首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We evaluated (1) the responses of two co-occurring tropical tree species, Heliocarpuspallidus and Caesalpiniaeriostachys, to changes in light, (2) the ability of these species to search for and exploit a fertilized soil patch, (3) the relationship between the capacity to forage for a fertilized patch and the capacity to respond to changes in light availability and (4) how the relationship between light and nutrient acquisition influenced the competitive interactions between these species. Plants of the two species were exposed to a factorial combination of high (H) and low (L) light intensity and fertilized (+Fp) and unfertilized (−Fp) nutrient patches for 50 days. Half of the plants from H were then transferred to L (HL treatment), and half of the plants from L were transferred to H (LH). The remaining plants were kept in their original light condition and grown for another 50 days. Plants were grown in these light and patch treatments alone (one plant per pot) and in interspecific competition (one plant per species resulting in two plants per pot). Both species exploited fertilized patches by increasing root biomass and length in the patch. This enhanced plant productivity and growth rate mainly under LH and HH conditions for Heliocarpus and the HH condition for Caesalpinia). When plants in the HH light environment were grown with an unfertilized patch, plant biomass and relative growth rates (RGRs) were even lower than␣under the LL light environment [(HH–Fp)<LL]. However, the combined activity of shoot and roots when above- and below-ground resources were temporally and spatially heterogeneous influenced plant productivity and growth rate. The benefit from light increase (LH) was reduced when grown with an unfertilized patch. Larger reductions in root biomass, length and density in the patch, and in plant biomass and RGR, were exhibited by Heliocarpus than by Caesalpinia. These results suggest a close relationship between root foraging and light capture, where the benefit of the exploitation of the patch will be reflected in whole-plant benefit, if enough light is captured above-ground. In addition, the results suggest a change in the expected plant responses to light due to heterogeneity in soil nutrients, even though the fertilized patch was only a small proportion of the total soil volume. Leaf characteristics such as specific leaf area responded only to light conditions and not to patchily distributed nutrients. Root characteristics responded more strongly to nutrient heterogeneity. Competition modified the pattern of foraging under both high- and low-light conditions in Heliocarpus by 50 days, and the ability to forage for a fertilized patch under LL after 100 days of growth for Caesalpinia. Even though plant growth and productivity are greatly reduced under low-light conditions (HL and LL), competition modifies the ability of species to forage for a rich patch (especially for the fast-growing species Heliocarpus). Received: 24 November 1997 / Accepted: 15 June 1998  相似文献   

2.
Game-theoretic models predict that there is an ESS height for the plant population to which all individual plants should converge. To attain this conclusion, the neighborhood factors were assumed to be equal for all the individual plants, and the spatial pattern and size variation of population were left without consideration, which is clearly not right for the scenario of plant competition. We constructed a spatially-explicit, individual-based model to explore the impacts of spatial structure and size variation on individual plant’s height and population’s height hierarchies under the light competition. The monomorphic equilibrium of height that all the individual plants will converge to only exists for a population growing in a strictly uniform spatial pattern with no size variation. When the spatial pattern of the population is non-uniform or there’s size variation among individual plants, the critical heights that individual plants will finally reach are different from each other, and the height inequality at the end of population growth will increase when the population’s spatial pattern’s degree of deviation from uniform and population’s size variation increase. Our results argue strongly for the importance of spatial pattern and neighborhood effects in generating the diversity of population’s height growth pattern.  相似文献   

3.
Helms SE  Hunter MD 《Oecologia》2005,145(2):196-203
In the attempt to use results from small-scale studies to make large-scale predictions, it is critical that we take into account the greater spatial heterogeneity encountered at larger spatial scales. An important component of this heterogeneity is variation in plant quality, which can have a profound influence on herbivore population dynamics. This influence is particularly relevant when we consider that the strength of density dependence can vary among host plants and that the strength of density dependence determines the difference between exponential and density- dependent growth. Here, we present some simple models and analyses designed to examine the impact of variable plant quality on the dynamics of insect herbivore populations, and specifically the consequences of variation in the strength of density dependence among host plants. We show that average values of herbivore population growth parameters, calculated from plants that vary in quality, do not predict overall population growth. Furthermore, we illustrate that the quality of a few individual plants within a larger plant population can dominate herbivore population growth. Our results demonstrate that ignoring spatial heterogeneity that exists in herbivore population growth on plants that differ in quality can lead to a misunderstanding of the mechanisms that underlie population dynamics.  相似文献   

4.
Meier CL  Bowman WD 《Oecologia》2008,158(1):95-107
Phenolics can reduce soil nutrient availability, either indirectly by stimulating microbial nitrogen (N) immobilization or directly by enhancing physical protection within soil. Phenolic-rich plants may therefore negatively affect neighboring plant growth by restricting the N supply. We used a slow-growing, phenolic-rich alpine forb, Acomastylis rossii, to test the hypothesis that phenolic-rich carbon (C) fractions stimulate microbial population growth and reduce plant growth. We generated low-molecular-weight (LMW) fractions, tannin fractions, and total soluble C fractions from A. rossii and measured their effects on soil respiration and growth of Deschampsia caespitosa, a fast-growing, co-dominant grass. Fraction effects fell into two distinct categories: (1) fractions did not increase soil respiration and killed D. caespitosa plants, or (2) fractions stimulated soil respiration and reduced plant growth and plant N concentration while simultaneously inhibiting root growth. The LMW phenolic-rich fractions increased soil respiration and reduced plant growth more than tannins. These results suggest that phenolic compounds can inhibit root growth directly as well as indirectly affect growth by reducing pools of plant available N by stimulating soil microbes. Both mechanisms illustrate how below-ground phenolic effects may influence the growth of neighboring plants. We also examined patterns of foliar phenolic concentrations among populations of A. rossii across a natural productivity gradient (productivity was used as a proxy for competition intensity). Concentrations of some LMW phenolics increased significantly in more productive sites where A. rossii is a competitive equal with the faster growing D. caespitosa. Taken together, our results contribute important information to the growing body of evidence indicating that the quality of C moving from plants to soils can have significant effects on neighboring plant performance, potentially associated with phytoxic effects, and indirect effects on soil biogeochemistry.  相似文献   

5.

According to the action spectrum of photosynthesis, photosynthetic efficiency is highest for red light. However, long-term growth with only red light leads to unfavorable changes in plant morphology, decrease in photosynthetic capacity and plant productivity. Detailed mechanisms behind these changes are still poorly understood. We studied the effects of narrow-band red (RL) and blue (BL) LED lighting on the morphology and photosynthesis of barley (Hordeum vulgare L.) seedlings at 9 days old, when energy for plant growth comes mostly from the endosperm, and light has a mainly morphogenic effect on plant growth. Plants grown with white fluorescent lamps (WL) were used as a control. At this developmental stage, light spectrum had small but significant effects on most morphometric parameters, which may become more prominent as the plant grows. These effects were more pronounced in RL-grown plants and were similar to the ‘shade-avoidance response’, which is unusual as in nature it occurs when the fraction of red light in the spectrum is low. RL-grown plants also had impaired photosynthetic photochemical efficiency (as assessed by PAM-fluorometry and leaf absorption). BL-grown plants had a stronger similarity to control plants in their morphology and photosynthetic characteristics than RL-grown plants; however, they had higher NPQ and different NPQ induction kinetics than WL- and RL-grown plants. Our results suggest that photoregulation of plant morphology and photosynthesis evolutionarily adapted to natural light is miscoordinated in narrow-band LED light. We discuss possible reasons for this miscoordination and for the formation of observed phenotypes on the level of photoreceptors.

  相似文献   

6.
Ion channels and the transduction of light signals   总被引:9,自引:1,他引:8  
Studies of biological light‐sensing mechanisms are revealing important roles for ion channels. Photosensory transduction in plants is no exception. In this article, the evidence that ion channels perform such signal‐transducing functions in the complex array of mechanisms that bring about plant photomorphogenesis will be reviewed and discussed. The examples selected for discussion range from light‐gradient detection in unicellular algae to the photocontrol of stem growth in Arabidopsis. Also included is some discussion of the technical aspects of studies that combine electrophysiology and photobiology.  相似文献   

7.
1. Arbuscular mycorrhiza (AM), the association of AM fungi and plant roots, may alter morphological and physiological attributes of aboveground plant parts and thereby influence plant‐associated organisms such as herbivores and their natural enemies, predators and parasitoids. 2. The interactions between AM and the players of aboveground tri‐trophic systems have mainly been considered in isolation from each other. The effects of AM on aboveground herbivore–carnivore population dynamics and the consequences to plant fitness are unknown. 3. We explored AM‐induced compensatory mechanisms for AM‐promoted proliferation of the herbivorous spider mite, Tetranychus urticae Koch, on whole bean plants, Phaseolus vulgaris L. Vegetative and reproductive plant growth, AM fungal colonisation levels, and mite densities were assessed on spider mite‐infested plants colonised or not by the AM fungus Glomus mosseae Nicol. & Gerd, and harbouring the natural enemy of the spider mites, the predatory mite Phytoseiulus persimilis Anthias‐Henriot or not. 4. AM symbiosis modulated the aboveground tri‐trophic system to the fitness benefit of the plant. AM‐increased plant productivity outweighed the fitness decrease due to AM‐promoted herbivory: at similar vegetative growth, mycorrhizal plants produced more seeds than non‐mycorrhizal plants. 5. AM‐increased spider mite population levels were compensated for by enhanced population growth of the predators and increased plant tolerance to herbivory. 6. AM‐enhanced predator performance looped back to the AM fungus and stabilised its root colonisation levels, providing the first experimental evidence of a mutually beneficial interaction between AM and an aboveground third trophic level natural enemy.  相似文献   

8.
Artificial light at night has a wide range of biological effects on both plants and animals. Here, we review mechanisms by which artificial light at night may restructure ecological communities by modifying the interactions between species. Such mechanisms may be top-down (predator, parasite or grazer controlled), bottom-up (resource-controlled) or involve non-trophic processes, such as pollination, seed dispersal or competition. We present results from an experiment investigating both top-down and bottom-up effects of artificial light at night on the population density of pea aphids Acyrthosiphon pisum in a diverse artificial grassland community in the presence and absence of predators and under low-level light of different spectral composition. We found no evidence for top-down control of A. pisum in this system, but did find evidence for bottom-up effects mediated through the impact of light on flower head density in a leguminous food plant. These results suggest that physiological effects of light on a plant species within a diverse plant community can have detectable demographic effects on a specialist herbivore.  相似文献   

9.
The joint effects of multiple herbivores on their shared host plant have received increasing interest recently. The influence of herbivores on population dynamics of their host plants, especially the relative roles of different types of damage, is, however, still poorly understood. Here, we present a modelling approach, including both deterministic and stochastic matrix modelling, to be used in estimating fitness effects of multiple herbivores on perennial plants. We examined the effects and relative roles of two specialist herbivores, a pre-dispersal seed predator, Euphranta connexa, and a leaf-feeding moth, Abrostola asclepiadis, on the population dynamics and long-term fitness of their shared host plant, a long-lived perennial herb Vincetoxicum hirundinaria (Asclepiadaceae). We collected demographic data during 3 years and combined these data with the effects of natural levels of herbivory measured from the same individuals. We found that both seed predation and leaf herbivory reduced population growth of V. hirundinaria, but only very high damage levels changed the growth trend of the vigorously growing study populations from positive to negative. Demographic modelling indicated that seed predation had a greater impact on plant population growth than leaf herbivory. The effect of leaf herbivory was weaker and diminished with increasing level of seed predation. Evaluation of individual fitness components, however, suggested that leaf herbivory contributed more strongly to host plant fitness than seed predation. Our results emphasize that understanding the effects of a particular herbivore on plant population dynamics requires also knowledge on other herbivores present in the system, because the effect of a particular type of herbivory on plant population dynamics is likely to vary according to the intensity of other types of herbivory. Furthermore, evaluating herbivore impact from using individual fitness components does not necessarily reflect the long-term effects on total plant fitness.  相似文献   

10.
A model for the dynamics of a single species population of plants is proposed and its use demonstrated by the analysis of a simple example. The model incorporates the effects of microsite variation by allowing for individual differences in growth and death rates within each season. We demonstrate that an increase in the variance in individual growth rates may increase both the chances that a plant population will persist and the equilibrium size of that population. We also show that even if size-dependent death is occurring, it may not have a significant effect on the shape of the size frequency distribution. An extension of the model to multispecies communities of plants suggests an experimental procedure to determine whether competition is responsible for excluding a particular plant species from a community that appears otherwise to be suitable. A more detailed analysis of the model for a two-species community produces conditions for competitive coexistence reminiscent of those from the Lotka-Volterra competition equations. Another extension suggests that selection will favor those genotypes that maximize the product of germination probability and mass of seeds produced, if survivorship and growth are not substantially altered. Finally, an analog to r- and K-selection theory for animal populations is developed. Selection in low-density populations favors increasing growth rate, and in high-density populations favors minimizing the effect of neighbors on one's own growth rate.  相似文献   

11.
Nonnative plant species commonly occur along roadsides, and populations are often assumed to invade by spread along the road axis. To distinguish between the function of roadsides as movement corridors and as habitat, nonnative plant species were surveyed along roads in deciduous forest sites in southeastern Ohio, USA. The importance of road proximity was tested by comparing nonnative species abundance in 100 m transects along roads with transects in undisturbed forest. Nonnative species were most abundant and most frequently observed in roadside sites in valleys. Three common species were chosen for closer scrutiny. In a seed sowing experiment roads and open sites proved to be better locations for the germination and growth of Microstegium vimineum than non-roadside and closed-canopy sites. Tussilago farfara and Rosa multiflora occurred in a small number of disjunct patches suggesting infrequent arrival in the sampled transects. Both species were strongly clustered at scales consistent with diffusive spread by vegetative growth and short-range seed dispersal. Comparisons of distributions parallel and perpendicular to roads showed no evidence for enhanced dispersal along the road axis. Microstegium distributions were correlated with local light availability implying site saturation. Microstegium micro-distributions suggested that spread along the road axis was facilitated by movement of dormant seeds in road maintenance. Thus, roadsides appear to function as both habitat and a conduit for population expansion, with the rate of spread dependent on the life history of the individual species. These results suggest a hierarchical process of regional invasion, with different dispersal mechanisms functioning at different spatial scales.  相似文献   

12.
Populations of the two native vascular plant species on the Antarctic Peninsula have increased over the past 40 years. This increase has been attributed to improved reproductive performance resulting from regional warming and increased growing season length. However, little is known of the influence that vascular plants have on the performance of neighboring plants in developing and well-established communities. We compared the aboveground growth and reproduction of Deschampsia antarctica plants growing alone or in close proximity to neighboring plants (D. antarctica, Colobanthus quitensis, or mosses) at a young, recently colonized and an older, well-developed plant community on the Antarctic Peninsula to assess whether neighboring plants had a positive or negative effect on D. antarctica performance, and whether these effects varied from young to old communities. In both communities, tillers on D. antarctica plants near neighbors produced 48–89% fewer leaves and 49–93% fewer tillers than those on D. antarctica plants growing alone. These tillers also had relative growth rates that were 25–66% lower- and tiller-size indices that were 42–87% less than those on plants growing alone. In addition, the biomass of tillers on plants growing near neighbors was 40–91% lower than those on plants growing alone. Leaf and tiller production was generally higher in the older, more developed community than in the younger community. Our findings illustrate that vegetative growth of D. antarctica is reduced when growing in close proximity to neighboring plants, suggesting that negative plant interactions are an important constraint at our field sites.  相似文献   

13.
Thomas W. Jurik 《Oecologia》1991,87(4):539-550
Summary Plots in a naturally occurring population of giant ragweed (Ambrosia trifida L.) near Ames, Iowa, USA were left unthinned (high density,=693 plants/m2) or were thinned in early June 1989 to create low and medium densities of 10 and 50 plants/m2. Size and light environment of individual plants were measured at monthly intervals from June to September. By September, low density plants had 15 times greater biomass/plant and 30 times greater leaf area/plant than high density plants, although biomass and leaf area per unit land area decreased with decreasing density. Plants at high density allocated more biomass to stem growth, but plants at medium and low density had successively higher leaf area ratios, higher potential photosynthetic rates, higher allocation to leaves, and higher growth rates. Average light on leaves decreased with increasing density and also decreased over the growing season in the low and medium densities. The distribution of light environments of individual plants was non-normal and skewed to the left in most months, in contrast to the rightwards skew of distributions of plant size parameters. Inequality in the distributions, as measured by coefficient of variation and Gini coefficients, increased over most of the growing season. There was little effect of density on inequality of stem diameter, height, or estimated dry weight, but inequality in reproductive output greatly increased with density. There was greater inequality in number of staminate flowers produced than in number of pistillate flowers and seeds produced. Path analysis indicated that early plant size was the most important predictor of final plant size and reproductive output; photosynthesis, conductance, and light environment were also significantly correlated with size and reproduction but usually were of minor importance. Variation in growth rate apparently increased inequality in plant size at low density, whereas belowground competition and death of smaller plants may have limited increases in inequality at high density.  相似文献   

14.
The preference‐performance hypothesis predicts that insect preference should correspond to host suitability for offspring development. We studied the pattern of within‐plant preference in the aphid Sipha flava and its consequences for offspring performance on the host‐plant Sorghum halepense, regarding the role of induced responses of plants to aphid feeding. The consequences of within‐plant preference on aphid population growth and host‐plant traits were also evaluated. Our results showed that winged and wingless aphids preferred to settle on mature rather than young leaves. In contrast, aphid individual growth rate was higher on young leaves when compared with mature leaves, suggesting that the outcome of this test rejected the preference‐performance hypothesis. However, the inclusion of the factor ‘previous aphid infestation’ changed the outcome from a maladaptive choice to a neutral one. Thus, individual growth rates of S. flava increased when aphids developed on leaves that had been previously infested. Interestingly, aphid growth rate on previously infested leaves did not differ between young and mature leaves. On the other hand, aphid population reproductive rate was higher and the percentage of winged aphids lower when infestation occurred on mature rather than young leaves. Aphid infestation reduced plant and shoot biomass, and increased leaf mortality. These negative effects on plant traits related to plant fitness were greater when aphid infestation occurred on young leaves. Likewise, whereas infestation on mature leaves did not cause a significant reduction in the number of flowering plants compared with control plants, aphid infestation on young leaves did reduce the number of plants at the flowering stage. Consequently, if both the reproductive rate of aphids in the mid‐term, and host‐plant fitness are taken into account, the results indicate that aphid preference for mature leaves may be an adaptive choice, thus supporting the preference‐performance hypothesis.  相似文献   

15.
Plants bearing extrafloral nectaries (EFNs) vary the secretion of nectar between day and night, which creates turnover in the composition of interacting ant species. Daily variation in the composition of ant species foraging on vegetation is commonly observed, but its mechanisms are poorly understood. We evaluated the daily variation in nectar availability and interspecific aggressiveness between ants as possible regulatory mechanisms of the turnover in ant–plant interactions. We hypothesized that (i) plants would interact with more ant species during periods of higher secretion of nectar and that (ii) aggressive ant species would compete for nectar, creating a daily turnover of species collecting nectar. We tested this hypothesis by measuring the production of nectar during the day and night and by experimentally removing EFNs of Bionia coriacea (=Camptosema coriaceum) (Nees & Mart.) Benth. (Fabaceae: Faboideae) plants in a Brazilian savanna (Cerrado). We then compared the abundance and composition of ant species between those treatments and during the day. Our results indicate that more ant workers forage on plants during the day, when nectar was sugary, while more ant species forage at night, when aggressiveness between ant species was lower. We also detected a day/night turnover in ant species composition. Ant species foraging for nectar during the day were not the same at night, and this turnover did not occur on plants without EFNs. Both dominant ant species, diurnal Camponotus crassus (Hymenoptera: Formicidae) and nocturnal Camponotus rufipes (Hymenoptera: Formicidae), were the most aggressive species, attacking other ants in their specific periods of forage while also being very aggressive toward each other. However, this aggressiveness did not occur in the absence of nectar, which allowed non‐aggressive nocturnal ant species to forage only during the daytime, disrupting the turnover. We conclude that extrafloral‐nectar presence and interspecific aggressiveness between ants, along with other environmental factors, are important mechanisms creating turnovers in ants foraging on plants.  相似文献   

16.
Reconciling the well known benefits of shrubs for forage with environmental goals, whilst preventing their dominance, is a major challenge in rangeland management. Browsing may be an economical solution for shrubby rangelands as herbivore browsing has been shown to control juvenile shrub growth. Less convincing results have been obtained for adult plants, and long-term experiments are required to investigate the cumulative effects on adult plants. We therefore assessed the impact of different levels of browsing intensity on key demographic parameters for a major dominant shrub species (broom, Cytisus scoparius), focusing on adult plants. We assigned individual broom plants to one of three age classes: 3–5 years (young adults); 5–7 years (adults); and 7–9 years (mature adults). These plants were then left untouched or had 50% or 90% of their total edible stem biomass removed in simulated low-intensity and high-intensity browsing treatments, respectively. Morphological, survival and fecundity data were collected over a period of four years. Browsing affected the morphology of individual plants, promoting changes in subsequent regrowth, and decreasing seed production. The heavily browsed plants were 17% shorter, 32% narrower, and their twigs were 28% shorter. Light browsing seemed to control the growth of young adult plants more effectively than that of older plants. Reproductive output was considerably lower than for control plants after light browsing, and almost 100% lower after heavy browsing. High-intensity browsing had a major effect on survival causing high levels of plant mortality. We conclude that suitable browsing practices could be used to modify adult shrub demography in the management of shrub dominance and forage value.  相似文献   

17.
The abundance of greater white-fronted geese (Anser albifrons frontalis) on the Arctic Coastal Plain (ACP) of northern Alaska, USA, has more than tripled since the late 1990s; however, recent rate of annual population growth has declined as population size increased, which may indicate white-fronted geese on the ACP are approaching carrying capacity. We examined rates of gosling growth in greater white-fronted geese at 3 sites on the ACP during 2012–2014 to assist with predictions of future population trends and assess evidence for density-dependent constraints on recruitment. We marked goslings at hatch with individually coded webtags and conducted brood drives during early August to capture, measure, and weigh goslings. Annual estimates of gosling mass at 32 days old (range = 1,190–1,685) indicate that goslings had obtained >60% of asymptotic size. This rate of growth corresponds with that of other goose species and populations with access to high-quality forage and no limitations on forage availability, and is consistent with the overall increase in abundance of white-fronted geese at the ACP scale. Contrary to most previous investigations, age-adjusted mass of goslings did not decline with hatch date. Goslings grew faster in coastal areas than at inland freshwater sites. Taken together, these findings suggest forage was not limiting gosling growth rates in either ecosystem, but forage was of greater quality in coastal areas where goose foraging habitat is expanding because of permafrost subsidence. Spatial patterns of gosling growth corresponded with local-scale patterns of population density and population change; the areas with greatest rates of gosling growth were those with the greatest population density and rates of population increase. We found little evidence to suggest forage during brood rearing was limiting population increase of white-fronted geese on the ACP. Factors responsible for the apparent slowing of ACP-wide population growth are likely those that occur in stages of the annual cycle outside of the breeding grounds. Published 2021. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

18.
The effect of seed and seedling mortality on plant population dynamics depends on the degree to which the growth and reproduction of surviving individuals can compensate for the deaths that occur. To explore this issue, we sowed seeds of the annual Kummerowia stipulacea at three densities in sunken pots in the field, which contained either field soil, microwaved field soil, or microwaved field soil augmented with oospores of three Pythium species. High sowing density reduced seedling establishment and seedling size, but these effects were independent of the soil treatment. In the oospore-augmented soil, seed and seedling survival was low. The surviving plants were initially smaller but, at maturity, average plant size was greatest in the oospore-augmented soil, compared to the other treatments. Total population seed production was unaffected by soil treatment, suggesting that the effect of disease was limited to the seedling stage, with surviving plants released from intraspecific competition. To test the hypothesis that the surviving plants in the oospore-augmented soil were more disease-resistant, seeds from each of the sowing density-soil type treatments were sown in a growth chamber inoculation study. No evidence for selection for resistance was found. A second inoculation experiment revealed that oospore inoculum reduced plant numbers and mass regardless of whether field or microwaved soil was used, suggesting that results from the field experiment were not dependent on the use of microwaved soil. The findings of this study indicate that the ecological effects of disease on individual plants and on plant populations are not necessarily equivalent. Received: 13 January 1999 / Accepted: 21 September 1999  相似文献   

19.
Aim Our aim was to test for changes in growth patterns of three clonally growing plant species (Achillea millefolium, Hieracium pilosella and Hypericum perforatum) between native and invaded regions. We addressed the hypotheses that with differing important life‐history traits, invasive populations perform better than native populations, and that this expected better performance is linked to weakened trade‐offs between individual growth and sexual and clonal reproduction. Location Germany and New Zealand. Methods We conducted field surveys for the three above‐mentioned species in both native German and invasive New Zealand populations, and collected data at both population and individual levels. Results At the population level, the proportion of flowering plants, population size and population density were all higher in invasive populations. Similarly, at the individual level, the number of stolons per plant, stolon–biomass ratio and population crowdedness (local plant density in a specified area around a target plant) were significantly higher in New Zealand. Plant height did not differ between countries, and plant biomass was lower in New Zealand than in Germany for Achillea millefolium and Hypericum perforatum. These two species showed significant trade‐offs between individual growth and sexual and clonal reproduction. Achillea millefolium exhibited a weakened trade‐off in its invaded range, where the same proportion of flowering plants was sustained at much higher levels of population crowdedness than in its native range. Main conclusions The apparent invasion success of the three study species is generally due to better overall performance in their respective invaded ranges. In respect of both Achillea millefolium and Hypericum perforatum, this is driven primarily by increased vegetative reproduction. In contrast, Hieracium pilosella seems to benefit more from increased sexual reproduction in its invaded range. Shifts in trade‐offs as a general trend seem to be of minor importance.  相似文献   

20.
Interactions between large herbivores and their food supply are central to the study of population dynamics. We assessed temporal and spatial patterns in meadow plant biomass over a 23‐year period for meadow complexes that were spatially linked to three distinct populations of Roosevelt elk (Cervus elaphus roosevelti) in northwestern California. Our objectives were to determine whether the plant community exhibited a tolerant or resistant response when elk population growth became irruptive. Plant biomass for the three meadow complexes inhabited by the elk populations was measured using Normalized Difference Vegetation Index (NDVI), which was derived from Landsat 5 Thematic Mapper imagery. Elk populations exhibited different patterns of growth through the time series, whereby one population underwent a complete four‐stage irruptive growth pattern while the other two did not. Temporal changes in NDVI for the meadow complex used by the irruptive population suggested a decline in forage biomass during the end of the dry season and a temporal decline in spatial variation of NDVI at the peak of plant biomass in May. Conversely, no such patterns were detected in the meadow complexes inhabited by the nonirruptive populations. Our findings suggest that the meadow complex used by the irruptive elk population may have undergone changes in plant community composition favoring plants that were resistant to elk grazing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号