid uptake rates concomitant with increased albumin synthesis rate as compared to collagen sandwich cultures throughout the culture period. Metabolic analysis of the collagen-soluble Adipogel condition reveals significantly higher transamination reaction fluxes, amino acid uptake and albumin synthesis rates for the stable vs. recovery stages of culture. The identification of metabolic pathways modulated for hepatocyte cultures in presence of Adipogel will be a useful step to develop an optimization algorithm to further improve hepatocyte function for Bioartificial Liver Devices. The development of this framework for upregulating hepatocyte function in Bioartificial Liver Devices will facilitate the utilization of an integrated experimental and computational approach for broader applications of Adipogel in tissue e engineering and regenerative medicine.  相似文献   

13.
The reaction of singlet oxygen, a putative agent of skin photodamage, with the dermal collagen crosslink histidinohydroxylysinonorleucine (HHL) and its precursor histidine is reported. Reaction studies were performed with both purified HHL and bovine dermal tissue. We demonstrate that singlet oxygen can selectively oxidize HHL and histidine amino acid residues in dermal tissue and that intermediate oxidation products of histidine lead to new crosslink products. A novel mechanism for crosslink formation was proposed to involve nucleophilic addition to a transient imidazolone intermediate formed from singlet oxygen oxidation of the histidine imidazole moiety. The implication for such adduct formation and histidine oxidation in collagen proteins is the expression of aberrant collagen crosslinks, perturbation of the dermal collagen function, and hence an altered dermal state.  相似文献   

14.
For in vitro liver replacement devices, such as packed bed bioreactors, to maintain the essential functions of the liver, they must at least successfully support hepatocytes, the parenchymal cell of the liver. In vivo, the liver is a major consumer of oxygen. Hence it is unsurprising that the limited transport distance of oxygen (O(2)) governs the dimensions of the cellular space of engineered devices. Because cellular space capacity directly affects the device's performance, O(2) transport is a critical issue in the scale up of bioreactor designs. In the current investigation, the microporosity of the extracellular matrix (ECM) has been modified to further improve O(2) transport in packed bed devices beyond that previously reported in the literature. These improvements to the O(2) enhancement technique enabled O(2) transport distances of 481.7 +/- 12.5 microm to be achieved under acellular conditions; and distances of 418.1 +/- 6.0 microm to be attained in the presence of 1 million hepatocytes. Both values are significantly greater than the 170 microm baseline attained when 10(6) hepatocytes are packed within normal non-enhanced ECM gels. The study's results also illustrate that the O(2) enhancement technique has the added benefit of preventing regions of severe hypoxia and hyperoxia from developing within the cellular space. As such, enhanced ECM gels enable packed hepatocytes to maintain better hepatocellular metabolic status than is possible with normal non-enhanced gels.  相似文献   

15.
The polarized molecules predominately distributing at hepatocyte canalicular surface play a vital role in disclosing the process of bile formation and etiopathogenisis of cholestatic live diseases. Therefore, it is important to find novel polarized molecules on hepatocyte canalicular membrane. In the present study, canalicular membrane vesicles (CMVs) isolated from rat hepatocyte by density gradient centrifugation were used as immunogens to produce hybridoma and 46 strains of monoclonal antibodies (mAb) against CMVs were obtained. With a series of morphological assay methods, including immunohistochemistry, immunofluorescence and immuno-electron microscope, the antigens recognized by canalicular mAb1 (CM1) and canalicular mAb2 (CM2) were confirmed to predominately distribute at hepatocyte canalicular membrane. Transport activity assay revealed that CM2 could inhibit ATP-dependent E217βG uptake of rat hepatocyte CMVs. Meanwhile, Western blotting analysis showed that the molecular mass of CM2 antigen was approximately 110kDa, which was much less than Mr 180kDa of multidrug resistance-associated protein 2 (MRP2) involved in glucuronide transport. These data indicated that CM2 antigen might be a potential novel molecule participating in glucuronide transport on the hepatocyte canalicular membrane.Key words: hepatocyte canalicular membrane, glucuronide transport, canalicular mAb2 (CM2), hybridoma technique.  相似文献   

16.
Gel entrapment culture of primary mammalian cells within collagen gel is one important configuration for construction of bioartificial organ as well as in vitro model for predicting drug situation in vivo. Gel contraction in entrapment culture, resulting from cell-mediated reorganization of the extracellular matrix, was commonly used to estimate cell viability. However, the exact influence of gel contraction on cell activities has rarely been addressed. This paper investigated the gel contraction under varying culture conditions and its effect on the activities of rat hepatocyte entrapped in collagen gel within hollow fibers. The hepatocyte activities were reflected by cell viability together with liver-specific functions on urea secretion and cytochrome P450 2E1. Unexpectedly, no gel contraction occurred during gel entrapment culture of hepatocyte under a high collagen concentration, but hepatocytes still maintained cell viability and liver-specific functions at a similar level to the other cultures with normal gel contraction. It seems that cell activities are unassociated with gel contraction. Alternatively, the mass transfer resistance induced by the combined effect of collagen concentration, gel contraction and cell density could be a side effect to reduce cell activities. The findings with gel entrapment culture of hepatocytes would be also informative for the other cell culture targeting pathological studies and tissue engineering.  相似文献   

17.
DDC (diethyldithiocarbamate) could block collagen synthesis in HSC (hepatic stellate cells) through the inhibition of ROS (reactive oxygen species) derived from hepatocyte CYP2E1 (cytochrome P450 2E1). However, the effect of DDC on MMP-1 (matrix metalloproteinase-1), which is the main collagen degrading matrix metalloproteinase, has not been reported. In co-culture experiments, we found that DDC significantly enhanced MMP-1 expression in human HSC (LX-2) that were cultured with hepatocyte C3A cells either expressing or not expressing CYP2E1. The levels of both proenzyme and active MMP-1 enzyme were up-regulated in LX-2 cells, accompanied by elevated enzyme activity of MMP-1 and decreased collagen I, in both LX-2 cells and the culture medium. H2O2 treatment abrogated DDC-induced MMP-1 up-regulation and collagen I decrease, while catalase treatment slightly up-regulated MMP-1 expression. These data suggested that the decrease in ROS by DDC was partially responsible for the MMP-1 up-regulation. ERK1/2 (extracellular signal-regulated kinase 1/2), Akt (protein kinase B) and p38 were significantly activated by DDC. The ERK1/2 inhibitor (U0126) and Akt inhibitor (T3830) abrogated the DDC-induced MMP-1 up-regulation. In addition, a p38 inhibitor (SB203580) improved MMP-1 up-regulation through the stimulation of ERK1/2. Our data indicate that DDC significantly up-regulates the expression of MMP-1 in LX-2 cells which results in greater MMP-1 enzyme activity and decreased collagen I. The enhancement of MMP-1 expression by DDC was associated with H2O2 inhibition and coordinated regulation by the ERK1/2 and Akt pathways. These data provide some new insights into treatment strategies for hepatic fibrosis.  相似文献   

18.
To engineer reliable in vitro liver tissue equivalents expressing differentiated hepatic functions at a high level and over a long period of time, it appears necessary to have liver cells organized into a three‐dimensional (3D) multicellular structure closely resembling in vivo liver cytoarchitecture and promoting both homotypic and heterotypic cell–cell contacts. In addition, such high density 3D hepatocyte cultures should be adequately supplied with nutrients and particularly with oxygen since it is one of the most limiting nutrients in hepatocyte cultures. Here we propose a novel but simple hepatocyte culture system in a microplate‐based format, enabling high density hepatocyte culture as a stable 3D‐multilayer. Multilayered co‐cultures of hepatocytes and 3T3 fibroblasts were engineered on collagen‐conjugated thin polydimethylsiloxane (PDMS) membranes which were assembled on bottomless frames to enable oxygen diffusion through the membrane. To achieve high density multilayered co‐cultures, primary rat hepatocytes were seeded in large excess what was rendered possible due to the removal of oxygen shortage generally encountered in microplate‐based hepatocyte cultures. Hepatocyte/3T3 fibroblasts multilayered co‐cultures were maintained for at least 1 week; the so‐cultured cells were normoxic and sustained differentiated metabolic functions like albumin and urea synthesis at higher levels than hepatocytes monocultures. Such a microplate‐based cell culture system appears suitable for engineering in vitro miniature liver tissues for implantation, bioartificial liver (BAL) development, or chemical/drug screening. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011.  相似文献   

19.
Development of a bioartificial liver employing xenogeneic hepatocytes   总被引:4,自引:0,他引:4  
Liver failure is a major cause of mortality. A bioartificial liver (BAL) employing isolated hepatocytes can potentially provide temporary support for liver failure patients. We have developed a bioartificial liver by entrapping hepatocytes in collagen loaded in the luminal side of a hollow fiber bioreactor. In the first phase of development, liver-specific metabolic activities of biosynthesis, biotransformation and conjugation were demonstrated. Subsequently anhepatic rabbits were used to show that rat hepatocytes continued to function after the BAL was linked to the test animal. For scale-up studies, a canine liver failure model was developed using D-galactosamine overdose. In order to secure a sufficient number of hepatocytes for large animal treatment, a collagenase perfusion protocol was established for harvesting porcine hepatocytes at high yield and viability. An instrumented bioreactor system, which included dissolved oxygen measurement, pH control, flow rate control, an oxygenator and two hollow fiber bioreactors in series, was used for these studies. An improved survival of dogs treated with the BAL was shown over the controls. In anticipated clinical applications, it is desirable to have the liver-specific activities in the BAL as high as possible. To that end, the possibility of employing hepatocyte spheroids was explored. These self-assembled spheroids formed from monolayer culture exhibited higher liver-specific functions and remained viable longer than hepatocytes in a monolayer. To ease the surface requirement for large-scale preparation of hepatocyte spheroids, we succeeded in inducing spheroid formation in stirred tank bioreactors for both rat and porcine hepatocytes. These spheroids formed in stirred tanks were shown to be morphologically and functionally indistinguishable from those formed from a monolayer. Collagen entrapment of these spheroids resulted in sustaining their liver-specific functions at higher levels even longer than those of spheroids maintained in suspension. For use in the BAL, a mixture of spheroids and dispersed hepatocytes was used to ensure a proper degree of collagen gel contraction. This mixture of spheroids and dispersed cells entrapped in the BAL was shown to sustain the high level of liver-specific functions. The possibility of employing such a BAL for improved clinical performance warrants further investigations.  相似文献   

20.
In order to study the influence of cell shape as modulated by the extracellular matrix on the cellular activity, hepatocytes isolated from liver were maintained on collagen I coated plastic substrata and collage I gel substrata and certain hepatocyte specific functions were investigated. The incorporation of3[H]-leucine into total proteins and albumin secreted by cells maintained on collagen gel was found to be significantly higher compared to those maintained on a collagen coated plastic substrata, indicating that hepatocytes on collagen gel have an enhanced albumin synthesizing capacity. Increased incorporation of35[S]-sulphate into total proteoglycans (PG) and a relatively higher fraction of the35[S]-PG in the extracellular space showed an increased rate of synthesis and secretion of sulphated PGs by cells maintained on collagen gels. But in contrast to the above results, the incorporation of3[H]-leucine into cytokeratins C8, C18 and actin were significantly low in cells maintained on collagen gel. The tyrosine amino transferase activity exhibited by hepatocytes preincubated with dexamethasone on collagen gel was also significantly low. The different forms of collagen substrata appeared to have no effect on the amino acid transport by hepatocytes, further suggesting that the various hepatocyte specific functions are not uniformly altered when hepatocytes are maintained on three-dimensional collagen gel substrata. These results indicate that the shape of the cell as determined by the nature of the matrix substratum influences the synthetic activity of secretory proteins and those remaining intracellularly, differently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号