首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structural organization of the first optic ganglion (lamina) of the cockroach (Periplaneta americana) was investigated by the use of light and electron microscopy. Each compound eye of the cockroach is composed of up to 2000 visual units (ommatidia) of the fused rhabdom type. The ommatidia themselves consist of eight receptor cells which terminate as axons in either the first or second optic ganglion. Three different short visual fibre types end in two separate strata in the lamina, and one long fibre type ends in the second optic ganglion. Monopolar second-order neurons with wide field branching patterns in the middle stratum of the first synaptic region have postsynaptic contacts with short visual fibres. Horizontal fibre elements with branching patterns at different levels of the lamina apparently form three horizontal plexuses with presynaptic and/or postsynaptic connections to first- and secondorder neurons. The lack of well-organized fibre cartridges containing a constant number of first and second order neurons in each fascicle and the presence of only unistratified wide field monopolar cells could represent, as compared to other insect orders, a primitive stage in the development of the first optic ganglion.  相似文献   

2.
Summary The gross structure and neuronal elements of the first optic ganglion of two crabs, Scylla serrata and Leptograpsus variegatus, are described on the basis of Golgi (selective silver) and reduced silver preparations. Of the eight retinula cells of each ommatidium, seven end within the lamina, while the eighth cell sends a long fibre to the external medulla. Five types of monopolar neurons are described, three types of large tangential fibres, and one fibre which may be centrifugal. The marked stratification of the lamina is produced by several features. The main synaptic region, the plexiform layer, is divided by a band of tangential fibres; the short retinula fibres end at two levels in the plexiform layer; and two types of monopolar cells have arborisations confined to the distal or proximal parts of the plexiform layer. The information presently available concerning the retina-lamina projection in Crustacea is examined. Some of the implications of retina and lamina structure are discussed in conjunction with what is known about their electrophysiology.  相似文献   

3.
Summary The arrangement of first and second order neurons in an optic cartridge and the topographical relationships of the second order neurons within a cartridge and to groups of surrounding cartridges have been analyzed in the visual system of the bee, Apis mellifera, from light and electron microscope studies on Golgi preparations. At the level of the monopolar cell body layer, the nine retinula cell fibres of each ommatidium, the six short visual fibres arranged in a circle surrounding the three long visual fibres, become cartridges as a consequence of the appearance of the second order neurons (L-fibres) which join the R-fibre bundles. Two of the four different L-fibre types, L-1 and L-2, remain together in the centre of the cartridge throughout the lamina. The axons of the L-3 and L-4 fibres, however, have their position integrated into the circle formed by the endings of the short visual fibres. On the basis of further examination of light and especially electron microscopical Golgi material, the different L-fibres can be classified into four types which appear in each cartridge. The clear stratification in the first synaptic region (A, B and C) seems to be the best criterion for a morphological classification since such a classification necessarily also includes a functional basis. According to a naming system based on the position of the lateral processes, L-fibres with side branches in strata A, B and C are called L-1 fibres. Fibres with lateral processes in strata A and B are L-2 fibres; monopolar cell fibres with branches only in the second stratum B are L-fibres of type 3; and all monopolar cells with branches only in stratum C are called L-4 fibres. In addition to the branching pattern covering only the parent cartridge, two of the four fibre types (L-2 and L-4) have long collaterals reaching neighbouring cartridges: L-2 in stratum A and L-4 in stratum C. These collaterals presumably form a substrate for lateral interactions.  相似文献   

4.
On the basis of Golgi preparations the neuronal elements of the lamina ganglionaris (first synaptic region of the visual system) of the firefly. Phausis splendidula L., are described. Of the set of 8 retinula fibres that originate from each ommatidium of the compound eye, at least 6 terminate in the esternal plexiform layer. At least one, probably two, retinula fibres per ommatidium penetrate this layer to end in the medulla, via the first optic chiasma. Five types (m1-m5) of monopolar cells can be distinguished. Only two of these, m1 and m3 have dendritic fields limited to one column of the lamina mosaic; all other monopolar cells have larger fields of up to 45 mum diameter. m2 and m4 have various field spreads in different strata of the external plexiform layer. m5 has process in only one stratum of the external plexiform layer. Medulla-to-lamina cells with arborisations associated with only a single column of the lamina mosaic were not observed; medulla-to-lamina cells whose fields coincide with the various strata of the external plexiform layer were found, however. The present observations are briefly compared with those made on another beetle, Hoplia farinosa L. Comparisons with other species of insects, and the relationship between structure of the eye and structure of the lamina are also discussed.  相似文献   

5.
Each neural unit (cartridge) in the first optic ganglion (lamina) of the nocturnal bee Megalopta genalis contains nine receptor cell axons (6 short and 3 long visual fibres), and four different types of first-order interneurons, also known as L-fibres (L1 to L4) or lamina monopolar cells. The short visual fibres terminate within the lamina as three different types (svf 1, 2, 3). The three long visual fibres pass through the lamina without forming characteristic branching patterns and terminate in the second optic ganglion, the medulla. The lateral branching pattern of svf 2 into adjacent cartridges is unique for hymenopterans. In addition, all four types of L-fibres show dorso-ventrally arranged, wide, lateral branching in this nocturnal bee. This is in contrast to the diurnal bees Apis mellifera and Lasioglossum leucozonium, where only two out of four L-fibre types (L2 and L4) reach neighbouring cartridges. In M. genalis, L1 forms two sub-types, viz. L1-a and L1-b; L1-b in particular has the potential to contact several neighbouring cartridges. L2 and L4 in the nocturnal bee are similar to L2 and L4 in the diurnal bees but have dorso-ventral arborisations that are twice as wide. A new type of laterally spreading L3 has been discovered in the nocturnal bee. The extensive neural branching pattern of L-fibres in M. genalis indicates a potential role for these neurons in the spatial summation of photons from large groups of ommatidia. This specific adaptation in the nocturnal bee could significantly improve reliability of vision in dim light. B.G. is grateful for travel awards from the Royal Physiographic Society, the Per Westlings Fond, the Foundation of Dagny and Eilert Ekvall and the Royal Swedish Academy of Sciences. E.J.W. acknowledges the receipt of a Smithsonian Short-Term Research Fellowship and thanks the Swedish Research Council, the Crafoord Foundation, the Wenner–Gren Foundation and the Royal Physiographic Society of Lund for their ongoing support. W.T.W. was supported by general research funds from the Smithonian Tropical Research Institute  相似文献   

6.
The Lamina ganglionaris (first optic neuropile) of the decapod crustacean Pandalus borealis has its optic cartridges (synaptic compartments) arranged in horizontal rows. Each optic cartridge contains seven receptor axon terminals and the branching axis fibres of five monopolar second order neurons. Four types of monopolar neurons are classified. Their cell bodies are arranged in two layers. The inner layer contains the cell bodies of exclusively one of these types, and each cartridge is invaded by two neurons of this neuron type (type M 1:a and M 1:b). The outer layer contains the cell bodies of the remaining three types (M 2, M3 and M4). One gives rise to a large radially branched axis fibre in the centre of the cartridge. The other two have wide branches which may make inter-cartridge contacts, one proximally and the other distally in the plexiform layer, which is clearly bistratified. The receptor axons terminate in two levels corresponding to these strata. Two sets of tangenital fibres form networks in the proximal and the mid-portion of the lamina. Both networks have fibres with primary branches in the vertical plane and secondary branches in the horizontal plane. The fibres of the networks are derived from axons that pass from the second optic neuropile, the medulla externa.  相似文献   

7.
Each visual unit (ommatidium) of the compound eye of the honey bee contains nine retinula cells, six of which end as axons in the first synaptic ganglion, the lamina, and three in the second optic ganglion, the medulla. A technique allowing light- and electron microscopy to be performed on the same silver-impregnated sections has made it possible to follow all types of retinula axons of one ommatidium to their terminals in order to study the shape of the terminal branches with their position in the cartridge. 1. The axons of retinula cells 1-6 (numbered according to Menzel and Snyder, 1974) end as three different types of short visual fibres (svf) in the lamina; the axons of retinula cells 7-9 run through the lamina to terminate in the medulla and are known as long visual fibres (lvf). Retinula cells of each type are identified by the location of their cell bodies and by the direction of their microvilli. The retinula cells 1 and 4 (group I according to Gribakin, 1967) end as svf type 1 with three tassel-like branches in stratum B of the first synaptic region. The pair of cells 3, 6 and the pair 2, 5 (group II) end in the first synaptic region in stratum A. Cells 3 and 6 have forked endings, svf type 2, whereas cells 2 and 5 have tapered endings, svf type 3. The remaining retinula cells 7, 8 and 9 have long fibres. Nos. 7 and 8 (group III) have tapered endings and are termed lvf types 1 and 2, respectively. The 9th cell is the lvf type 3 with a highly branched ending. 2. The nine axons in the bundle from one ommatidium have relative positions which do not change from the proximal retina to the monopolar cell body layer. 3. By following silver-stained retinula cells and their corresponding axons, it is possible to describe mirror-image arrangements of fibres in the axon bundles in different parts of the eye. This correlation of numbered retinula cells with specific axon types, together with the highly organized pattern in an axon bundle, allows the correlation between histological and physiological findings on polarization and colour perception.  相似文献   

8.
Summary The lamina ganglionaris of the superposition eye of Cloeon dipterum is composed of separate optic cartridges arranged in a hexagonal pattern. Each optic cartridge consists of one central, radially branched monopolar cell (Li) surrounded by a crown of seven retinula cell terminals and two more unilaterally branched monopolar cells (La1/La2) situated close together outside the cartridge. Projections to neighbouring cartridges have not been observed.In most cases, synaptic contacts could be seen between a presynaptic retinula cell and more than two other postsynaptic profiles, which belong to monopolar cells or sometimes to glial cells.Seven retinula cell fibers of one ommatidium pass in a bundle through the basement membrane, run into their respective cartridges without changing orientation and terminate at approximately equal levels in the lamina. Long visual fibers with endings in the medulla are not visible in the superposition eye lamina, but are present in the lateral apposition eye. The relationship between the behaviour of the animal, optic mechanisms of the superposition eye and the structure of the lamina is discussed.  相似文献   

9.
Summary Neuronal elements, i.e. first and second order neurons, of the first optic ganglion of three waterbugs, N. glauca, C. punctata and G. lacustris, are analyzed on the basis of light and electron microscopy.Eight retinula cell axons, leaving each ommatidium, disperse to different cartridges as they enter the laminar outer plexiform layer. Such a pattern of divergence is one of the conditions for neuronal superposition; it is observed for all three species of waterbugs. The manner in which the receptors of a single bundle of ommatidia split of within the lamina, whereby information from receptors up to three or five horizontal rows away can converge upon the same cartridge, differs among the species. Six of the eight axons of retinula cells R1-6, the short visual fibers end at different levels within the bilayered lamina, whereas the central pair of retinula cells R7/8, the long visual fibers, run directly through the lamina to a corresponding unit of the medulla. Four types of monopolar cells L1–L4 are classified; their branching patterns seem to be correlated to the splitting and termination of retinula cell axons. The topographical relationship and synaptic organization between retinula cell terminals and monopolar cells in the two laminar layers are identified by examination of serial ultrathin sections of single Golgi-stained neurons.An attempt is made to correlate some anatomical findings, especially the neuronal superposition, to results from physiological investigations on the hemipteran retina.  相似文献   

10.
Summary The nine receptor cells examined in each ommatidium of the butterfly Papilio aegeus aegeus can be named according to their positional orientation across the fused rhabdom. Six of them end as short visual fibres (svf) in the second stratum of the lamina, whereas the remaining three retinula cells (lvf) pass together with the lamina fibres (L-fibres) the first optic ganglion and the outer chiasma to end in the three most distal layers of the second optic ganglion, the medulla. The organization of the retinula-cell axons within the pseudocartridge and the cartridge remains almost uniform throughout the first optic ganglion. Five L-fibres, which have their origin in the fenestrated layer (FL), join each laminar cartridge before entering the neuropil of the first optic region. Four of these L-fibres (L-1, L-2, L-3 and L-4) could be definitely located and characterized using Golgi-stained light- and electron-microscopic techniques. Whereas L-1 and L-3 show a lateral branching pattern reaching only fibres of the same cartridge, L-2 and L-4 have long collaterals interconnecting several neighbouring cartridges in a characteristic pattern. Serial sections of silver-impregnated retinula-cell axons as well as L-fibres were investigated for their synaptic connectivity patterns between and within these fibres. These cellular interactions and possible information processing are discussed.  相似文献   

11.
The apposition compound eyes of gonodactyloid stomatopods are divided into a ventral and a dorsal hemisphere by six equatorial rows of enlarged ommatidia, the mid-band (MB). Whereas the hemispheres are specialized for spatial vision, the MB consists of four dorsal rows of ommatidia specialized for colour vision and two ventral rows specialized for polarization vision. The eight retinula cell axons (RCAs) from each ommatidium project retinotopically onto one corresponding lamina cartridge, so that the three retinal data streams (spatial, colour and polarization) remain anatomically separated. This study investigates whether the retinal specializations are reflected in differences in the RCA arrangement within the corresponding lamina cartridges. We have found that, in all three eye regions, the seven short visual fibres (svfs) formed by retinula cells 1–7 (R1–R7) terminate at two distinct lamina levels, geometrically separating the terminals of photoreceptors sensitive to either orthogonal e-vector directions or different wavelengths of light. This arrangement is required for the establishment of spectral and polarization opponency mechanisms. The long visual fibres (lvfs) of the eighth retinula cells (R8) pass through the lamina and project retinotopically to the distal medulla externa. Differences between the three eye regions exist in the packing of svf terminals and in the branching patterns of the lvfs within the lamina. We hypothesize that the R8 cells of MB rows 1–4 are incorporated into the colour vision system formed by R1–R7, whereas the R8 cells of MB rows 5 and 6 form a separate neural channel from R1 to R7 for polarization processing.This research was supported by the Swiss National Science Foundation (PBSKB-104268/1), the Australian Research Council (LP0214956) and the American Air Force (AOARD/AFOSR) (F62562-03-P-0227).  相似文献   

12.
Summary The gross structure as well as the neuronal and non-neuronal components of the lamina ganglionaris of the locust Schistocerca gregaria are described on the basis of light- and electron-microscopical preparations of Golgj (selective silver) and ordinary histological preparations. The array of optic cartridges within the lamina neuropile — their order and arrangement — and the composition of the cartridges are described. There are six types of monopolar neurons: three whose branches reach to other cartridges and three whose branches are confined to their own cartridges. Retinula axons terminate either in the lamina or the medulla neuropiles. There are three types of centrifugal neurons, two types of horizontal neuron, as well as glia and trachea in the lamina neuropile. The development of the lamina neuropile is described in terms of developing monopolar and centrifugal axons, growing retinula fibres, and composition of the developing optic cartridges.MSN was supported in part by a Fulbrights-Hays Scholarsship. We are grateful to the Science Research Council for its grant to PMJS.  相似文献   

13.
The nine receptor cells in each ommatidium of the worker bee end as six short visual fibres in the lamina and as three long visual fibres in the medulla. Behavioural and physiological evidence for regional variation in spectral sensitivity prompted observations on the morphology of the visual units. The distribution, branching pattern, diameter and the arrangement of axonal protusions of the characteristic receptor-cell axons were studied in various regions of the lamina. The six short visual fibres and two of the long visual fibres in each laminar cartridge are uniform over the total eye surface. Only the receptor axons of the ninth cell a UV and polarised light-sensitive cell, show obvious regional variation. In view of the regional constancy in morphology of eight of the nine receptor-cell axons, the regional variations in spectral sensitivity demand either functional subdivision of morphologically indistinguishable photoreceptors (e.g., content of different visual pigments) or a highly complex connectivity pattern of their axons in the first optic ganglion.  相似文献   

14.
The present work reports on a neuroanatomical study of the butterfly Pararge aegeria (Lepidoptera : Satyridae) focusing on the lamina ganglionaris underlying two different regions of the retina of the compound eye: the dorsal rim area and the large dorsal region. No differences between both lamina regions, concerning the structure of the cartridges and the morphology of the identified neurons, could be detected. After passing the basement membrane, the visual cell axons are organized in retinotopic bundles (pseudocartridges), in which the axons of the 9 visual cells (V1 and 5, D2, 4, 6, 8, H3 and 7, B9) are arranged in the same way as in the retina. In the pseudocartridge there are no synaptic contacts. Before entering the lamina cartridge, the bundles rotate 90 °. The cartridges are joined by the fibres of 4 monopolar cells (L1, L2, L3 and L4), which could be identified and located inside the lamina cartridges in serial EM-sections. Golgi impregnations revealed the morphology of these fibres. Thus, the regional specialization of the retina (dorsal rim area and large dorsal region) does not seem to be reflected at the level of the first visual neuropil. Additionally, the cartridges of both lamina regions were investigated qualitatively for synaptic contacts among fibres. In addition to monadic chemical synapses and multiple contact synapses with presynaptic ribbons, cell contacts are also facilitated by invaginations and bridges. These cellular interactions and their functional implications are discussed.  相似文献   

15.
Panorpa larvae possess stemmata (lateral ocelli), which have the structure of compound eyes, and stemma lamina and stemma medulla neuropils. A distinct lobula neuropil is lacking. The stemma neuropils have a columnar organization. They contain lamina monopolar cells, and both short and long visual fibers. All the identified larval monopolar neurons have radially arranged dendrites along the entire depth of the lamina neuropil and a single terminal arborization within the medulla (L1/L2-type). The terminals of visual fibers have short spiny lateral projections. Long fibers possess en passant synapses within the lamina. The same principles of organization of first and second order visual neuropils are found in Panorpa imagines. In contrast to the larvae, a lobula neuropil is present. Adults have monopolar cells of the L1-type that are similar to the L1-neurons found in Diptera. The columnar organization, the presence of short and long visual fibers, and lamina monopolar neurons are thus features common to both visual systems, viz., the larval (stemmata) and the imaginal (compound eyes).  相似文献   

16.
Summary Retinal bundles, connecting the retina of the octopus to the ipsilateral optic lobe, contain both retinal photoreceptor axons that terminate in the optic lobe and centrifugal axons whose cell bodies lie within the lobe. Staining axonal elements in proximal stubs of individual retinal bundles by cobalt diffusion and subsequent sulphide treatment reveals the topographic relationship between afferent terminals and centrifugal cell bodies. At the outer border of the plexiform layer, stained terminal bags (photoreceptor axon enlargements), an indicator of photoreceptor terminal spread within this layer, overlap stained centrifugal cell bodies located within the inner granule layer. The details of this overlap indicate a dorsoventral representation of each retinal bundle within the optic lobe cortex.  相似文献   

17.
The neuronal types and patterns in the visual system of the species Artemia salina and Daphina magna have been studied with the Golgi method and electron microscopy. The lamina contains five classes of neurons: photoreceptor axons, monopolar, centrifugal, tangential and amacrine neurons. The terminals of the receptor axons are distributed in two (A. salina) or three (D. magna) layers. The dilated terminals have an extensive and wide array of fine branches. One axon from each ommatidium bypasses the lamina and terminates in the medula in A. salina. A. salina has four types of monopolar neurons, two of which are stratified, whereas in D. magna only two types are found, one of which is bistratified. Tangential T-neurons connect the lamina with the protocerebrum. D. magna has in addition one tangential T-neuron connecting both the lamina and the medulla with the protocerebrum. In both species monopolar-type centrifugal neurons connect the medulla and the lamina, whereas that of A. salina has a wide laminar distribution. Both species also have amacrine cells in the lamina. The medulla contains, besides those shared with the lamina, transmedullary neurons (two types in A. salina), amacrine cells and neurons originating in the protocerebrum. "Cartridge"-type synaptic compartments are lacking in the investigated species, although a periodic arrangement is discernible in the distal portion of the lamina of A. salina. The receptors from three types of specialized contacts in Artemia, one of which involves a dyad. D. magna has only one-to-one synapses. Neurosecretory fibres are absent in A. salina.  相似文献   

18.
The visual system of the larval tiger beetle (Cicindela chinensis) consists of six (two large, two mediumsized, and two small) stemmata on either side of the head, and an underlying neuropil mass. Each stemma exhibits a corneal lens and an underlying rhabdom layer. Retinular cells extend single proximal axons into the neuropil mass. The neuropil mass has a flattened heart-shape, and consists of two juxtaposed identical structures, each being a neuropil complex of each of the two large stemmata. The complex consists of lamina and medulla neuropils. Most retinular axons terminate in the lamina neuropil. Axons of two types of lamina monopolar neurons descend parallel to each other into the lamina neuropil. Moreover, each lamina neuropil contains a single giant monopolar neuron. Possible centrifugal processes and tangential neurons also occur. Lamina monopolar axons descend straight into the medulla neuropil. Medulla neurons spread fan-shaped dendrites distally in the medulla neuropil and send single axons toward the protocerebrum. These data are discussed with respecct to the unique visual behavior of this larva and in comparison with other insect visual systems.  相似文献   

19.
Damulewicz M  Pyza E 《PloS one》2011,6(6):e21258
In the first optic neuropil (lamina) of the fly's visual system, two interneurons, L1 and L2 monopolar cells, and epithelial glial cells show circadian rhythms in morphological plasticity. These rhythms depend on clock gene period (per) and cryptochrome (cry) expression. In the present study, we found that rhythms in the lamina of Drosophila melanogaster may be regulated by circadian clock neurons in the brain since the lamina is invaded by one neurite extending from ventral lateral neurons; the so-called pacemaker neurons. These neurons and the projection to the lamina were visualized by green fluorescent protein (GFP). GFP reporter gene expression was driven by the cry promotor in cry-GAL4/UAS-GFP transgenic lines. We observed that the neuron projecting to the lamina forms arborizations of varicose fibers in the distal lamina. These varicose fibers do not form synaptic contacts with the lamina cells and are immunoreactive to the antisera raised against a specific region of Schistocerca gregaria ion transport peptide (ITP). ITP released in a paracrine way in the lamina cortex, may regulate the swelling and shrinking rhythms of the lamina monopolar cells and the glia by controlling the transport of ions and fluids across cell membranes at particular times of the day.  相似文献   

20.
Single Golgi impregnated visual cells and their axons were treated from the retina to the first synaptic layer (lamina) in serial electron microscopic sections. This analysis of the retina-lamina projection was undertaken in the upper dorso-median eye region which is known to be involved in the perception of polarized light. For identification of individual visual cells and their fibres a numbering system was used which relates the number of each of the nine visual cells within one retinula to the transverse axis of the rhabdom (TRA) (Fig. 1). Because of the twist of the retinula along its course to the basement membrane (Fig. 6), individual visual cells change their position relative to any eye-constant co-ordinate system. Each axon bundle originating from one 9-celled retinula performs a 180 degrees-rotation before entering the lamina (Fig. 2). The direction of rotation (clockwise or counter-clockwise), which may differ even between adjacent bundles, is related to the two mirror-image types of rhabdoms in the corresponding retinulae and is opposite to the direction of rhabdom twist. Thus, even in small groups of the in total 5500 ommatidia in the eye of the bee, two types of retinulae exist which can be characterized by the geometry of the rhabdoms as well as by the direction of rotation of the retinulae and the axon bundles (Fig. 1). Visual cell numbers 1, 2, and 9, the microvilli of which are oriented in the direction of TRA, form three long visual fibres terminating in the second synaptic layer (medulla). In cross sections of laminar pseudocartridges they appear as the smallest fibre profiles arranged in a symmetrical line of the pseudocartridge bundle (=the transverse axis of the pseudocartridge; TPA) (Fig. 4). The remaining six fibres (cell numbers 3-8) only project to the lamina (short visual fibres; svf's). Two of them (cell numbers 5 and 6), which are the largest cells in the proximal retinula and have their microvilli perpendicularly arranged to TRA (Fig. 1), give rise to the two thickest axons of the underlaying pseudocartridge. In cross sections, t he connecting line of these two axons is orthogonally oriented to TPA (Fig. 5). A model was developed, in which all long visual fibres originate from ultraviolet receptors and in which the polarization sensitivity of the basal ninth cell is enhanced by the twist of the rhabdom. Finally, this model is discussed in light of behavioral experiments revealing the ultraviolet receptors as the only cells involved in the detection of polarized light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号