首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects on hypothalamic-pituitary-adrenal function and on negative feed-back action of a synthetic adrenal steroid, prednisolone acetate, have been studied in female Wistar rats treated with alpha-methyl-p-tyrosine (alpha MpT) and L-dihydroxyphenylalanine (L-DOPA) administered for six consecutive days. The parameter for study was taken from the plasmatic changes of corticosterone levels. alpha-MpT injection determines an increase of plasmatic corticosterone values, while L-DOPA injection produces the opposite effect, decreasing corticosterone levels as compared to the saline control group. The simultaneous administration of prednisolone acetate 250 micrograms/kg weight s.c. for six consecutive days to alpha-MpT or L-DOPA determines the following effects: a) With alpha-MpT the negative feed-back action of prednisolone was not modified. b) With L-DOPA this action of the steroid is cancelled and the plasmatic corticosterone values are increased significantly. These changes have been related to modifications of the catecholamines content in the brain. The importance of the catecholamines on the activity of the hypothalamic-pituitary-adrenal axis is discussed under experimental condition, specially the effects of L-DOPA, which depends for its activity on the presence or absence of prednisolone.  相似文献   

2.
Neuroinflammation, caused by a 6-day intracerebroventricular infusion of lipopolysaccharide (LPS) in rats, is associated with the up-regulation of brain arachidonic acid (AA) metabolism markers. Because chronic LiCl down-regulates markers of brain AA metabolism, we hypothesized that it would attenuate increments of these markers in LPS-infused rats. Incorporation coefficients k* of AA from plasma into brain, and other brain AA metabolic markers, were measured in rats that had been fed a LiCl or control diet for 6 weeks, and subjected in the last 6 days on the diet to intracerebroventricular infusion of artificial CSF or of LPS. In rats on the control diet, LPS compared with CSF infusion increased k* significantly in 28 regions, whereas the LiCl diet prevented k* increments in 18 of these regions. LiCl in CSF infused rats increased k* in 14 regions, largely belonging to auditory and visual systems. Brain cytoplasmic phospholipase A(2) activity, and prostaglandin E(2) and thromboxane B(2) concentrations, were increased significantly by LPS infusion in rats fed the control but not the LiCl diet. Chronic LiCl administration attenuates LPS-induced up-regulation of a number of brain AA metabolism markers. To the extent that this up-regulation has neuropathological consequences, lithium might be considered for treating human brain diseases accompanied by neuroinflammation.  相似文献   

3.
This narrative review appraises the human and animal studies implicating ascorbic acid (AA) in normal cognitive function and Alzheimer's disease. A research framework for how nutrition affects brain aging is proposed with emphasis on AA intake, status, metabolism, and transport into brain tissue. A final synopsis highlights areas for future research regarding AA nourishment and healthy brain aging.  相似文献   

4.
The aim of the present study was to determine the effect of activation of melatonin receptor sites on the activity of noradrenergic neurons in the C3H/HeN mouse brain. Changes in noradrenergic activity were assessed by measuring norepinephrine (NE) levels in the hypothalamus, frontal cortex, and hippocampus following inhibition of NE synthesis with alpha-methyl-p-tyrosine (alpha-MpT) (300 mg/kg, i.p., 2 h). 6-Chloromelatonin (1-30 mg/kg, i.p.) significantly retarded the alpha-MpT-induced decrease in NE levels in the hypothalamus, but not in hippocampus and frontal cortex. This effect was observed at 30 min and 60 min after 6-chloromelatonin administration and was dose dependent. At noon, when the levels of endogenous melatonin are low, the melatonin receptor antagonist luzindole (30 mg/kg, i.p., 30 min) did not affect the depletion of NE by alpha-MpT; however, it (1-30 mg/kg) completely antagonized the 6-chloromelatonin-induced reduction of NE depletion elicited by alpha-MpT in hypothalamus. These results suggest that activation of melatonin receptor sites in brain of C3H/HeN mouse retarded the depletion of NE elicited by alpha-MpT. At midnight, when the levels of melatonin are high, luzindole (30 mg/kg) significantly accelerated the depletion of NE by alpha-MpT in hypothalamus, but not in frontal cortex or hippocampus, suggesting activation of melatonin receptor sites by endogenous melatonin. We conclude that activation of melatonin receptor sites in C3H/HeN mouse brain by endogenous melatonin inhibits the activity of noradrenergic neurons innervating the hypothalamus.  相似文献   

5.
In a rat model of neuroinflammation produced by an intracerebral ventricular infusion of bacterial lipopolysaccaride (LPS), we measured the coefficients of incorporation (k*) of arachidonic acid (AA, 20 : 4n-6) from plasma into each of 80 brain regions, using quantitative autoradiography and intravenously injected [1-(14)C]AA. Compared with control rats infused with artificial cerebrospinal fluid (aCSF), k* was increased significantly in 25 brain areas, many of them close to the CSF compartments, following 6-days of LPS infusion. The increases, ranging from 31 to 76%, occurred in frontal, motor, somatosensory, and olfactory cortex, thalamus, hypothalamus, and septal nuclei, and basal ganglia. Following 28 days of LPS infusion, k* was increased significantly in only two brain regions. Direct analyses of microwaved brain showed that 93 +/- 3 (SD) and 94 +/- 4% of brain radioactivity was in the organic extract as radiolabeled AA in the 6-day control and LPS-infused animals, respectively, compared with 91 +/- 3 and 87 +/- 6% in the 28-day control and LPS-infused animals. These results confirm that brain AA metabolism is disturbed after 6 days of LPS exposure, show this increase is transient, and that these changes can be detected and localized using in vivo imaging with radiolabeled AA.  相似文献   

6.
Changes in the total cobalamin content and spectrum of individual forms of these vitamins in blood cells and plasma as well as the activities of enzymatic systems of xenobiotic metabolism in liver microsomes of rats with experimental adjuvant arthritis (AA) have been studied. The total cobalamin content in the blood plasma of rats with AA was increased in comparison with intact animals; however, leucocytes from AA rats were deficient in methylcobalamin (MeCbl). A correlation was found between the ratios of individual cobalamin forms and their total content which was differently expressed in experimental and control animals. The development of AA was associated with marked inhibition of the cytochrome P-450-dependent monooxygenase system of the liver and glutathione transferase. The possibility of correction of these disturbances by MeCbl is discussed.  相似文献   

7.
Arachidonic acid (AA; 20:4n-6) is one of the principal components of the phosphoglycerides in neural cell membranes. During the critical period of postnatal development in mammals, AA is supplied preformed, directly from the milk or derived from precursor fatty acids such as gamma-linolenic acid (GLA; 18:3n-6). In this study, 13C-NMR spectroscopy was applied to investigate the incorporation of [1-(13)C]AA and [3-(13)C]GLA into liver and brain lipids of 7-15-day-old rats. The main objective was to establish the importance of dietary GLA for tissue AA accretion relative to the contribution from preformed dietary AA. [1-(13)C]AA and [3-(13)C]GLA were injected into the stomach of 7-day-old rats as a mixture. 13C-NMR spectroscopy of lipid extracts revealed incorporation of [1-(13)C]AA and [5-(13)C]AA (the latter derived from metabolism of the injected [3-(13)C]GLA) into phosphoglycerides and triacylglycerols. Preformed AA was 10 (liver)-17 (brain) times more efficient in contributing to tissue AA than AA derived from precursor GLA. In separate experiments, NMR spectroscopy was used to assess uptake of [1-(13)C]AA directly in living rats and intact organs. Results showed that intact liver and brain contain an appreciable amount of NMR-detectable lipids. The in vivo/in vitro information obtained from organs provided details on the mobility and turnover of tissue lipids.  相似文献   

8.
The nonhuman primate brain contains two divergent pathways for testosterone (T) metabolism. Estradiol is biosynthesized from T by aromatization through the first pathway, whereas dihydrotestosterone is produced by the action of 5 alpha-reductase through the second pathway. Previously, we mapped the distribution of these enzyme activities within specific microdissected brain area and determined that aromatase activity (AA), but not 5 alpha-reductase activity (5 alpha RA), was reduced in certain brain areas after castration. In the present study, we measured AA and 5 alpha RA in thirteen brain nuclei and subregions from five castrated and five T-treated castrated male rhesus monkeys to determine whether exogenous androgen treatment could reverse the effects of castration on brain AA. We found that T, administered in a dose that maintained serum levels at 14.2 +/- 1.6 (SEM) ng/ml, suppressed circulating luteinizing hormone (Castrates = 491.9 +/- 86 ng/ml vs. T-treated castrates = 1.8 +/- 0.2 ng/ml), and stimulated AA in specific nuclei including the suprachiasmatic nucleus (n.), periventricular area, ventromedial n., and lateral hypothalamus. T treatment had no significant effect on AA in nine other nuclei or on 5 alpha RA in any brain areas that we studied. These data indicate that AA in diencephalic and limbic structures of the nonhuman primate brain is distributed heterogeneously into androgen-dependent and androgen-independent regions. This distribution is similar to that found in rodents. 5 alpha RA, on the other hand, is more homogeneously distributed than AA in these same brain regions and is not controlled by androgens.  相似文献   

9.
Splanchnic sequestration of amino acids (SSAA) is a process observed during aging that leads to decreased peripheral amino acid (AA) availability. The mechanisms underlying SSAA remain unknown. The aim of the present study was to determine whether a high-protein diet could increase nitrogen retention in aged rats by saturating SSAA and whether SSAA could be explained by dysregulation of hepatic nitrogen metabolism. Adult and aged male Sprague-Dawley rats were housed in individual metabolic cages and fed a normal-protein (17% protein) or high-protein diet (27%) for 2 wk. Nitrogen balance (NB) was calculated daily. On day 14, livers were isolated and perfused for 90 min to study AA and urea fluxes. NB was lower in aged rats fed a normal-protein diet than in adults, but a high-protein diet restored NB to adult levels. Isolated perfused livers from aged rats showed decreased urea production and arginine uptake, together with a release of alanine (vs. uptake in adult rats) and a hepatic accumulation of alanine. The in vivo data suggest that SSAA is a saturable process that responds to an increase in dietary protein content. The hepatic metabolism of AA in aged rats is greatly modified, and urea production decreases. This result refutes the hypothesis that SSAA is associated with an increase in AA disposal via urea production.  相似文献   

10.
Docosahexaenoic acid (DHA) and arachidonic acid (AA) are the major polyunsaturated fatty acids (PUFA) in the neuronal membrane. Most DHA and AA accumulation in the brain occurs during the perinatal period via placenta and milk. This study examined whether maternal brain levels of DHA and AA are depleted during pregnancy and lactation due to meeting the high demand of the developing nervous system in the offspring and evaluated the effects of the reproductive cycle on serotonin metabolism and of fish oil (FO) on postpartum anxiety. Pregnant rats were fed during pregnancy and lactation with a sunflower oil-based n-3 PUFA-deficient diet without or with FO supplementation, which provided 0.37% of the energy source as n-3 PUFA, and the age-matched virgin rats were fed the same diets for 41 days. In both sets of postpartum rats, decreased DHA levels compared to those in virgin females were seen in the hypothalamus, hippocampus, frontal cortex, cerebellum, olfactory bulb and retina, while AA depletion was seen only in the hypothalamus, hippocampus and frontal cortex. Serotonin levels were decreased and turnover increased in the brainstem and frontal cortex in postpartum rats compared to virgin rats. FO supplementation during pregnancy and lactation prevented the decrease in maternal brain regional DHA levels, inhibited monoamine oxidase-A activity in the brainstem and decreased anxiety-like behavior. We propose that the reproductive cycle depletes maternal brain DHA levels and modulates maternal brain serotonin metabolism to cause postpartum anxiety and suggest that FO supplementation may be beneficial for postpartum anxiety in women on an n-3 PUFA-deficient diet.  相似文献   

11.
The effect of a series of repeated electric shocks (ES) on retention of the conditioned reflexes and the content of free amino acids (AA) was investigated in the rat brain. Following repeated electric shocks, the first of which was applied 24 hours after learning, the rats developed amnesia. The content of brain excitatory AA did not change, whereas that of inhibitory AA, phenylalanine and tyrosine sharply decreased. The content of AA in the blood plasma increased. It is suggested that amnesia was caused by a change in the balance between excitatory and inhibitory AA in favour of the former ones. The changes in the functional state of the hematoencephalic barrier may play a certain part in the origin of the shifts mentioned.  相似文献   

12.
The synaptosoma fractions of 6 brain areas-olfactory tubercles (OT), frontal cortex (FC), striatum (Sr), amygdala (A), thalamus (Th), hypothalamus (Hy)-have been analyzed for their neurotransmitter amino acids (AA) content in Wistar rats exhibiting petit-mal epilepsy (PM-E) and in controls (C). The analysis was carried out at 11 p.m. (nighttime corresponding to the acrophase for the hourly number of spike-wave complexes) and at 11 a.m. (daytime). A day versus night rhythmicity is recorded for synaptosomal inhibitory AA in control and in PM-E rats. However, day versus night variations are more frequent and more prominent in C rats than in PM-E rats. Two day versus night variations exist only in PM-E rats: increases of GABA level in Sr and of Asp in Hy. Differences between PME-and C in synaptosomal AA content are more likely to be present during the nighttime. During this period lower AA values for PM-E rats are found for one or several inhibitory AA in OT, Th, and FC. It seems that the differences between PM-E and C concerning the inhibitory AA correlate with the number of spike-wave discharges. Only in one brain area is there a similar difference for PM-E and C during daytime and nighttime: a decreased GABA content for PM-E rats in OT. The decrease is larger in nighttime than in daytime. This difference may serve as a marker for this epileptic disorder. Moreover, it is in OT that the greatest number of PM-E versus C differences in synaptosomal neurotransmitter AA are observed. In view of these and former data, the existence of different alterations in synaptosomal neurotransmitter AA for different types of epilepsy is suggested.Abbreviations used GABA 4-aminobutyrate - Tau taurine - Gly glycine - Asp aspartate - Glu glutamate - Gln glutamine - OT offactory tubereles - FC fronto-parietal cortex - Sr striatum - A amygdala - Th lateral thalamus - Hy lateral hypothalamus - AA neurotransmitter amino acids - I inhibitory - E excitatory - C control rats - PM-E petit-mal rats  相似文献   

13.
Docosapentaenoic acid (DPAn-6, 22:5n-6) is an n-6 polyunsaturated fatty acid (PUFA) whose brain concentration can be increased in rodents by dietary n-3 PUFA deficiency, which may contribute to their behavioral dysfunction. We used our in vivo intravenous infusion method to see if brain DPAn-6 turnover and metabolism also were altered with deprivation. We studied male rats that had been fed for 15weeks post-weaning an n-3 PUFA adequate diet containing 4.6% alpha-linolenic acid (α-LNA, 18:3n-3) or a deficient diet (0.2% α-LNA), each lacking docosahexaenoic acid (22:6n-3) and arachidonic acid (AA, 20:4n-6). [1-(14)C]DPAn-6 was infused intravenously for 5min in unanesthetized rats, after which the brain underwent high-energy microwaving, and then was analyzed. The n-3 PUFA deficient compared with adequate diet increased DPAn-6 and decreased DHA concentrations in plasma and brain, while minimally changing brain AA concentration. Incorporation rates of unesterified DPAn-6 from plasma into individual brain phospholipids were increased 5.2-7.7 fold, while turnover rates were increased 2.1-4.7 fold. The observations suggest that increased metabolism and brain concentrations of DPAn-6 and its metabolites, together with a reduced brain DHA concentration, contribute to behavioral and functional abnormalities reported with dietary n-3 PUFA deprivation in rodents. (196 words).  相似文献   

14.
Arachidonic acid (AA) signaling is upregulated in the caudate-putamen and frontal cortex of unilaterally 6-hydroxydopamine (6-OHDA) lesioned rats, a model for asymmetrical Parkinson disease. AA signaling can be coupled to D2-like receptor initiated AA hydrolysis from phospholipids by cytosolic phospholipase A2 (cPLA2) and subsequent metabolism by cyclooxygenase (COX)-2. In unilaterally 6-OHDA- and sham-lesioned rats, we measured brain expression of cPLA2, other PLA2 enzymes, and COX-2. Activity and protein levels of cPLA2 were significantly higher as was COX-2-protein in caudate-putamen, frontal cortex and remaining brain on the lesioned compared to intact side of the 6-OHDA lesioned rats, and compared to sham brain. Secretory sPLA2 and Ca2+-independent iPLA2 expression did not differ between sides or groups. Thus, the tonically increased ipsilateral AA signal in the lesioned rat corresponds to upregulated cPLA2 and COX-2 expression within the AA metabolic cascade, which may contribute to symptoms and pathology in Parkinson disease.  相似文献   

15.
Abstract: Protein kinase C (PKC) activation stimulates release of secreted amyloid precursor protein (APPs) in several cell lines. To ascertain the role of PKC in regulating APP metabolism in vivo, we used an animal model (methylazoxymethanol-treated rats; MAM rats) in which PKC is permanently hyperactivated in selected brain areas, i.e., cortex and hippocampus. A significant decrease in membrane-bound APP concentration was found in synaptosomes derived from cortex and hippocampus of MAM rats, where PKC is up-regulated, with a concomitant increase in APPs production in soluble fractions of the same brain areas. In contrast, in a brain area not affected by MAM treatment (i.e., cerebellum), APP secretion is similar in control and MAM rats, indicating that altered metabolism of APP is restricted to only those areas in which the PKC system is up-regulated. In addition, phorbol esters or H-7 modulate APPs release in hippocampal slices from both control and MAM rats, further supporting an in vivo role for this enzyme in regulating metabolism of mature APP.  相似文献   

16.
Morphine stimulates food intake in mildly-deprived and nondeprived rats. Neonatal administration of monosodium glutamate (MSG) destroys the medial-basal hypothalamus and other circumventricular organs, including cells containing beta-endorphin that project to other hypothalamic nuclei proposed in the modulation of morphine hyperphagia. Food intake of MSG-treated and control rats were assessed following vehicle and morphine (1.0-5.0 mg/kg, sc) treatment in a mild (5h) food deprivation paradigm. Morphine hyperphagia was found to be absent in MSG-treated rats, although they responded normally to mild deprivation following vehicle treatment. These results add to the types of ingestive deficits observed in the MSG-treated rat, and suggest that the circumventricular system in general, and opioid medial-basal hypothalamic cells in particular may be implicated in morphine hyperphagia.  相似文献   

17.
Arachidonic acid (AA) and its vasoactive metabolites have been implicated in the pathogenesis of brain damage induced by cerebral ischemia. The membrane AA concentrations can be reduced by changes in dietary fatty acid intake. The purpose of the present study was to investigate the effects of chronic ethyl docosahexaenoate (E-DHA) administration on the generation of eicosanoids of AA metabolism during the period of reperfusion after ischemia in gerbils. Weanling male gerbils were orally pretreated with either E-DHA (100, 200 mg/kg) or vehicle, once a day, for 10 weeks, and subjected to transient forebrain ischemia by bilateral common carotid occlusion for 10 min. E-DHA (200 mg/kg) pretreatment significantly decreased the content of brain lipid AA at the termination of treatment, prevented postischemic impaired regional cerebral blood flow (rCBF) and reduced the levels of brain prostaglandin (PG) PGF(2alpha) and 6-keto-PGF(1alpha), and thromboxane B(2) (TXB(2)), as well as leukotriene (LT) LTB(4) and LTC(4) at 30 and 60 min of reperfusion compared with the vehicle, which was well associated with the attenuated cerebral edema in the E-DHA-treated brain after 48 h of reperfusion. These data suggest that the E-DHA (200 mg/kg) pretreatment reduces the postischemic eicosanoid productions, which may be due to its reduction of the brain lipid AA content.  相似文献   

18.
The arachidonic acid (AA) cascade involves the release of AA from the membrane phospholipids by a phospholipase A(2), followed by its subsequent metabolism to bioactive prostanoids by cyclooxygenases coupled with terminal synthases. Altered brain AA metabolism has been implicated in neurological, neurodegenerative, and psychiatric disorders. The development of genetically altered mice lacking specific enzymes of the AA cascade has helped to elucidate the individual roles of these enzymes in brain physiology and pathology. The roles of AA and its metabolites in brain physiology, with a particular emphasis on the phospholipase A(2)/cyclooxygenases pathway, are summarized, and the specific phenotypes of genetically altered mice relevant to brain physiology and neurotoxic models are discussed.  相似文献   

19.
Metabolic cascades involving arachidonic acid (AA) and docosahexaenoic acid (DHA) within brain can be independently targeted by drugs, diet and pathological conditions. Thus, AA turnover and brain expression of AA-selective cytosolic phospholipase A(2) (cPLA(2)), but not DHA turnover or expression of DHA-selective Ca(2+)-independent iPLA(2), are reduced in rats given agents effective against bipolar disorder mania, whereas experimental excitotoxicity and neuroinflammation selectively increase brain AA metabolism. Furthermore, the brain AA and DHA cascades are altered reciprocally by dietary n-3 polyunsaturated fatty acid (PUFA) deprivation in rats. DHA loss from brain is slowed and iPLA(2) expression is decreased, whereas cPLA(2) and COX-2 are upregulated, as are brain concentrations of AA and its elongation product, docosapentaenoic acid (DPA). Positron emission tomography (PET) has shown that the normal human brain consumes 17.8 and 4.6 mg/day, respectively, of AA and DHA, and that brain AA consumption is increased in Alzheimer disease patients. In the future, PET could help to determine how human brain AA or DHA consumption is influenced by diet, aging or disease.  相似文献   

20.
The changes in lactate dehydrogenase (LDG) isoenzyme content in the various brain areas were studied in intact Wistar rats and upon immobilization stress. LDG fraction levels were compared to BP changes during immobilization. The proportion of "anaerobic" LDG fractions was higher and the proportion of "aerobic" fractions lower in the dorsal area of midbrain substantia reticularis than in medulla oblongata reticular formation. The changes in LDG fraction content related to BP alterations during immobilization were observed in dorsal and ventral areas of midbrain (but not medulla oblongata) substantia reticularis. The proportion of anaerobic LDG4 fraction in the dorsal area of midbrain substantia reticularis was higher in rats with hypertensive responses, than in hypotensive animals. The changes in LDG5 fraction content were opposite. In the ventral area of midbrain reticular formation BP reduction was accompanied by a significant rise in "anaerobic" and a decrease in "aerobic" LDG fraction levels. The data obtained indicate certain differences in the intensity of aerobic and anaerobic processes of carbohydrate degeneration in various areas of substantia reticularis in control rats, as well as the correlation of changes in energy metabolism in the brain with BP alterations during emotional stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号