首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, binding interactions of artemisinin (ART) and dihydroartemisinin (DHA) with human serum albumin (HSA) and bovine serum albumin (BSA) were investigated thoroughly to illustrate the conformational variation of serum albumin. Experimental results indicated that ART and DHA bound strongly with the site I of serum albumins via hydrogen bond (H-bond) and van der Waals force and subsequently statically quenched the intrinsic fluorescence of serum albumins through concentration-dependent manner. The quenching abilities of two drugs on the intrinsic fluorescence of HSA were much higher than the quenching abilities of two drugs on the intrinsic fluorescence of BSA. Both ART and DHA, especially DHA, caused the conformational variation of serum albumins and reduced the α-helix structure content of serum albumins. DHA with hydrophilic hydroxyl group bound with HSA more strongly, suggesting the important roles of the chemical polarity and the hydrophilicity during the binding interactions of two drugs with serum albumins. These results reveal the molecular understanding of binding interactions between ART derivatives and serum albumins, providing vital information for the future application of ART derivatives in biological and clinical areas.  相似文献   

2.
Pistolozzi M  Bertucci C 《Chirality》2008,20(3-4):552-558
Drug binding to albumins from different mammalian species was investigated to disclose evidence of species-dependent stereoselectivity in drug-binding processes and affinities. This aspect is important for evaluating the reliability of extrapolating distribution data among species. The circular dichroism (CD) signal induced by drug binding to the albumins [human serum albumin (HSA), bovine serum albumin (BSA), rat serum albumin (RSA), and dog serum albumin (DSA)] were measured and analyzed. The binding of selected drugs and metabolites to HSA significantly differed from the binding to the other albumins in terms of affinity and conformation of the bound ligands. In particular, phenylbutazone, a marker of site one on HSA, showed a higher affinity for binding to BSA with respect to RSA, HSA, and DSA, respectively. In the case of diazepam, a marker of site two on HSA, the affinity decreased in order from HSA to DSA, RSA, and BSA. The induced CD spectra were similar in terms of energy and band signs, suggesting almost the same conformation for the bound drug to the different albumins. Stereoselectivity was high for the binding of ketoprofen to HSA and RSA. A different sign was observed for the CD spectra induced by the drug to the two albumins because of the prevalence of a different conformation of the bound drug. Interestingly, the same induced CD spectra were obtained using either the racemic form or the (S)-enantiomer. Finally, significant differences were observed in the affinity of bilirubin, being highest for BSA, then decreasing for RSA, HSA, and DSA. A more complex conformational equilibrium was observed for bound bilirubin.  相似文献   

3.
An ultrafiltration technique was used to study stripping by glycine of the first copper and zinc ion equivalents bound by bovine, dog, and rat serum albumins at pH 7.5. Affinity of dog serum albumin for copper was poorer than for the other albumins, consistent with the absence in the former albumin of the copper binding site present at the amino terminus of the latter albumins. Affinities of all three proteins for zinc were similar, suggesting that the albumin amino terminus is not the primary zinc ion binding site.  相似文献   

4.
Serum albumin, a protein naturally abundant in blood plasma, shows remarkable ligand binding properties of numerous endogenous and exogenous compounds. Most of serum albumin binding sites are able to interact with more than one class of ligands. Determining the protein‐ligand interactions among mammalian serum albumins is essential for understanding the complexity of this transporter. We present three crystal structures of serum albumins in complexes with naproxen (NPS): bovine (BSA‐NPS), equine (ESA‐NPS), and leporine (LSA‐NPS) determined to 2.58 Å (C2), 2.42 Å (P61), and 2.73 Å (P212121) resolutions, respectively. A comparison of the structurally investigated complexes with the analogous complex of human serum albumin (HSA‐NPS) revealed surprising differences in the number and distribution of naproxen binding sites. Bovine and leporine serum albumins possess three NPS binding sites, but ESA has only two. All three complexes of albumins studied here have two common naproxen locations, but BSA and LSA differ in the third NPS binding site. None of these binding sites coincides with the naproxen location in the HSA‐NPS complex, which was obtained in the presence of other ligands besides naproxen. Even small differences in sequences of serum albumins from various species, especially in the area of the binding pockets, influence the affinity and the binding mode of naproxen to this transport protein. Proteins 2014; 82:2199–2208. © 2014 Wiley Periodicals, Inc.  相似文献   

5.
The interaction of Cibacron Blue F3G A-Sepharose 4B with several serum albumins was studied. Although all albumins used were fond to bind to this adsorbent, human serum albumin was bound to a far greater extent than were the others. From the results of competition experiments and n.m.r. studies of Cibacron Blue and/or bilirubin binding to human serum albumin it is proposed that the mechanism of the interaction between human serum albumin and cibacron Blue is consistent wit Cibacron Blue binding to bilirubin-binding sites. In contrast with these findings with human serum albumin, there is little or no interaction of Cibacron Blue and the bilirubin-binding sites of albumins from rabbit, horse, bovine or sheep sera, although some interaction occurs between Cibacron Blue and the fatty acid-binding sites of these proteins. Structural analogues of Cibacron Blue have been used to investigate the binding of albumins to these ligands.  相似文献   

6.
Although the interactions between bilirubin and serum albumin are among the most studied serum albumin-ligand interactions, the binding-site location and the participation of bilirubin-serum albumin complexes in pathological and physiological processes are under debate. In this article, we have benefited from the chiral structure of bilirubin and used CD spectroscopy to characterize the structure of bilirubin bound to human and bovine serum albumins. We determined that in a phosphate buffer at pH 7.8 there are three binding sites in both human and bovine serum albumins. While the primary binding sites in human and bovine serum albumins bind bilirubin with P- and M-helical conformations, respectively, the secondary binding sites in both albumins bind bilirubin in the P-helical conformation. We have shown that the bonding of bilirubin to the serum albumin matrix is a more favorable process than the self-association of bilirubin under the studied conditions, with a maximum of three bound bilirubins per serum albumin molecule. Although bilirubin bound to the primary binding site has attracted the most attention, the presented results have documented the impact of the secondary binding sites which are relevant in the displacement reactions between BR and drugs and in the phenomena where bilirubin plays antioxidant, antimutagenic, and anti-inflammatory roles. Chirality 00:000000, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
After a meal rich in plant products, dietary flavonols can be detected in plasma as serum albumin-bound conjugates. Flavonol-albumin binding is expected to modulate the bioavailability of flavonols. In this work, the binding of structurally different flavonoids to human and bovine serum albumins is investigated by fluorescence spectroscopy using three methods: the quenching of the albumin fluorescence, the enhancement of the flavonoid fluorescence, the quenching of the fluorescence of the quercetin-albumin complex by a second flavonoid. The latter method is extended to probes whose high-affinity binding sites are known to be located in one of the two major subdomains (warfarin and dansyl-L-asparagine for subdomain IIA, ibuprofen and diazepam for subdomain IIIA). Overall, flavonoids display moderate affinities for albumins (binding constants in the range 1-15 x 10(4) M(-1)), flavones and flavonols being most tightly bound. Glycosidation and sulfation could lower the affinity to albumin by one order of magnitude depending on the conjugation site. Despite multiple binding of both quercetin and site probes, it can be proposed that the binding of flavonols primarily takes place in subdomain IIA. Significant differences in affinity and binding location are observed for the highly homologous HSA and BSA.  相似文献   

8.
Human serum albumin has been modified with 2,4,6-trinitrobenzenesulphonic acid and picryl chloride in low ratios of reagents/albumin. The derivatives have been investigated by spectrophotometry and by thin layer chromatography of the hydrolysates in order to assess the specificity of the reagents. The same reaction conditions were used to modify albumin previously complexed with bilirubin in the ratio of 1:1. The affinity of bilirubin to the modified albumins was estimated by an improved perozidase method. It is concluded that TNBS and picryl chloride react almost quantity with epsilon-amino groups of lysine on the albumin molecule. The results also suggest that at least on TNBS reactive amino group and at least one picryl chloride reactive amino group are located in or near the high-affinity bilirubin binding site.  相似文献   

9.
The interaction of the serum albumin binding domain from streptococcal protein G to serum albumins isolated from different species was investigated. The highest affinity to protein G was found for serum albumins from rat, man and mouse. A medium binding was found for serum albumin from rabbit, cow, hen and horse, while little or no binding was found for ovalbumin and serum albumin from sheep. The interaction between human serum albumin and protein G showed rapid binding kinetics at the temperatures 7, 22 and 37 degrees C. Furthermore, the ability of different serum albumins to function as affinity ligands when covalently coupled to a solid support was tested. The results show that protein G derivatives could be eluted at different pH depending on the origin of the serum albumin. It was also possible to elute the streptococcal receptor efficiently from the mouse serum albumin matrix with human serum albumin. Based on these results, a gene fusion system for recovery of sensitive proteins by affinity purification is described, where high yields are obtained under mild elution conditions.  相似文献   

10.
The role of internal lysine residues of different serum albumins, viz. from human, rabbit, goat, sheep and buffalo (HSA, RbSA, GSA, SSA and BuSA), in conformational stability and bilirubin binding was investigated after blocking them using acetylation, succinylation and guanidination reactions. No significant change in the secondary structure was noticed whereas the tertiary structure of these proteins was slightly altered upon acetylation or succinylation as revealed by circular dichroism (CD), fluorescence and gel filtration results. Guanidination did not affect the native protein conformation to a measurable extent. Scatchard analysis, CD and absorption spectroscopic results showed marked reductions (5-21-fold decrease in K(a) and approximately 50% decrease in the CD Cotton effect intensity) in the affinity of albumins for bilirubin upon acetylation or succinylation whereas guanidination produced a small change. Interestingly, monosignate CD spectra of bilirubin complexed with GSA, SSA and BuSA were transformed to bisignate CD spectra upon acetylation or succinylation of internal lysine residues whereas spectra remained bisignate in the case of bilirubin bound to acetylated or succinylated derivatives of HSA and RbSA. When probed by CD spectroscopy, bilirubin bound to acetylated or succinylated derivatives of GSA and SSA rapidly switched over to native albumins and not vice versa. These results suggested that salt linkage(s) contributed by internal lysine residue(s) play an important role in the high-affinity binding of bilirubin to albumin and provide stability to the native three-dimensional conformation of the bound pigment. Chloroform severely decreased the intensity of both positive and negative CD Cotton effects of bilirubin complexed with acetylated or succinylated derivatives of all albumins which otherwise increased significantly in the case of bilirubin complexed with native and guanidinated albumin derivatives, except the bilirubin-RbSA complex which showed a small decrease in intensity. These results suggest that the presence of salt linkage(s) in bilirubin-albumin complexation is(are) crucial to bring about effective and efficient stereochemical changes in the bound pigment by co-binding of chloroform which seems to have at least one conserved binding site on these albumins that is shared with bilirubin.  相似文献   

11.
Surface-enhanced Raman spectroscopy was employed in this work to study the interaction between the antitumoral drug emodin and human serum albumin (HSA), as well as the influence of fatty acids in this interaction. We demonstrated that the drug/protein interaction can take place through two different binding sites which are probably localized in the IIA and IIIA hydrophobic pockets of HSA and which correspond to Sudlow's I and II binding sites, respectively. The primary interaction site of this drug seems to be site II in the defatted albumin. Fatty acids seem to displace the drug from site II to site I in nondefatted HSA, due to the high affinity of fatty acids for site II. The drug interacts with the protein through its dianionic form in defatted HSA (when placed in the site II) and through its neutral form in the site I of nondefatted albumins.  相似文献   

12.
The interaction of several serum albumins with chelated (iminodiacetate, IDA) and immobilized (agarose-IDA) metal ions, Co2+, Ni2+, Cu2+ and Zn2+, was studied. There was no retention of human, bovine, porcine, murine and avian albumins on IDA-Zn(II) and IDA-Co(II) columns. However, all albumins studied, i.e., those of: man, cow, pig, dog, rabbit, rat, mouse, chicken and pigeon were retained on IDA-Cu(II) columns, and all except dog albumin were retained also on IDA-Ni(II). The recognition of albumins by chelated and immobilized transition metals seems to be related to an affinity for the imidazole side chains. It is postulated that one to three imidazoles is involved in this interaction, under the employed experimental conditions (pH 7.0; 1 M sodium chloride). There is no evidence for any significant contribution of tryptophan or cysteine (Cys 34) residues to the chromatographic event. The retention of defatted albumin and albumin oligomers (human), on IDA-Cu(II) columns was not significantly different from that of non-defatted albumin or albumin monomer, respectively.  相似文献   

13.
After a meal rich in plant products, dietary flavonols can be detected in plasma as serum albumin-bound conjugates. Flavonol–albumin binding is expected to modulate the bioavailability of flavonols. In this work, the binding of structurally different flavonoids to human and bovine serum albumins is investigated by fluorescence spectroscopy using three methods: the quenching of the albumin fluorescence, the enhancement of the flavonoid fluorescence, the quenching of the fluorescence of the quercetin–albumin complex by a second flavonoid. The latter method is extended to probes whose high-affinity binding sites are known to be located in one of the two major subdomains (warfarin and dansyl-l-asparagine for subdomain IIA, ibuprofen and diazepam for subdomain IIIA). Overall, flavonoids display moderate affinities for albumins (binding constants in the range 1–15×104 M−1), flavones and flavonols being most tightly bound. Glycosidation and sulfation could lower the affinity to albumin by one order of magnitude depending on the conjugation site. Despite multiple binding of both quercetin and site probes, it can be proposed that the binding of flavonols primarily takes place in subdomain IIA. Significant differences in affinity and binding location are observed for the highly homologous HSA and BSA.  相似文献   

14.
A photophysical study on the binding interaction of an efficient cancer cell photosensitizer, norharmane (NHM), with model transport proteins, bovine serum albumin (BSA) and human serum albumin (HSA), has been performed using a combination of steady-state and time-resolved fluorescence techniques. The emission profile undergoes a remarkable change upon addition of the proteins to the buffered aqueous solution of the photosensitizer. The polarity-dependent prototropic transformation is responsible for the remarkable sensitivity of this biological fluorophore to the protein environments. A marked increase in the fluorescence anisotropy in the proteinous environments indicates that the albumin proteins introduce motional restriction on the drug molecule. Light has been thrown on the denaturing action of urea on the probe-bound protein. The probable binding site of the drug in proteins has also been assessed from the combination of denaturation study, micropolarity measurement, and fluorescence resonance energy transfer (FRET) study. The present study suggests that the stability of serum albumins is enhanced upon binding with the drug.  相似文献   

15.
The interaction of pinostrobin (PS), a multitherapeutic agent with serum albumins of various mammalian species namely, goat, bovine, human, porcine, rabbit, sheep and dog was investigated using fluorescence quench titration and competitive drug displacement experiments. Analysis of the intrinsic fluorescence quenching data revealed values of the association constant, Ka in the range of 1.49 – 6.12 × 104 M−1, with 1:1 binding stoichiometry. Based on the PS–albumin binding characteristics, these albumins were grouped into two classes. Ligand displacement studies using warfarin as the site I marker ligand correlated well with the binding data. Albumins from goat and bovine were found to be closely similar to human albumin on the basis of PS binding characteristics.  相似文献   

16.
Methoxypolyethylene glycols of 1900 and 5000 daltons have been attached covalently to bovine serum albumin using cyanuric chloride as the coupling agent. When sufficient polymer is attached, the modified bovine serum albumin appears to lose its immunogenicity in the rabbit and, on intramuscular or intravenous injection, elicits antibodies neither to itself nor to native bovine serum albumin. It does not react with antibodies raised against native bovine serum albumin. Bovine serum albumin to which methoxypolyethylene glycol has been attached exhibits a blood circulating life in the rabbit rather similar to native bovine serum albumin, except that it is not removed from circulation by the eventual development of antibodies. Modified bovine serum albumins which had been iodinated with 125I, or prepared with [14C]cyanuric chloride, were injected intravenously in rabbits. Both labels appeared almost quantitatively in the urine after 30 days. The modified bovine serum albumins showed substantial changes in properties, such as solubility, electrophoretic mobility in acrylamide gel, ion exchange chromatography, and sedimentation, as compared with the unmodified protein.  相似文献   

17.
There has been considerable controversy over the existence of serum albumin in fish. One of the physiological functions of albumin is to bind free fatty acids. This characteristic was used to screen the plasma of seven species of salmonids. Each species contains a protein fraction that (i) binds palmitate, (ii) has a molecular mass similar to that of human serum albumin, and (iii) is one of the most rapidly migrating proteins when salmonid plasma is subjected to anodal polyacrylamide gel electrophoresis. We conclude therefore, that salmonids have serum albumins that are homologous to the serum albumin of higher vertebrates.  相似文献   

18.
The interaction of 12 phenoxyacetic acid derivatives with human and serum albumin as well as with egg albumin was studied by charge-transfer reversed-phase (RP) thin-layer chromatography (TLC) and the relative strength of interaction was calculated. Each phenoxyacetic acid derivative interacted with human and bovine serum albumins whereas no interaction was observed with egg albumin. Stepwise regression analysis proved that the lipophilicity of the derivatives exert a significant impact on their capacity to bind to serum albumins. This result supports the hypothesis that the binding of phenoxyacetic acid derivatives to albumins may involve hydrophobic forces occurring between the corresponding apolar substructures of these derivatives and the amino acid side chains.  相似文献   

19.
Exogenous drugs that are used as antidote against chemotheray, inflammation or viral infection, gets absorbed and interacts reversibly to the major serum transport protein i.e. albumins, upon entering the circulatory system. To have a structural guideline in the rational drug designing and in the synthesis of drugs with greater efficacy, the binding mechanism of an antineoplastic and anti-inflammatory drug Nordihydroguaiaretic acid (NDGA) with human and bovine serum albumins (HSA & BSA) were examined by spectroscopic and computational methods. NDGA binds to site II of HSA with binding constant (Kb) ~105 M-1 and free energy (ΔG) ~ -7.5 kcal.mol-1. It also binds at site II of BSA but with lesser binding affinity (Kb) ~105 M-1 and ΔG ~ -6.5 kcal.mol-1. The negative value of ΔG, ΔH and ΔS for both the albumins at three different temperatures confirmed that the complex formation process between albumins and NDGA is spontaneous and exothermic. Furthermore, hydrogen bonds and hydrophobic interactions are the main forces involved in complex formation of NDGA with both the albumins as evaluated from fluorescence and molecular docking results. Binding of NDGA to both the albumins alter the conformation and causes minor change in the secondary structure of proteins as indicated by the CD spectra.  相似文献   

20.
Stereoselective binding of benzodiazepine and coumarin drugs to serum albumin from human and six mammalian species were studied by chiral chromatographic techniques. The applied methods were affinity chromatography on the albumins immobilized on Sepharose 4B, high-performance liquid chromatography (HPLC) separation on columns based on human serum albumin (HSA) and bovine serum albumin (BSA), and chiral HPLC analysis of ultrafiltrates of solutions containing the racemic drug and the native protein. Substantial differences in preferred configurations and conformations were detected among the species. The binding stereoselectivity of the 2,3-benzodiazepine drug, tofisopam, in human, is opposite to that in all other species. In the binding of 1,4-benzodiazepines, dog albumin is very similar to HSA. Highly preferred binding of (S)-phenprocoumon was found with dog albumin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号