首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Patatin is the major protein constituent of potato tubers and displays broad esterase activity. The native enzyme actually belongs to a highly homologous multigene family of vacuolar glycoproteins. From these, the patB2 patatin gene was selected and cloned into pUC19 without its signal sequence but with an N-terminal histidine-tag. This patatin was overexpressed under the control of the lac promotor in Escherichia coli strain DH5alpha. The protein was recovered as inclusion bodies, folded into its native state by solubilization in urea and purified to homogeneity. Starting with one gram of inclusion bodies, 19 mg of pure and active recombinant patatin was isolated, with even higher specific activity than the glycosylated wild-type patatin purified from potato tubers. The purified enzyme showed esterolytic activity with p-nitrophenylesters dissolved in Triton X-100 micelles. The activity of patatin on p-nitrophenylesters with different carbon chain lengths showed an optimum for p-nitrophenylesters with 10 carbon atoms. Besides general esterolytic activity, the pure enzyme was found to display high phospholipase A activity in particular with the substrates 1,2-dioctanoyl-sn-glycero-3-phosphocholine (diC(8)PCho) (127 U.mg(-1)) and 1,2-dinonanoyl-sn-glycero-3-phosphocholine (diC(9)PCho) (109 U.mg(-1)). Recently, the structure of human cytosolic PLA(2) (cPLA(2)) was solved, showing a novel Ser-Asp active site dyad [1]. Based on a partial sequence alignment of patatin with human cPLA(2), we propose that patatin contains a similar active site dyad. To verify this assumption, conserved Ser, Asp and His residues in the family of patatins have been modified in patatin B2. Identification of active site residues was based on the observation of correctly folded but inactive variants. This led to the assignment of Ser54 and Asp192 as the active site serine and aspartate residues in patatin B2, respectively.  相似文献   

2.
Patatin is a nonspecific lipid acyl hydrolase that accounts for approximately 40% of the total soluble protein in mature potato tubers, and it has potent insecticidal activity against the corn rootworm. We determined the X-ray crystal structure of a His-tagged variant of an isozyme of patatin, Pat17, to 2.2 A resolution, employing SeMet multiwavelength anomalous dispersion (MAD) phasing methods. The patatin crystal structure has three molecules in the asymmetric unit, an R-factor of 22.0%, and an R(free) of 27.2% (for 10% of the data not included in the refinement) and includes 498 water molecules. The structure notably revealed that patatin has a Ser-Asp catalytic dyad and an active site like that of human cytosolic phospholipase A(2) (cPLA(2)) [Dessen, A., et al. (1999) Cell 97, 349-360]. In addition, patatin has a folding topology related to that of the catalytic domain of cPLA(2) and unlike the canonical alpha/beta-hydrolase fold. The structure confirms our site-directed mutagenesis and bioactivity data that initially suggested patatin possessed a Ser-Asp catalytic dyad. Alanine-scanning mutagenesis revealed that Ser77 and Asp215 were critical for both esterase and bioactivity, consistent with prior work implicating a Ser residue [Strickland, J. H., et al. (1995) Plant Physiol. 109, 667-674] and a Ser-Asp dyad [Hirschberg, H. J. H. B., et al. (2001) Eur. J. Biochem. 268, 5037-5044] in patatin's catalytic activity. The crystal structure aids the understanding of other structure-function relationships in patatin. Patatin does not display interfacial activation, a hallmark feature of lipases, and this is likely due to the fact that it lacks a flexible lid that can shield the active site.  相似文献   

3.
Patatin is a family of glycoproteins with an apparent molecular weight of 40 kDa. The protein is synthesized as a pre-protein with a hydrophobic signal sequence of 23 amino acids. Using different immunocytochemical methods we determined the tissue-specific as well as subcellular localization of the patatin protein. Since antibodies raised against patatin showed crossreactivity with glycans of other glycoproteins, antibodies specific for the protein portion of the glycoprotein were purified. Using these antibodies for electron-microscopical immunocytochemistry, the protein was found to be localized mainly in the vacuoles of both tubers and leaves of potatoes (Solanum tuberosum L.) induced for patatin expression. Neither cell walls nor the intercellular space contained detectable levels of patatin protein. Concerning the tissue specificity, patatin was mainly found in parenchyma cells of potato tubers. The same distribution was observed for the esterase activity in potato tubers.Abbreviations PHA phytohemagglutinin - TFMS trifluoromethanesulfonic acid  相似文献   

4.
Dasgupta A  Das D  Das PK 《Biochimie》2005,87(12):7353-1119
The catalytic efficiency of trypsin was estimated in cationic reverse micelles as a function of the concentration of water-pool components and aggregate size to determine their independent influence on enzyme activity. The variation in the aggregate size/water-pool size was achieved by changing both the W0 (mole ratio of water to surfactant) and the headgroup area of surfactant through introduction of hydroxyethyl groups at the polar head. The local molar concentrations of water present inside the water-pool ([H2O]wp) of different cationic reverse micelles across varying W0 was estimated using a modified phenyl cation-trapping protocol. The [H2O]wp in cationic reverse micelles (surfactant/isooctane/n-hexanol/water) increases with W0 and attains the molarity of normal water beyond W0=40 irrespective of the nature of headgroup. Concurrently, the catalytic activity of trypsin compartmentalized within the water-pool increases with the increase in [H2O]wp upto an optimal W0=40 in organized solutions of any surfactant. The aggregate size (determined by static light scattering) also increases expectedly with W0 and noticeably with the area of the surfactant headgroup at similar W0. Since the enzyme activity rises both with the increase in water-pool size and [H2O]wp, trypsin's efficiency was compared with these two parameters across reverse micelles of varying surfactant headgroup size at similar W0 to determine their probable independent influence in regulating the enzyme activity. Noticeably, the efficiency of trypsin rises two to ninefold in spite of the [H2O]wp being distinctly lower in case of hydroxyethyl group substituted surfactants compared to cetyltrimethylammonium bromide w/o microemulsions at similar W0. Thus, the influence of the aggregate size possibly plays an important role alongwith the [H2O]wp in modulating the enzyme activity.  相似文献   

5.
The present work deals with a theoretical model of catalysis by enzymes entrapped in reverse micelles. Three aspects of the enzyme-reverse-micelle system have been considered: structure, dynamics and enzyme distribution and catalysis in reverse micelles. A proposed structural model of reverse micelles [El Seoud (1984) in Reverse Micelles (Luisi, P. L. & Straub, B. E., eds.), p. 81, Plenum Press, New York] consists of three domains: surfactant apolar tails, bound water and free water. Dynamics are based on a dynamic equilibrium of association-dissociation that lead one to consider the dispersed polar phase as a pseudo-continuous phase [Luisi, Giomini, Pileni & Robinson (1988) Biochim. Biophys. Acta 947, 207-246]. Enzyme is distributed among the reverse-micelle domains and it expresses a catalytic constant for each one of them. The overall activity is calculated taking into account the volume in which enzyme is solubilized, and expressed as a function of the whole volume (V). The characteristic parameters of reverse micelles, omega 0 (= [H2O]/[surfactant]) and theta (= % water, v/v), were investigated as modulators of enzymic activity. Three basic patterns of modulation by omega 0 were found depending on which domain the enzyme expressed the highest catalytic constant. Combinations of those basic patterns lead to other modulation types that can be found experimentally, such as superactivation. Other combinations predict behaviour patterns not described to date, such as superinhibition. Dependence of catalytic activity on theta was only stated at omega 0 values around a critical value, which coincides with the appearance of free water.  相似文献   

6.
Patatin is a family of glycoproteins that accounts for 30-40% of the total soluble protein in potato (Solanum tuberosum) tubers. This protein has been reported not only to serve as a storage protein, but also to exhibit enzymic activity. By using a baculovirus system to express protein from the patatin cDNA clone pGM01, it was unambiguously shown that the patatin coded by this DNA has lipid acyl hydrolase and acyltransferase activities. The enzyme is active with phospholipids, monoacylglycerols and p-nitrophenyl esters, moderately active with galactolipids, but is apparently inactive with di- and tri-acylglycerols.  相似文献   

7.
Patatin, the most abundant protein in the storage parenchyma cells of potato (Solanum tuberosum L.) tubers, is a vacuolar glycoprotein that consists of a number of closely related polypeptides and is encoded by a large gene family. To analyse the glycosylation pattern and the nature of the glycans on a single patatin polypeptide in a heterologous tissue we introduced a single chimaeric patatin gene into tobacco (Nicotiana tabacum L.) and studied its product in leaves. Patatin isolated from the leaves of transgenic tobacco plants is glycosylated at asparagine (Asn)60, and Asn90, but the third glycosylation site (Asn202) has no glycan. The two glycans are typical small complex glycans with xylose, fucose, mannose and N-acetylglucosamine in a ratio 1:1:3:2, the same ratio as found on patatin isolated from potato tubers. Expression of patatin in tobacco leaves was accompanied by the correct processing of the signal peptide, and the proper targeting of the glyco-protein to the vacuoles of mesophyll cells.Abbreviations Asn asparagine - ConA concanavalin A - EndoH endoglycosidase H - Fuc fucose - GlcNAc N-acetylglucosamine - HPLC high-performance liquid chromatography - Man mannose - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl-sulfate - Ser serine - TFMS trifluoromethanesulfonic acid - Thr threonine - Xyl xylose  相似文献   

8.
9.
Expanded bed adsorption for recovery of patatin from crude potato juice   总被引:2,自引:0,他引:2  
An expanded bed adsorption process was used to isolate patatin possessing esterase activity, from a crude juice of potato tubers. Patatin is the major storage protein of potato tubers and is released in ample amounts in the processing effluent during starch milling. We employed mixed mode affinity resins, where the binding depends primarily on the pH, and is almost independent of the ionic strength. From a library of mixed mode chemistries involving both charged and hydrophobic functions, we screened for ligands with binding specificity for patatin. The dynamic binding capacity of two high density (1.45–1.5 g ml-1) patatin-binding agarose-glass resins in response to change of linear velocity (85–230 cm h-1) was tested in packed (25 ml) and expanded (250 ml) column modes. The column operation included a loading step at low expansion; H/Ho~1.2. Adsorption from crude juice at pH 7.5, retained patatins up to a breakthrough level of 50%. The eluate fraction at pH 3.5, now effectively stripped from the pigments, provided a 2.5-fold enzyme enrichment and produced 4 g protein per cycle. Column productivity was 122 kAU L-1 h-1. The study, using potato juice as model feedstock, demonstrated the feasibility of expanded bed-recovery of potentially valuable proteins from plant biomass.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

10.
Characteristics of tyrosinase in AOT-isooctane reverse micelles   总被引:1,自引:0,他引:1  
Isooctane-AOT-H(2)O is a suitable system for studying enzyme behavior in organic solvents. Tyrosinase was able to catalyze a well-known reaction in aqueous medium: oxidation of 4-methylcatechol to yield 4-methyl-o-benzoquinone. This reaction was studied using the preceding ternary system with adequate amounts of each component to make up reverse micelles. 4-Methyl-o-benzoquinone stability was demonstrated in isooctane even at alkaline pH values. Apparent K(m) and V(max) were similar to those in water, but substrate inhibition was more evident. The pH and temperature appear to be shifted toward high and low values, respectively. Characteristic parameters of reverse micelles, omega(0) (= H(2)O/AOT) and percentage of H(2)O (v/v), were investigated. The results obtained showed that the steady-state rate varies either with omega(0) or with percentage of H(2)O. The variation observed with omega(0) showed an optimal value while an increase in percentage of H(2)O can lead to decreased or increased activity depending on substrate concentration.  相似文献   

11.
A Cytosolic Phospholipase A2 from Potato Tissues Appears to Be Patatin   总被引:3,自引:0,他引:3  
Phospholipase (PL) A2 is involved in signal transduction inthe resistance reaction that is induced in potato by inoculationof an incompatible race of Phytophthora infestans, the lateblight fungus, or by treatment with fungal elicitor hyphal wallcomponents (Kawakita et al. 1993). In this study, PLA2 in thesoluble fraction from potato tuber was purified. The followingresults suggested that the enzyme was, in fact, patatin: (1)the molecular mass of the purified enzyme was 40 kDa, the sameas that of patatin; (2) the pI of the purified enzyme was approximately4.75, which corresponds to that of patatin; and (3) the amino-terminalamino acid sequence of the purified enzyme showed a high degreeof homology to that of patatin. Patatin is known as a storageprotein of the potato tuber and it has been shown to have esteraseactivity. However, other enzymatic activities and the function(s)of patatin are unknown. We investigated the PLA activities ofthe purified patatin. The PLA2 activity of the patatin was muchhigher than the PLA1 activity, even though the protein exhibitedboth activities. The PLA2 activity of the enzyme was particularlyapparent when phosphatidylcholine with linoleic acid at thesn-2 position was used as substrate. Lower activity was observedwith phosphatidylcholine with palmitic acid, oleic acid andarachidonic acid at the sn-2 position. (Received October 5, 1995; Accepted February 9, 1996)  相似文献   

12.
13.
The hydrolytic activity of a monoclonal catalytic antibody (9A8) (abzyme) with acetylcholinesterase-like activity was investigated in water-in-oil (w/o) microemulsions (reverse micelles) based on sodium bis-2-(ethylhexyl)sulfosuccinate (AOT) in isooctane, using p- and o-nitrophenylacetate (p-and o-NPA) as substrates. The dependence of the abzyme hydrolytic activity on the molar ratio of water to surfactant (w(o)) showed a bell-shaped curve, presenting a maximum at w(o)=11.1. An increase of the AOT concentration at constant w(o), resulted in a decrease of the catalytic activity suggesting a possible inhibition effect of the surfactant. The incorporation of the abzyme into the reverse micelle system caused a blue shift of the fluorescence emission maximum by a magnitude of 7-10 nm depending on the w(o) value. This result indicates that the antibody molecule, or a large part of it, is located in the aqueous microphase of the system. Kinetic studies showed that the hydrolysis of p-and o-NPA in microemulsion system as well as in aqueous solution follows Michaelis-Menten kinetics. The catalytic efficiency (k(cat)/K(m)) in w/o microemulsion was significant lower than in aqueous solution.  相似文献   

14.
We studied the effect of H(2)O(2) on the gating behavior of large-conductance Ca(2+)-sensitive voltage-dependent K(+) (K(V,Ca)) channels. We recorded potassium currents from single skeletal muscle channels incorporated into bilayers or using macropatches of Xenopus laevis oocytes membranes expressing the human Slowpoke (hSlo) alpha-subunit. Exposure of the intracellular side of K(V,Ca) channels to H(2)O(2) (4-23 mM) leads to a time-dependent decrease of the open probability (P(o)) without affecting the unitary conductance. H(2)O(2) did not affect channel activity when added to the extracellular side. These results provide evidence for an intracellular site(s) of H(2)O(2) action. Desferrioxamine (60 microM) and cysteine (1 mM) completely inhibited the effect of H(2)O(2), indicating that the decrease in P(o) was mediated by hydroxyl radicals. The reducing agent dithiothreitol (DTT) could not fully reverse the effect of H(2)O(2). However, DTT did completely reverse the decrease in P(o) induced by the oxidizing agent 5,5'-dithio-bis-(2-nitrobenzoic acid). The incomplete recovery of K(V,Ca) channel activity promoted by DTT suggests that H(2)O(2) treatment must be modifying other amino acid residues, e.g., as methionine or tryptophan, besides cysteine. Noise analysis of macroscopic currents in Xenopus oocytes expressing hSlo channels showed that H(2)O(2) induced a decrease in current mediated by a decrease both in the number of active channels and P(o).  相似文献   

15.
The enzymatic conversion of cholesterol to cholestenone by cholesterol oxidase (Brevibacterium sp.)in reversed micelles in a system composed of AOT/isooctane/water/cholesterol has been examined. The catalytic activity of the enzyme was correlated with the physicochemical properties of water in water-in-oil (w/o) microemulsion systems. In a system consisting of 3 wt % AOT in isooctane, reversed micelles started to form as the [H(2)O]/[AOT] (e.g., the w(0)) ratio increased above 4-5. The formation of reversed micelles with a core of neat (bulk) water was verified from determinations of both the partial molar volume of water and the scissors vibration of water [with Fourier transform infrared (FTIR) spectroscopy] in the w/o microemulsion systems. A plot of enzyme activity vs. w(0) indicated that the hydration of enzyme molecules per se was not sufficient to give rise to catalytic activity. Instead, it appeared that the formation of an aqueous micellar core was necessary for full activation of the enzyme. Based on micelle size distribution analysis, it was estimated that about one micelle per one thousand contained an enzyme molecule. Since the apparent reaction rate could be markedly enhanced by increasing the enzyme/water ratio, we conclude that the number of enzyme-containing micelles was an important rate-limiting factor in the system.  相似文献   

16.
The influence of medium heterogeneity on the kinetics of the photodynamic effect on native protein lysozyme (Lyso), as well as the interaction of protein and the medium, anionic (SDS) micelles, neutral (Triton X-100) micelles and reversed micelles of AOT, were investigated at pH 8. The interaction between Lyso, Triton X-100 and SDS micelles was quantified by determining the respective associations constant (K(Lyso)). Values were 37 M(-1) for Triton X-100 and 514 M(-1) for SDS, indicating that the Lyso molecule binds Triton X-100 micelles effectively and SDS micelles even more strongly. Time-resolved phosphorescence detection (TRPD) indicates that the protein interacts with O2 (1deltag), with overall rate constants of the order of 10(8) M(-1)/S in direct micelles and 10(7) M(-1)/S in reverse micelles. Apparent reactive rate constants for eosin-sensitized photo-oxidation (singlet molecular oxygen [O2 (1deltag)]-mediated) of the protein were determined through oxygen uptake experiments for the direct micelles, while the fade in the protein fluorescence spectrum upon sensitized irradiation was used in AOT. The results indicate that the O2 (1deltag) attack on the interior of Lyso on amino acid residues, was more effective in leading to a photo-oxidative reaction in SDS and in Triton X-100 at surfactant concentrations < 1 x 10(-2) M than in a homogeneous solution. However, Lyso reactivity reached a maximum when the concentration of micelles was approximately 1 x 10(-5), the same as the protein concentration In AOT reverse micelles, the quenching rate constants decreased > 75% with respect to water. This effect can be attributed to the decrease in accessibility of the amino acid residues to O2 (1deltag).  相似文献   

17.
18.
19.
The aim of this work was to study the hydroxylation of N, N-dimethyltyramine (DMTA) by tyrosinase in the presence of hydrogen peroxide, a reaction that does not take place without the addition of the hydrogen peroxide. Some properties of this hydroxylating activity are analyzed. The kinetic parameters of mushroom tyrosinase toward hydrogen peroxide (K(m) = 0.5 mM, V(m) = 11 microM/min, V(m)/K(m) = 2.2 x 10(-2) min(-1)) and toward DMTA (K(m) = 0.3 mM, V(m) = 4.8 microM/min, V(m)/K(m) = 16 x 10(-2) min(-1)) were evaluated. There was a lag period, which was similar to the characteristic lag of monophenolase activity at the expense of molecular oxygen. The length of this lag phase decreased with increasing hydrogen peroxide concentration, and disappeared at approximately 0.5 mM H(2)O(2). However, the lag was longer with higher DMTA concentrations. The pH optimum range for this hydroxylating activity was 6.0 to 7.0. The lag also varied with pH, increasing at pH values higher than 6.7. The presence of hydrogen peroxide is necessary for the oxidation of DMTA, as is the presence of active enzyme since the reaction was completely inhibited when selective tyrosinase inhibitors were added.  相似文献   

20.
研究了兔肌乳酸脱氢酶M4(LDH)在十二胺丁酸盐(DAB)-环己反烷胶束溶液中的催化活性。发现LDH在DAB反胶束中的催化转换数(Kcat)同水溶液中的相近,LDH在DAB反胶束中的活性随增溶水量的增加而增加,随DAB浓度的增加而降低,文中还提出了LDH在DAB反胶束中的增溶方式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号