首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
A Pseudomonas sp. strain NGK1 (NCIM 5120) capable of utilizing 2-methylnaphthalene (2-MN) was immobilized in various matrices namely, polyurethane foam (PUF), alginate, agar and polyvinyl alcohol (PVA) (1.5 × 1012 c.f.u. g–1 beads). The degradation rates of 25 and 50 mM 2-MN by freely suspended cells (2 × 1011 c.f.u. ml–1) and immobilized cells in batches, semi-continuous with shaken culture and continuous degradation in a packed-bed reactor were compared. The PUF-immobilized cells achieved higher degradation of 25 and 50 mM of 2-MN than freely suspended cells and the cells immobilized in alginate, agar or PVA. The PVA- and PUF-immobilized cells could be reused for more than 30 and 20 cycles respectively, without losing any degradation capacity. The effect of dilution rates on the rate of degradation of 25 and 50 mM 2-MN with freely suspended and immobilized cells were compared in the continuous system. Increase in dilution rate increased the degradation rate only up to 1 h–1 in free cells with 25 mM 2-MN and no significant increase was observed with 50 mM 2-MN. With immobilized cells, the degradation rate increased with increase in dilution rate up to 1.5 h–1 for 25 mM and 1 h–1 for 50 mM 2-MN. These results revealed that the immobilized cell systems are more efficient than freely suspended cells for biodegradation of 2-MN.  相似文献   

2.
Three 5 l working volume fermenters were used to investigate the growth of the yeast Kluyveromyces fragilis in acid cheese whey under ambient temperature in order to assess the specific growth rate and yield, the lactose and oxygen uptake rates during the various phases of batch culture, the effect of increasing temperature on the various kinetic parameters, and the need for a cooling unit for single cell production batch systems. The initial dissolved oxygen in the medium was 5.5 mg l–1 and the pH was maintained at 4.5. The observed lag phase, specific growth rate and maximum cell number were 4 h, 0.2 h–1 and 8.4 × 108 cells ml–1, respectively. About 99% of the lactose in cheese whey was utilized within 20 h, 85% during the exponential growth phase. The specific lactose utilization rates by K. fragilis were 0.20 × 10–12, 1.457 × 10–12, 0.286 × 10–12 and 0.00 g lactose cell–1 h–1, for the lag, exponential, stationary and death phases, respectively. The dissolved oxygen concentration in the medium decreased as the cell number increased. The lowest oxygen concentration of 1.2 mg l–1 was observed during the stationary phase. The volumetric oxygen transfer coefficient was 0.41 h–1 and the specific oxygen uptake rates were 0.32 × 10–12, 2.14 × 10–12, 0.51 × 10–12 and 0.003 × 10–12 mg O2 cell–1 h–1, for the lag, exponential, stationary and death phases, respectively. The maximum temperature recorded for the medium was 33 °C, indicating that a cooling unit for batch production of single cell protein at ambient temperature is not needed for this type of bioreactor. The increase in medium temperature affected the cell growth and the lactose and oxygen uptake rates.  相似文献   

3.
Desulfurization of model and diesel oils by resting cells of Gordona sp.   总被引:2,自引:0,他引:2  
The desulfurization activity of the resting cells of Gordona sp. CYKS1 was strongly depended on harvest time and the highest value when the cells had been harvested in the early growth phase (0.12 mg sulfur g–1 cell–1 h–1). For the model oil, hexadecane containing dibenzothiophene, the specific desulfurization rate decreased as the reaction proceeded. Both the specific and the volumetric desulfurization rates were not significantly affected by the aqueous-to-oil phase ratio. The diesel oils, light gas oil and a middle distillate unit feed were desulfurized at higher rates (ca. 0.34 mg sulfur g–1 cell–1 h–1) than the model oil (0.12 mg sulfur g–1 cell–1 h–1).  相似文献   

4.
Summary Oxidation of ferrous iron by Thiobacillus ferrooxidans cells passively immobilised in polyurethane foam particles, using both repeated batches and continuous operation, was studied in a laboratory-scale reactor. Repeated batches yielded complete oxidation at higher rates than single batches, providing resident inocula for subsequent batches. In continuous operation maximum ferric iron productivities were achieved at dilution rates well above theoretical washout values. At a dilution rate of 0.31 h–1 [approximately three times the maximum specific growth rate (max)], a productivity of 1.56 kg m–3 h–1, based on total ferric iron, or 1.0 kg m–3 h–1 based on dissolved ferric iron, was achieved. In addition, cells immobilised in the foam particles retained their oxidative ability for periods of up to 6 weeks when stored in the open air and could be reused immediately.  相似文献   

5.
The accumulation of biofilm by Acetobacterium sp. during continuous culture in an upflow anaerobic filter (UAF) growing on methanol-formate was the result of space velocity and inlet concentrations of substrate and Co+2. To achieve good development of biofilm, a space velocity of 0.38 h–1, inlet substrate concentrations of 125 mM of both methanol and formate, and Co+2 at 0.16 mM were required. Cell productivities in the effluent of the UAF-reactor were about 6-fold higher than in chemostat cultures (0.20 g l–1 h–1 for UAF and 0.035 g l–1 h–1 for chemostat) (previous studies), and the maximum vitamin B12 specific concentration was 5.1 mg g cell–1.  相似文献   

6.
The modified sulfite oxidation method was adapted for estimation of the overall oxygen transfer rate in a pressure oscillating, solid-state fermenter. At 4.5 atm and 30 °C, the oxygen transfer rate reached 717 mmol kg–1 initial dry matter h–1 in this system against 37 mmol kg–1 initial dry matter h–1 in a static tray fermenter. At 30 °C and 3 atm, Azotobacter vinelandii grew on wheat straw and reached 4.7×1010 c.f.u. g–1 substrate dry matter after 36 h, while only 8.2×109 c.f.u. g–1 substrate dry matter was obtained in a static tray system.  相似文献   

7.
The inhibition of substrate and product on the growth of Klebsiella pneumoniae in anaerobic and aerobic batch fermentation for the production of 1,3-propanediol was studied. The cells under anaerobic conditions had a higher maximum specific growth rate of 0.19 h–1 and lower tolerance to 110 g glycerol l–1, compared to the maximum specific growth rate of 0.17 h–1 and tolerance to 133 g glycerol l–1 under aerobic conditions. Acetate was the main inhibitory metabolite during the fermentation under anaerobic conditions, with lactate and ethanol the next most inhibitory. The critical concentrations of acetate, lactate and ethanol were assessed to be 15, 19, 26 g l–1, respectively. However, cells grown under aerobic conditions were more resistant to acetate and lactate but less resistant to ethanol. The critical concentrations of acetate, lactate and ethanol were assessed to be 24, 26, and 17 g l–1, respectivelyRevisions requested 8 september; Revisions received 2 November 2004  相似文献   

8.
Saccharomyces cerevisiae immobilised in calcium pectate gel optimally fermented honey mash to mead with a beads/medium ratio of 1:3, at 30 °C with `Vitamon Ultra' salt as the best commercial nitrogen/nutrient source. In continuous fermentation using a two-column system, the overall ethanol production rate was 5.7 g l–1 h–1.  相似文献   

9.
The activity of a -(1-4)-xylan synthetase, a membrane-bound enzymic system, was measured in particulate enzymic preparations (1,000 g and 1,000–100,000 g pellets) obtained from homogenates of cambial cells, differentiating xylem cells and differentiated xylem cells isolated from actively growing trees of sycamore (Acer pseudoplatamus) and poplar (Populus robusta). The specific activity (nmol of xylan formed min–1 mg–1 of protein) as well as the activity calculated on a per cell basis (nmol of xylan formed min–1 cell–1) of this enzymic system, markedly increased as cells differentiate from the vascular cambium to xylem. This increase is closely correlated with the enhanced deposition of xylan occurring during the formation of secondary thickening. The possible control of xylan synthesis during the biogenesis of plant cell wall is discussed.  相似文献   

10.
Continuous ethanol fermentation by immobilized whole cells ofZymomonas mobilis was investigated in an expanded bed bioreactor and in a continuous stirred tank reactor at glucose concentrations of 100, 150 and 200 g L–1. The effect of different dilution rates on ethanol production by immobilized whole cells ofZymomonas mobilis was studied in both reactors. The maximum ethanol productivity attained was 21 g L–1 h–1 at a dilution rate of 0.36 h–1 with 150 g glucose L–1 in the continuous expanded bed bioreactor. The conversion of glucose to ethanol was independent of the glucose concentration in both reactors.  相似文献   

11.
A species-specific PCR technique to detect an oil-degrading bacterium, Corynebacterium sp. IC10, released into sand microcosms is described. PCR primers, specific to strain IC10, were designed based on 16S rRNA gene sequences and tested against both closely and distantly related bacterial strains using four primer combinations involving two forward and two reverse primers. Two sets of them were specific to the strain IC10 and Corynebacterium variabilis and one set was selected for further analysis. The PCR amplification was able to detect 1 pg template DNA of strain IC10 and 1.2×104 c.f.u. of IC10 ml wet sand–1 in the presence of 3×108 Escherichia coli cells. In non-sterile sand microcosms seeded with the strain IC10, the sensitivity of detection decreased to 9.6×105 c.f.u. ml wet sand–1. The detection sensitivity thus depends on the complexity of background heterogeneous DNA of environmental samples. The assay is suitable for detection of Corynebacterium sp. IC10 in laboratory microcosms, however, cross reaction with non-oil degrading coryneforms may prohibit its use in uncharacterized systems.  相似文献   

12.
A Pseudomonas sp. grew with nicotine optimally 3 g l–1 and at 30 °C and pH 7. Nicotine was fully degraded within 10 h. The resting cells degraded nicotine in tobacco solid waste completely within 6 h in 0.02 m sodium phosphate buffer (pH 7) at maximally 56 mg nicotine h–1 g dry cell–1.  相似文献   

13.
Zymomonas mobilis ZM4/AcR (pZB5), a mutant recombinant strain with increased acetate resistance, has been isolated following electroporation of Z. mobilis ZM4/AcR. This mutant strain showed enhanced kinetic characteristics in the presence of 12 g sodium acetate l–1 at pH 5 in batch culture on 40 g glucose, 40 g xylose l–1 medium when compared to ZM4 (pZB5). In continuous culture, there was evidence of increased maintenance energy requirements/uncoupling of metabolism for ZM4/AcR (pZB5) in the presence of sodium acetate; a result confirmed by analysis of the effect of acetate on other strains of Z. mobilis. Nomenclature m Cell maintenance energy coefficient (g g–1 h–1)Maximum overall specific growth rate (1 h–1)Maximum specific ethanol production rate (g g–1 h–1)Maximum specific total sugar utilization rate (g g–1 h–1)Biomass yield per mole of ATP (g mole–1 Ethanol yield on total sugars (g g–1)Biomass yield on total sugars (g g–1)True biomass yield on total sugars (g g–1)  相似文献   

14.
Wheat straw impregnated with a nutrient solution was used to culture Rhizobium leguminosarum. The fermentation was carried out in a periodic pressure, oscillating, solid-state fermenter. At 30 °C and 3 atm, Rhizobium leguminosarum grew to 5.3×1010 c.f.u. g–1 substrate dry matter in about 36 h, while only 1.8×1010 c.f.u. g–1 substrate dry matter was obtained in a conventional static tray fermenter.  相似文献   

15.
Candida shehatae NCL-3501 utilized glucose and xylose efficiently in batch cultures. The specific rate of ethanol production was higher with mixtures of glucose and xylose (0.64–0.83 g g–1 cells d–1) compared to that with individual sugars (0.38–0.58 g g–1 cells d–1). Although the optimum temperature for growth was 30°C, this strain grew and produced appreciable levels of ethanol at 45°C. A stable ethanol yield (0.40–0.43 g g–1 substrate utilized) was obtained between 10 g L–1 and 80 g L–1 of initial xylose concentration. Conversion efficiency was further improved by immobilization of the cells in calcium alginate beads. Free or immobilized cells ofC. shehatae NCL-3501 efficiently utilized sugars present in rice straw hemicellulose hydrolysate, prepared by two different methods, within 48 h. Ethanol yields of 0.45 g g–1 and 0.5 g g–1 from autohydrolysate, and 0.37 g g–1 from acid hydrolysate were produced by free and immobilized cells, respectively.  相似文献   

16.
Growth kinetics ofSaccharomyces cerevisiae in glucose syrup from cassava starch and sugarcane molasses were studied using batch and fed-batch cultivation. The optimum temperature and pH required for growth were 30°C and pH 5.5, respectively. In batch culture the productivity and overall cell yield were 0.31 g L–1 h–1 and 0.23 g cells g–1 sugar, respectively, on glucose syrup and 0.22 g L–1 h–1 and 0.18 g cells g–1 sugar, respectively, on molasses. In fed-batch cultivation, a productivity of 3.12 g L–1 h–1 and an overall cell yield of 0.52 g cells g–1 sugar in glucose syrup cultivation and a productivity of 2.33 g L–1 h–1 and an overall cell yield of 0.46 g cells g–1 sugar were achieved in molasses cultivation by controlling the reducing sugar concentration at its optimum level obtained from the fermentation model. By using an on-line ethanol sensor combined with a porous Teflon® tubing method in automating the feeding of substrate in the fed-batch culture, a productivity of 2.15 g L–1 h–1 with a yield of 0.47 g cells g–1 sugar was achieved using glucose syrup as substrate when ethanol concentration was kept at a constant level by automatic control.  相似文献   

17.
Glucose repressed xylose utilization inCandida tropicalis pre-grown on xylose until glucose reached approximately 0–5 g l–1. In fermentations consisting of xylose (93 g l–1) and glucose (47 g l–1), xylitol was produced with a yield of 0.65 g g–1 and a specific rate of 0.09 g g–1 h–1, and high concentrations of ethanol were also produced (25 g l–1). If the initial glucose was decreased to 8 g l–1, the xylitol yield (0.79 g g–1) and specific rate (0.24 g g–1 h–1) increased with little ethanol formation (<5 g l–1). To minimize glucose repression, batch fermentations were performed using an aerobic, glucose growth phase followed by xylitol production. Xylitol was produced under O2 limited and anaerobic conditions, but the specific production rate was higher under O2 limited conditions (0.1–0.4 vs. 0.03 g g–1 h–1). On-line analysis of the respiratory quotient defined the time of xylose reductase induction.  相似文献   

18.
Methyl mercury uptake in free cells and different immobilizates of the cyanobacteriumNostoc calcicola has been examined. The general growth of the immobilized cyanobacterial cells could be negatively correlated with methyl mercury uptake. Alginate spheres proved most efficient in terms of uptake rate (0.48 nmol mg protein–1 min–1, 10 min) and total bioaccumulation (10.71 nmol mg protein–1, 1 h) with a bioconcentration factor of 3.3×103. Alginate biofilms showed a faster methyl mercury accumulation rate (0.83 nmol mg protein–1 min–1, 10 min) with a saturation of 10.28 nmol mg protein–1 reached within only 30 min (bioconcentration factor, 3.1×103). Foam preparations with a slow initial uptake approximated biofilms but were characterized by a lower bioconcentration factor (2.8×103). Free cells, in comparison, maintained the initial slow rate of uptake (0.62 nmol mg protein–1 min–1, 10 min), saturating at 30 min (8.81 nmol mg protein–1), and the resultant lowest bioconcentration factor (2.7×103). Cell ageing (30 days) brought a drastic reduction (3-fold) in organomercury uptake by free cells while alginate spheres maintained the same potential. Foam preparations of the same age showed a significant improvement in methyl mercury uptake followed by only a marginal decline in alginate biofilms. Data are discussed in the light of the physiological efficiency and longevity of immobilized cells.  相似文献   

19.
Summary A system for continuous culture of the hyperthermophilic archaeum Pyrococcus furiosus in the absence of elemental sulphur has been developed. An all-glass gas-lift bioreactor was used to provide high mass transfer at low shear forces, whilst eliminating the potential for corrosion. Steady-state cell densities of P. furiosus were found to increase with higher inert gas flow rates, reaching a maximum in this system with 0.5 vol. vol–1 min–1 of nitrogen (N2). N2 permitted higher cell densities than the other inert gases tested (argon, helium and sulphur hexafluoride) under equivalent conditions. At 0.5 vol. vol–1 min–1 of N2 a cell density in excess of 3 × 109 ml–1 could be maintained indefinitely at a dilution rate of 0.2 h–1. Higher dilution rates gave progressively lower steady-state cell densities. Teh biomass production was maximal, however, at a dilution rate of 0.4 h–1. At this dilution rate the bioreactor was able to generate more than 1.5 g wet weight of cells h–1 l–1 culture volume.Correspondence to: N. Raven  相似文献   

20.
Biofilms are a natural form of cell immobilization that result from microbial attachment to solid supports. Biofilm reactors with polypropylene composite-supports containing up to 25% (w/w) of various agricultural materials (corn hulls, cellulose, oat hulls, soybean hulls or starch) and nutrients (soybean flour or zein) were used for ethanol production. Pure cultures ofZymomonas mobilis, ATCC 31821 orSaccharomyces cerevisiae ATCC 24859 and mixed cultures with either of these ethanol-producing microorganisms and the biofilm-formingStreptomyces viridosporus T7A ATCC 39115 were evaluated. An ethanol productivity of 374g L–1 h–1 (44% yield) was obtained on polypropylene composite-supports of soybean hull-zein-polypropylene by usingZ. mobilis, whereas mixed-culture fermentations withS. viridosporus resulted in ethanol productivity of 147.5 g L–1 h–1 when polypropylene composite-supports of corn starch-soybean flour were used. WithS. cerevisiae, maximum productivity of 40 g L–1 h–1 (47% yield) was obtained on polypropylene composite-supports of soybean hull-soybean flour, whereas mixed-culture fermentation withS. viridosporus resulted in ethanol productivity of 190g L–1 h–1 (35% yield) when polypropylene composite-supports of oat hull-polypropylene were used. The maximum productivities obtained without supports (suspension culture) were 124 g L–1 h–1 and 5 g L–1 h–1 withZ. mobilis andS. cerevisiae, respectively. Therefore, forZ. mobilis andS. cerevisiae, ethanol productivities in biofilm fermentations were three- and eight-fold higher than suspension culture fermentations, respectively. Biofilm formation on the chips was detected by weight change and Gram staining of the support material at the end of the fermentation. The ethanol production rate and concentrations were consistently greater in biofilm reactors than in suspension cultures.This is Journal Paper No. J-16356 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa. Project No. 3253  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号