首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Srivastava AK  Sauer RT 《Biochemistry》2000,39(28):8308-8314
Structure formation and dimerization are concerted processes in the refolding of Arc repressor. The integrity of secondary structure in the transition state of Arc refolding has been investigated here by determining the changes in equilibrium stability and refolding/unfolding kinetics for a set of Ala --> Gly mutations at residues that are solvent-exposed in the native Arc dimer. At some sites, reduced stability was caused primarily by faster unfolding, indicating that secondary structure at these positions is largely absent in the transition state. However, most of the Ala --> Gly substitutions in the alpha-helices of Arc and a triple mutant in the beta-sheet also resulted in decreased refolding rates, in some cases, accounting for the major fraction of thermodynamic destabilization. Overall, these results suggest that some regions of native secondary structure are present but incompletely formed in the transition state of Arc refolding and dimerization. Consolidation of this secondary structure, like close packing of the hydrophobic core, seems to occur later in the folding process. On average, Phi(F) values for the Ala --> Gly mutations were significantly larger than Phi(F) values previously determined for alanine-substitution mutants, suggesting that backbone interactions in the transition state may be stronger than side chain interactions. Mutations causing significant reductions in the Arc refolding rate were found to cluster in the central turn of alpha-helix A and in the first two turns of alpha-helix B. In the Arc dimer, these elements pack together in a compact structure, which might serve as nucleus for further folding.  相似文献   

2.
3.
Robinson CR  Sauer RT 《Biochemistry》2000,39(40):12494-12502
A solvent-exposed Cys11-Cys11' disulfide bond was designed to link the antiparallel strands of the beta sheet both in the Arc repressor dimer and in a single-chain variant in which the Arc subunits are connected by a 15-residue peptide tether. In both proteins, the presence of the disulfide bond increased the T(m) by approximately 40 degrees C. In the single-chain background, the disulfide bond stabilized Arc by 8.5 kcal/mol relative to the reduced form, a significantly larger degree of stabilization than caused by other engineered disulfides and most natural disulfides. This exceptional stabilization arises from a modest effective concentration of the Cys11-Cys11' disulfide in the native state (71 M) and an anomalously low effective concentration in the denatured state (40 microM). Disulfide cross-linking of the two beta strands in the single-chain Arc background accelerated refolding by a factor of 170 into the sub-microsecond time scale. However, the major energetic effect of the disulfide occurs after the transition state for Arc refolding, slowing unfolding by 200 000-fold.  相似文献   

4.
Neuroserpin is a member of the serpin superfamily, and its mutants are retained within the endoplasmic reticulum of neurons as ordered polymers in association with dementia. It has been proposed that neuroserpin polymers are formed by a conformational change in the folded protein. However, an alternative model whereby polymers are formed during protein folding rather than from the folded protein has recently been proposed. We investigated the refolding and polymerization pathways of wild-type neuroserpin (WT) and of the pathogenic mutants S49P and H338R. Upon refolding, denatured WT immediately formed an initial refolding intermediate IIN and then underwent further refolding to the native form through a late refolding intermediate, IR. The late-onset mutant S49P was also able to refold to the native form through IIN and IR, but the final refolding step proceeded at a slower rate and with a lower refolding yield as compared with WT. The early-onset mutant H338R formed IR through the same pathway as S49P, but the protein could not attain the native state and remained as IR. The IRs of the mutants had a long lifespan at 4 °C and thus were purified and characterized. Strikingly, when incubated under physiological conditions, IR formed ordered polymers with essentially the same properties as the polymers formed from the native protein. The results show that the mutants have a greater tendency to form polymers during protein folding than to form polymers from the folded protein. Our finding provides insights into biochemical approaches to treating serpinopathies by targeting a polymerogenic folding intermediate.  相似文献   

5.
Valiyaveetil FI  Zhou Y  MacKinnon R 《Biochemistry》2002,41(35):10771-10777
Lipid molecules surround an ion channel in its native environment of cellular membranes. The importance of the lipid bilayer and the role of lipid protein interactions in ion channel structure and function are not well understood. Here we demonstrate that the bacterial potassium channel KcsA binds a negatively charged lipid molecule. We have defined the potential binding site of the lipid molecule on KcsA by X-ray crystallographic analysis of a complex of KcsA with a monoclonal antibody Fab fragment. We also demonstrate that lipids are required for the in vitro refolding of the KcsA tetramer from the unfolded monomeric state. The correct refolding of the KcsA tetramer requires lipids, but it is not dependent on negatively charged lipids as refolding takes place in the absence of such lipids. We confirm that the presence of negatively charged lipids is required for ion conduction through the KcsA potassium channel, suggesting that the lipid bound to KcsA is important for ion channel function.  相似文献   

6.
Protein refolding is a crucial step for the production of therapeutic proteins expressed in bacteria as inclusion bodies. In vitro protein refolding is severely impeded by the aggregation of folding intermediates during the folding process, so inhibition of the aggregation is the most effective approach to high‐efficiency protein refolding. We have herein found that electrostatic repulsion between like‐charged protein and ion exchange gel beads can greatly suppress the aggregation of folding intermediates, leading to the significant increase of native protein recovery. This finding is extensively demonstrated with three different proteins and four kinds of ion‐exchange resins when the protein and ion‐exchange gel are either positively or negatively charged at the refolding conditions. It is remarkable that the enhancing effect is significant at very high protein concentrations, such as 4 mg/mL lysozyme (positively charged) and 2 mg/mL bovine serum albumin (negatively charged). Moreover, the folding kinetics is not compromised by the presence of the resins, so fast protein refolding is realized at high protein concentrations. It was not realistic by any other approaches. The working mechanism of the like‐charged resin is considered due to the charge repulsion that could induce oriented alignment of protein molecules near the charged surface, leading to the inhibition of protein aggregation. The molecular crowding effect induced by the charge repulsion may also contribute to accelerating protein folding. The refolding method with like‐charged ion exchangers is simple to perform, and the key material is easy to separate for recycling. Moreover, because ion exchangers can work as adsorbents of oppositely charged impurities, an operation of simultaneous protein refolding and purification is possible. All the characters are desirable for preparative refolding of therapeutic proteins expressed in bacteria as inclusion bodies. Bioeng. 2011; 108:1068–1077. © 2010 Wiley Periodicals, Inc.  相似文献   

7.
Ye C  Ilghari D  Niu J  Xie Y  Wang Y  Wang C  Li X  Liu B  Huang Z 《Journal of biotechnology》2012,160(3-4):169-175
An in-depth understanding of molecular basis by which smart polymers assist protein refolding can lead us to develop a more effective polymer for protein refolding. In this report, to investigate structure-function relationship of pH-sensitive smart polymers, a series of poly(methylacrylic acid (MAc)-acrylic acid (AA))s with different MAc/AA ratios and molecular weights were synthesized and then their abilities in refolding of denatured lysozyme were compared by measuring the lytic activity of the refolded lysozyme. Based on our analysis, there were optimal MAc/AA ratio (44% MAc), M(w) (1700 Da), and copolymer concentration (0.1%, w/v) at which the highest yield of protein refolding was achieved. Fluorescence, circular dichroism, and RP-HPLC analysis reported in this study demonstrated that the presence of P(MAc-AA)s in the refolding buffer significantly improved the refolding yield of denatured lysozyme without affecting the overall structure of the enzyme. Importantly, our bioseparation analysis, together with the analysis of zeta potential and particle size of the copolymer in refolding buffers with different copolymer concentrations, suggested that the polymer provided a negatively charged surface for an electrostatic interaction with the denatured lysozyme molecules and thereby minimized the hydrophobic-prone aggregation of unfolded proteins during the process of refolding.  相似文献   

8.
The refolding of four disulfide lysozyme (at pH 5.2, 20 degrees C) involves parallel pathways, which have been proposed to merge at a near-native state. This species contains stable structure in the alpha- and beta-domains but lacks a functional active site. Although previous experiments have demonstrated that the near-native state is populated on the fast refolding pathway, its relevance to slow refolding molecules could not be directly determined from previous experiments. In this paper, we describe experiments that investigate the effect of added salts on the refolding pathway of lysozyme at pH 5.2, 20 degrees C. We show, using stopped flow tryptophan fluorescence, inhibitor binding, and circular dichroism (CD), that the rate of formation of native lysozyme on the slow refolding track is significantly reduced in solutions of high ionic strength in a manner dependent on the position of the anion in the Hofmeister series. By contrast, the rate of evolution of hydrogen exchange (HX) protection monitored by electrospray ionization mass spectrometry (ESI MS) is unchanged under the refolding conditions studied. The data show, therefore, that at high ionic strengths beta-domain stabilization and native state formation on the slow refolding pathway become kinetically decoupled such that the near-native state becomes significantly populated. Thus, by changing the energy landscape with the addition of salts new insights into the relevance of intermediate states in lysozyme refolding are revealed.  相似文献   

9.
A pressure-jump apparatus was employed in investigating the kinetics of protein unfolding and refolding. In the reaction cell, the pressure can be increased or decreased by 100-160 bar within 50-100 microseconds and then held constant. Thus, unfolding and refolding reactions in the time range from 70 microseconds to 70 s can be followed with this technique. Measurements are possible in the transition regions of thermally or denaturant-induced folding in a wide range of temperatures and solvent conditions. We used this pressure-jump method to determine the temperature dependence of the rate constants of unfolding and refolding of the cold shock protein of Bacillus subtilis and of three variants thereof with Phe --> Ala substitutions in the central beta-sheet region. For all variants, the change in heat capacity occurred in refolding between the unfolded and activated states, suggesting that the overall native-like character of the activated state of folding was not changed by the deletion of individual Phe side chains. The Phe27Ala mutation affected the rate of unfolding only; the Phe15Ala and Phe17Ala mutations changed the kinetics of both unfolding and refolding. Although the activated state of folding of the cold shock protein is overall native-like, individual side chains are still in a non-native environment.  相似文献   

10.
The unfolding and refolding kinetics of >600 single GFPmut2 molecules, entrapped in wet nanoporous silica gels, were followed by monitoring simultaneously the fluorescence emission of the anionic and neutral state of the chromophore, primed by two-photon excitation. The rate of unfolding, induced by guanidinium chloride, was determined by counting the number of single molecules that disappear in fluorescence images, under conditions that do not cause bleaching or photoinduced conversion between chromophore protonation states. The unfolding rate is of the order of 0.01 min(-1), and its dependence on denaturant concentration is very similar to that previously reported for high protein load gels. Upon rinsing the gels with denaturant-free buffer, the GFPmut2 molecules refold with rates >10 min(-1), with an apparently random distribution between neutral and anionic states, that can be very different from the preunfolding equilibrium. A subsequent very slow (lifetime of approximately 70 min) relaxation leads to the equilibrium distribution of the protonation states. This mechanism, involving one or more native-like refolding intermediates, is likely rate limited by conformational rearrangements that are undetectable in circular dichroism experiments. Several unfolding/refolding cycles can be followed on the same molecules, indicating full reversibility of the process and, noticeably, a bias of denaturated molecules toward refolding in the original protonation state.  相似文献   

11.
The folding pathway of human FKBP12, a 12 kDa FK506-binding protein (immunophilin), has been characterised. Unfolding and refolding rate constants have been determined over a wide range of denaturant concentrations and data are shown to fit to a two-state model of folding in which only the denatured and native states are significantly populated, even in the absence of denaturant. This simple model for folding, in which no intermediate states are significantly populated, is further supported from stopped-flow circular dichroism experiments in which no fast "burst" phases are observed. FKBP12, with 107 residues, is the largest protein to date which folds with simple two-state kinetics in water (kF=4 s(-1)at 25 degrees C). The topological crossing of two loops in FKBP12, a structural element suggested to cause kinetic traps during folding, seems to have little effect on the folding pathway.The transition state for folding has been characterised by a series of experiments on wild-type FKBP12. Information on the thermodynamic nature of, the solvent accessibility of, and secondary structure in, the transition state was obtained from experiments measuring the unfolding and refolding rate constants as a function of temperature, denaturant concentration and trifluoroethanol concentration. In addition, unfolding and refolding studies in the presence of ligand provided information on the structure of the ligand-binding pocket in the transition state. The data suggest a compact transition state relative to the unfolded state with some 70 % of the surface area buried. The ligand-binding site, which is formed mainly by two loops, is largely unstructured in the transition state. The trifluoroethanol experiments suggest that the alpha-helix may be formed in the transition state. These results are compared with results from protein engineering studies and molecular dynamics simulations (see the accompanying paper).  相似文献   

12.
S E Jackson  A R Fersht 《Biochemistry》1991,30(43):10436-10443
The refolding of chymotrypsin inhibitor 2 (CI2) is, at least, a triphasic process. The rate constants are 53 s-1 for the major phase (77% of the total amplitude) and 0.43 and 0.024 s-1 for the slower phases (23% of the total amplitude) at 25 degrees C and pH 6.3. The multiphase nature of the refolding reaction results from heterogeneity in the denatured state because of proline isomerization. The fast phase corresponds to the refolding of the fraction of protein that has all its prolines in a native trans conformation in the denatured state. It is not catalyzed by peptidyl-prolyl isomerase. The rate-limiting step of folding for the slower phases, however, is proline isomerization, and they are both catalyzed by peptidyl-prolyl isomerase. The slowest phase has properties consistent with a process involving proline isomerization in a denatured state. In particular, the activation enthalpy is large, 16 kcal mol-1 K-1, and the rate is independent of guanidinium chloride concentration ([GdnHCl]). In comparison, the intermediate phase shows properties consistent with a process involving proline isomerization in a partially structured state. The activation enthalpy is small, 8 kcal mol-1 K-1, and the rate has a strong dependence on [GdnHCl]. Temperature dependences of the rate constants for unfolding and for the fast refolding phase, both in the absence and in the presence of GdnHCl, were used to characterize the thermodynamic nature of the transition state and its relative exposure to solvent. The Eyring plot for unfolding is linear, indicating that there is relatively little change in heat capacity between native state and transition state.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Dragan AI  Potekhin SA  Sivolob A  Lu M  Privalov PL 《Biochemistry》2004,43(47):14891-14900
Temperature-induced reversible unfolding and refolding of the three-stranded alpha-helical coiled coil, Lpp-56, were studied by kinetic and thermodynamic methods, using CD spectroscopy, dynamic light scattering, and scanning calorimetry. It was found that both unfolding and refolding reactions of this protein in neutral solution in the presence of 100 mM NaCl are characterized by unusually slow kinetics, which permits detailed investigation of the mechanism of these reactions. Kinetic analyses show that the unfolding of this coiled coil represents a single-stage first-order reaction, while the refolding represents a single-stage third-order reaction. The activation enthalpy and entropy for unfolding do not depend noticeably on temperature and are both significantly greater than those for the folding reaction, which show a significant dependence on temperature. The activation heat capacity change for the unfolding reaction is close to zero, while it is quite significant for the folding reaction. The correlation between the activation and structural parameters obtained for the Lpp-56 coiled coil suggests that interhelical van der Waals interactions are disrupted in the transition state, which is nevertheless still compact, and water has not yet penetrated into the interface; the transition from the transient state to the unfolded state results in hydration of exposed apolar groups of the interface and the disruption of helices. The low propensity for the Lpp-56 strands to fold and associate is caused by the high number of charged groups at neutral pH. On one hand, these charges give rise to considerable repulsive forces destabilizing the helical conformation of the strands. On the other hand, they align the folded helices in parallel and in register so that the apolar sides face each other, and the oppositely charged groups may form salt links, which are important for the formation of the trimeric coiled coil. A decrease in pH, which eliminates the salt links, dramatically decreases the stability of Lpp-56; its structure becomes less rigid and unfolds much faster.  相似文献   

14.
Aminoacylase is a dimeric enzyme containing one Zn(2+) ion per subunit. The arginine (Arg)-induced unfolding of Holo-aminoacylase and Apo-aminoacylase has been studied by measurement of enzyme activity, fluorescence emission spectra and 1-anilino-8-naphthalenesulfonate (ANS) fluorescence spectra. Besides being the most alkaline amino acid, the arginine molecule contains a positively charged guanidine group, similar to guanidine hydrochloride, and has been used in many refolding systems to suppress protein aggregation. Our results showed that arginine caused the inactivation and unfolding of aminoacylase, with no aggregation during denaturation. A comparison between the unfolding of aminoacylase in aqueous and HCl (pH 7.5) arginine solutions indicated that the guanidine group of arginine had protein-denaturing effects similar to those of guanidine hydrochloride, which might help us understand the mechanism by which arginine suppresses incorrect refolding. The results showed that arginine-denatured aminoacylase could be reactivated and refolded correctly, indicating that arginine is as good a denaturant as the guanidine or urea for study of protein unfolding and refolding. Both the intrinsic fluorescence and the ANS fluorescence spectra showed that the arginine-unfolded aminoacylase formed a molten globule state in the presence of KCl, suggesting that intermediates exist during aminoacylase refolding. The results for the Apo-aminoacylase followed were similar to those for the Holo-enzyme, suggesting that Holo- and Apo-aminoacylase might have a similar unfolding and refolding pathway.  相似文献   

15.
Stopped-flow studies of the refolding of iodoacetamide-blocked bovine serum albumin from the acid unfolded "F" state have been performed. If the protein is incubated with low concentrations of perchlorate anion then the refolding kinetics follow a simple first-order process. The dependence on pH of both the amplitude of the observed transients and the measured rate constants indicates that the N equilibrium F transition is highly cooperative. The results are consistent with the postulated multidomain structure of albumin which has been developed as a result of both sequence work and a variety of physical studies.  相似文献   

16.
Lipase from Geobacillus thermocatenulatus (BTL2) was immobilized in two different matrixes. In one derivative, the enzyme was immobilized on agarose activated with cyanogen bromide (CNBr-BTL2) via its most reactive superficial amino group, whereas the other derivative was covalently immobilized on glyoxyl agarose supports (Gx-BTL2). The latter immobilization protocol leads to intense multipoint covalent attachment between the lysine richest region of enzyme and the glyoxyl groups on the support surface. The resulted solid derivatives were unfolded by incubation under high concentrations of guanidine and then resuspended in aqueous media under different experimental conditions. In both CNBr-BTL2 and Gx-BTL2 derivatives, the oxidation of Cys residues during the unfolding/refolding processes led to inefficient folding for the enzyme because only 25-30% of its initial activity was recovered after 3 h in refolding conditions. Dithiothreitol (DTT), a very mild reducing agent, prevented Cys oxidation during the unfolding/refolding process, greatly improving activity recovery in the refolded forms. In parallel, other variables such as pH, buffer composition and the presence of polymers and other additives, had different effects on refolding efficiencies and refolding rates for both derivatives. In the case of solid derivatives of BTL2 immobilized on CNBr-agarose, the surface's chemistry was crucial to guarantee an optimal protein refolding. In this way, uncharged protein vicinities resulted in better refolding efficiencies than those charged ones.  相似文献   

17.
Equilibrium and kinetic studies of the guanidine hydrochloride induced unfolding-refolding of dimeric cytoplasmic creatine kinase have been monitored by intrinsic fluorescence, far ultraviolet circular dichroism, and 1-anilinonaphthalene-8-sulfonate binding. The GuHCl induced equilibrium-unfolding curve shows two transitions, indicating the presence of at least one stable equilibrium intermediate in GuHCl solutions of moderate concentrations. This intermediate is an inactive monomer with all of the thiol groups exposed. The thermodynamic parameters obtained by analysis using a three-state model indicate that this intermediate is similar in energy to the fully unfolded state. There is a burst phase in the refolding kinetics due to formation of an intermediate within the dead time of mixing (15 ms) in the stopped-flow apparatus. Further refolding to the native state after the burst phase follows biphasic kinetics. The properties of the burst phase and equilibrium intermediates were studied and compared. The results indicate that these intermediates are similar in some respects, but different in others. Both are characterized by pronounced secondary structure, compact globularity, exposed hydrophobic surface area, and the absence of rigid side-chain packing, resembling the "molten globule" state. However, the burst phase intermediate shows more secondary structure, more exposed hydrophobic surface area, and more flexible side-chain packing than the equilibrium intermediate. Following the burst phase, there is a fast phase corresponding to folding of the monomer to a compact conformation. This is followed by rapid assembly to form the dimer. Neither of the equilibrium unfolding transitions are protein concentration dependent. The refolding kinetics are also not concentration dependent. This suggests that association of the subunits is not rate limiting for refolding, and that under equilibrium conditions, dissociation occurs in the region between the two unfolding transitions. Based upon the above results, schemes of unfolding and refolding of creatine kinase are proposed.  相似文献   

18.
The unfolding transition and kinetic refolding of dimeric creatine kinase after urea denaturation were monitored by intrinsic fluorescence and far ultraviolet circular dichroism. An equilibrium intermediate and a kinetic folding intermediate were identified and characterized. The fluorescence intensity of the equilibrium intermediate is close to that of the unfolded state, whereas its ellipticity at 222 nm is about 50% of the native state. The transition curves measured by these two methods are therefore non-coincident. The kinetic folding intermediate, formed during the burst phase of refolding under native-like conditions, possesses 75% of the native secondary structure, but is mostly lacking in native tertiary structure. In moderate concentrations of urea, only the initial, rapid change in fluorescence intensity or negative ellipticity is observed, and the final state values do not reach the equivalent unfolding values. The unfolding and refolding transition curves measured under identical conditions are non-coincident within the transition from intermediate to fully unfolded state. It is observed by SDS-PAGE that disulfide bond-linked dimeric or oligomeric intermediates are formed in moderate urea concentrations, especially in the refolding reaction. These rapidly formed, soluble intermediates represent an off-pathway event that leads to the hysteresis in the refolding transition curves.  相似文献   

19.
Kinetics of refolding of bovine carbonic anhydrase B have been studied by the "double-jump" technique (i.e. the dependence of protein refolding on delay time in the unfolded state after fast unfolding). It is shown that two stages (the slow with a relaxation time of t1/2 approximately equal to 120 s and the superslow with t1/2 approximately equal to 600 s) observed during refolding of bovine carbonic anhydrase B are due to trans-cis isomerization of proline residues. The dependences of rate constants of these processes on temperature and on the final denaturant concentration were measured. Activation energies of both processes are the same, Ea = 18(+/- 2) kcal/mol. The rate constants of protein refolding do not depend on the final concentration of urea under native conditions. In addition, the rate of isomerization of essential proline residues in the "molten globule" intermediate state of bovine carbonic anhydrase was measured and found to be equal to that for unstructural polypeptides. The effect of several proline residues on carbonic anhydrase refolding is discussed.  相似文献   

20.
Thermal and chemical unfolding studies of the calcium-binding canine lysozyme (CL) by fluorescence and circular dichroism spectroscopy show that, upon unfolding in the absence of calcium ions, a very stable equilibrium intermediate state is formed. At room temperature and pH 7.5, for example, a stable molten globule state is attained in 3 M GdnHCl. The existence of such a pure and stable intermediate state allowed us to extend classical stopped-flow fluorescence measurements that describe the transition from the native to the unfolded form, with kinetic experiments that monitor separately the transition from the unfolded to the intermediate state and from the intermediate to the native state, respectively. The overall refolding kinetics of apo-canine lysozyme are characterized by a significant drop in the fluorescence intensity during the dead time, followed by a monoexponential increase of the fluorescence with k = 3.6 s(-1). Furthermore, the results show that, unlike its drastic effect on the stability, Ca(2+)-binding only marginally affects the refolding kinetics. During the refolding process of apo-CL non-native interactions, comparable to those observed in hen egg white lysozyme, are revealed by a substantial quenching of tryptophan fluorescence. The dissection of the refolding process in two distinct steps shows that these non-native interactions only occur in the final stage of the refolding process in which the two domains match to form the native conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号