首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previously it was found that 4-hydroxybenzaldehyde is a competitive inhibitor of GABA transaminase. Here 3-chloro-1-(4-hydroxyphenyl)propan-1-one (9), a 4-hydroxybenzaldehyde analogue, was found to inactivate potently the enzyme in a time-dependent manner. α-Ketoglutarate prevented the enzyme from inactivation, suggesting that the inactivation occurs in its active site. Several experiments indicated that the inactivation is irreversible. This study provides a novel strategy for the design of more effective inhibitors.  相似文献   

2.
Dimeric dihydrodiol dehydrogenases from pig liver, monkey kidney, and rabbit lens were inhibited more potently by 4-hydroxyphenylketones such as 4-hydroxybenzaldehyde, 4-hydroxyphenylglyoxal, and 4-hydroxyacetophenone than by isoascorbate and ascorbate, known inhibitors of the enzymes. No significant inhibition was observed with 2- or 3-hydroxyphenylketones, phenylketones with a functional group other than a hydroxy group at the 4-position, and 4-hydroxyphenyl derivatives without a carbonyl group. The steady-state kinetic analyses of the inhibition of the pig liver enzyme indicated that the 4-hydroxyphenylketones, similarly to ascorbate and its epimer, bound to an enzyme-NADP+ binary complex as competitive inhibitors with respect to dihydrodiol substrate. The inhibition by the 4-hydroxyphenylketones was uncompetitive with respect to isoascorbate, and the addition of one of the 4-hydroxyphenylketones or isoascorbate with NADP+ afforded a great protective effect against inactivation of the enzyme by diethylpyrocarbonate or by heat treatment, which indicates that 4-hydroxyphenylketones and isoascorbate bind at the same site in or near the active center of the enzyme. The structural comparison of 4-hydroxybenzaldehyde and ascorbate suggests that the hydroxy group at C-5, carbonyl group at C-1 and lactone ring of ascorbate are important for the binding to the enzyme.  相似文献   

3.
The biosynthesis of 4-hydroxybenzaldehyde and 3-bromo-4-hydroxybenzaldehyde from l-[U-(14)C]tyrosine has been demonstrated in chloroplast-containing fractions obtained by differential and isopycnic centrifugation from the marine red alga Odonthalia floccosa. Surfactant and high speed centrifugation studies indicate that the biosynthetic pathway involves a particulate enzyme system, possibly located on the thylakoid membranes. The following scheme, based upon identification of labeled (14)C-intermediates, is proposed for the formation of aldehydes: l-tyrosine --> 4-hydroxyphenylpyruvic acid --> 4-hydroxyphenylacetic acid --> 4-hydroxymandelic acid --> 4-hydroxybenzaldehyde --> 3-bromo-4-hydroxybenzaldehyde.  相似文献   

4.
Tissue cultures of the vanilla orchid, Vanilla planifolia, produce the flavor compound vanillin (4-hydroxy-3-methoxybenzaldehyde) and vanillin precursors such as 4-hydroxybenzaldehyde. A constitutively expressed enzyme activity catalyzing chain shortening of a hydroxycinnamic acid, believed to be the first reaction specific for formation of vanilla flavor compounds, was identified in these cultures. The enzyme converts 4-coumaric acid non-oxidatively to 4-hydroxybenzaldehyde in the presence of a thiol reagent but with no co-factor requirement. Several forms of this 4-hydroxybenzaldehyde synthase (4HBS) were resolved and partially purified by a combination of hydrophobic interaction, ion exchange and gel filtration chromatography. These forms appear to be interconvertible. The unusual properties of the 4HBS, and its appearance in different protein fractions, raise questions as to its physiological role in vanillin biosynthesis in vivo.  相似文献   

5.
6.
A microorganism capable of degrading DL-mandelic acid was isolated from sewage sediment of enrichment culture and was identified as Pseudomonas convexa. It was found to metabolize mandelic acid by a new pathway involving 4-hydroxymandelic acid, 4-hydroxybenzaldehyde, 4-hydroxybenzoic acid, and 3,4-dihydroxybenzoic acid as aromatic intermediates. All the enzymes of the pathway were demonstrated in cell-free extracts. L-Mandelate-4-hydroxylase, a soluble enzyme, requires tetrahydropteridine, nicotinamide adenine dinucleotide phosphate, reduced form, and Fe2+ for its activity. The next enzyme, L-4-hydroxymandelate oxidase (decarboxylating), a particulate enzyme, requires flavine adenine dinucleotide and Mn2+ for its activity. A nicotinamide adenine dinucleotide-dependent, as well as a nicotinamide adenine dinucleotide phosphate-dependent, benzaldehyde dehydrogenase has been resolved and partially purified.  相似文献   

7.
When the acetogen Clostridium formicoaceticum was cultivated on mixtures of aromatic compounds (e.g., 4-hydroxybenzaldehyde plus vanillate), the oxidation of aromatic aldehyde groups occurred more rapidly than did O-demethylation. Likewise, when fructose and 4-hydroxybenzaldehyde were simultaneously provided as growth substrates, fructose was utilized only after the aromatic aldehyde group was oxidized to the carboxyl level. Aromatic aldehyde oxidoreductase activity was constitutive (activities approximated 0.8 U mg–1), and when pulses of 4-hydroxybenzaldehyde were added during fructose-dependent growth, the rate at which fructose was utilized decreased until 4-hydroxybenzaldehyde was consumed. Although 4-hydroxybenzaldehyde inhibited the capacity of cells to metabolize fructose, lactate or gluconate were consumed simultaneously with 4-hydroxybenzaldehyde, and lactate or aromatic compounds lacking an aldehyde group were utilized concomitantly with fructose. These results demonstrate that (1) aromatic aldehydes can be utilized as cosubstrates and have negative effects on the homoacetogenic utilization of fructose by C. formicoaceticum, and (2) the consumption of certain substrates by this acetogen is not subject to catabolite repression by fructose. Received: 14 May 1998 / Accepted: 7 August 1998  相似文献   

8.
5'-p-Fluorosulphonylbenzoyl-adenosine (FSO2BzAdo), an affinity labelling analogue of ATP, was used to label the active site of sheep brain phosphatidylinositol 4-kinase (PtdIns 4-kinase). The incubation of PtdIns 4-kinase with concentrations of FSO2BzAdo as low as 50 microM resulted in considerate inactivation of the enzyme. (e.g. 55% less after 60 min with 50 microM FSO2BzAdo). The kinetics of inactivation of PtdIns 4-kinase by FSO2BzAdo suggest a two-step mechanism, in which a rapid reversible binding of FSO2BzAdo to the enzyme is followed by a covalent sulphonation step. The first-order rate constant (k2) for the inactivation of PtdIns 4-kinase was calculated to be 0.063 min-1, and the steady-state constant of inactivation (Ki) to be 200 microM. Preincubation of the enzyme with either ATP plus Mg2+, or PtdIns alone, prior to addition of FSO2BzAdo reduced the degree of inactivation of the enzyme; suggesting that FSO2BzAdo binds within the active site PtdIns 4-kinase. Moreover, since ATP plus Mg2+ provided the greatest protection against inactivation, it is concluded that the main site of labelling of PtdIns 4-kinase by FSO2BzAdo is within the ATP-binding site of the enzyme. Results obtained from chemical modification experiments, which employed pyridoxal 5'-phosphate and tetranitromethane, are consistent with a catalytically-essential lysine being present within the ATP-binding site of PtdIns 4-kinase. Therefore, it is hypothesised that the inactivation of PtdIns 4-kinase by FSO2BzAdo may be due to the labelling of this lysine residue.  相似文献   

9.
L S Cook  H Im    F R Tabita 《Journal of bacteriology》1988,170(12):5473-5478
Ribulose 1,5-bisphosphate (RuBP) carboxylase/oxygenase (RuBPC/O) was inactivated in crude extracts of Rhodospirillum rubrum under atmospheric levels of oxygen; no inactivation occurred under an atmosphere of argon. RuBP carboxylase activity did not decrease in dialyzed extracts, indicating that a dialyzable factor was required for inactivation. The inactivation was inhibited by catalase. Purified RuBPC/O is relatively oxygen stable, as no loss of activity was observed after 4 h under an oxygen atmosphere. The aerobic inactivation catalyzed by endogenous factors in crude extracts was mimicked by using a model system containing purified enzyme, ascorbate, and FeSO4 or FeCl3. Dithiothreitol was found to substitute for ascorbate in the model system. Preincubation of the purified enzyme with RuBP led to enhanced inactivation, whereas Mg2+ and HCO3- significantly protected against inactivation. Unlike the inactivation catalyzed by endogenous factors from extracts of R. rubrum, inactivation in the model system was not inhibited by catalase. It is proposed that ascorbate and iron, in the presence of oxygen, generate a reactive oxygen species which reacts with a residue at the activation site, rendering the enzyme inactive.  相似文献   

10.
The inhibitory effects of various lignocellulose degradation products on glucose fermentation by the thermotolerant yeast Kluyveromyces marxianus were studied in batch cultures. The toxicity of the aromatic alcohol catechol and two aromatic aldehydes (4-hydroxybenzaldehyde and vanillin) was investigated in binary combinations. The aldehyde furfural that usually is present in relatively high concentration in hydrolyzates from pentose degradation was also tested. Experiments were conducted by combining agents at concentrations that individually caused 25% inhibition of growth. Compared to the relative toxicity of the individual compounds, combinations of furfural with catechol and 4-hydroxybenzaldehyde were additive (50% inhibition of growth). The other binary combinations assayed (catechol with 4-hydroxybenzaldehyde, and vanillin with catechol, furfural, or 4-hydroxybenzaldehyde) showed synergistic effect on toxicity and caused a 60-90% decrease in cell mass production. The presence of aldehydes in the fermentation medium strongly inhibited cell growth and ethanol production. Kluyveromyces marxianus reduces aldehydes to their corresponding alcohols to mitigate the toxicity of these compounds. The total reduction of aldehydes was needed to start ethanol production. Vanillin, in binary combination, was dramatically toxic and was the only compound for which inhibition could not be overcome by yeast strain assimilation, causing a 90% reduction in both cell growth and fermentation.  相似文献   

11.
o-Succinylbenzoyl coenzyme A (OSB-CoA) synthetase, when treated with diethylpyrocarbonate (DEP), showed a time-dependent loss of enzyme activity. The inactivation follows pseudo-first-order kinetics with a second-order rate constant of 9.2 x 10(-4) +/- 1.4 x 10(-4) microM(-1) min(-1). The difference spectrum of the modified enzyme versus the native enzyme showed an increase in A242 that is characteristic of N-carbethoxyhistidine and was reversed by treatment with hydroxylamine. Inactivation due to nonspecific secondary structural changes in the protein and modification of tyrosine, lysine, or cysteine residues was ruled out. Kinetics of enzyme inactivation and the stoichiometry of histidine modification indicate that of the eight histidine residues modified per subunit of the enzyme, a single residue is responsible for the enzyme activity. A plot of the log reciprocal of the half-time of inactivation against the log DEP concentration further suggests that one histidine residue is involved in the catalysis. Further, the enzyme was partially protected from inactivation by either o-succinylbenzoic acid (OSB), ATP, or ATP plus Mg2+ while inactivation was completely prevented by the presence of the combination of OSB, ATP, and Mg2+. Thus, it appears that a histidine residue located at or near the active site of the enzyme is essential for activity. When His341 present in the previously identified ATP binding motif was mutated to Ala, the enzyme lost 65% of its activity and the Km for ATP increased 5.4-fold. Thus, His341 of OSB-CoA synthetase plays an important role in catalysis since it is probably involved in the binding of ATP to the enzyme.  相似文献   

12.
Hairy root cultures of Daucus carota respond to methyl-jasmonate treatment with enhanced accumulation of p-hydroxybenzoic acid. The final C1-side chain of this compound is shaped by p-hydroxybenzaldehyde dehydrogenase (HBD) that catalyzes the formation of p-hydroxybenzoic acid from p-hydroxybenzaldehyde in the presence of NAD+. HBD was biochemically characterized from cell-free hairy root extracts of D. carota. The preferred substrate for HBD was p-hydroxybenzaldehyde. The apparent K m values were 54.8 and 74.4 μM for p-hydroxybenzaldehyde and NAD+, respectively. Divalent metal cations did not significantly affect enzyme activity.  相似文献   

13.
A method has been developed to determine the false-positive effects on acetylcholinesterase inhibition in the TLC assay based on Ellman's method. Various aldehydes and amines have been tested in order to determine whether the observed inhibition is due to a true enzyme inhibition or due to the inhibition of the reaction between thiocholine and 5,5'-dithiobis-(2-nitrobenzoic acid). 4-Dimethylaminobenzaldehyde, 3-ethoxy-4-hydroxybenzaldehyde, diethylamine, triethylamine, triethanolamine and tyramine showed real enzyme inhibition, although their activity was about 10(3) times lower than that shown by galanthamine. Heptanal, decanal, cinnamaldehyde, anisaldehyde, benzaldehyde, hexylamine and tryptamine appeared to show a non-specific chemical inhibition. By checking this chemical inhibition on the TLC assay, the true enzyme inhibition could be distinguished from the false-positive chemical inhibition observed in the toluene extract of Nerine bowdenii in the course of isolation of active compounds.  相似文献   

14.
"Suicide" inactivation of leukotriene (LT) A4 hydrolase/aminopeptidase occurs via an irreversible mechanism-based process which is saturable, of pseudo firstorder, and dependent upon catalysis. Data obtained with either recombinant enzyme or enzyme purified from human leukocytes were similar. Apparent binding constants and inactivation rate constants are equivalent, compatible with a single type of substrate-enzyme complex which partitions between two fates, turnover and inactivation. Both catalytic functions are inactivated, consistent with an overlapping active site for this bifunctional enzyme. The partition ratio (turnover/inactivation) for the LTA4-enzyme complex is 129 +/- 16 for LTA4 hydrolase activity and 124 +/- 10 for aminopeptidase activity. The pH dependence for turnover and inactivation are indistinguishable with a maximum at pH 8. L-Proline p-nitroanilide, a weak substrate with a high Km for the aminopeptidase affords only partial protection against inactivation by LTA4. However, two potent competitive inhibitors, bestatin and captopril, protect both catalytic processes from inactivation, consistent with an active-site specificity for the suicide event. Electrospray ionization mass spectrometry indicates that the molecular weight of pure recombinant enzyme is 69,399 +/- 4 and that covalent modification accompanies catalysis, producing an LTA4:enzyme adduct with a molecular weight 69,717 +/- 4 and a 1:1 stoichiometry. In agreement with kinetic data, electrospray ionization mass spectrometry shows that bestatin inhibits the covalent modification of enzyme by LTA4 and that the extent of modification is proportional to the loss of enzymatic activity.  相似文献   

15.
Diethyl pyrocarbonate inactivates Pseudomonas ochraceae 4-hydroxy-4-methyl-2-oxoglutarate aldolase [4-hydroxy-4-methyl-2-oxoglutarate pyruvate-lyase: EC 4.1.3.17] by a simple bimolecular reaction. The inactivation is not reversed by hydroxylamine. The pH curve of inactivation indicates the involvement of a residue with a pK of 8.8. Several lines of evidence show that the inactivation is due to the modification of epsilon-amino groups of lysyl residues. Although histidyl residue is also modified, this is not directly correlated to the inactivation. No cysteinyl, tyrosyl, or tryptophyl residue or alpha-amino group is significantly modified. The modification of three lysyl residues per enzyme subunit results in the complete loss of aldolase activity toward various 4-hydroxy-2-oxo acid substrates, whereas oxaloacetate beta-decarboxylase activity associated with the enzyme is not inhibited by this modification. Statistical analysis suggests that only one of the three lysyl residues is essential for activity. l-4-Carboxy-4-hydroxy-2-oxoadipate, a physiological substrate for the enzyme, strongly protects the enzyme against inactivation. Pi as an activator of the enzyme shows no specific protection. The molecular weight of the enzyme, Km for substrate or Mg2+, and activation constant for Pi are virtually unaltered after modification. These results suggest that the modification occurs at or near the active site and that the essential lysyl residue is involved in interaction with the hydroxyl group but not with the oxal group of the substrate.  相似文献   

16.
The nicotinamide adenine dinucleotide phosphate-dependent glutamate dehydrogenase (NADP-GDH) from the food yeast Candida utilis was found to be rapidly inactivated when cultures were starved of a carbon source. The addition of glutamate or alanine to the starvation medium stimulated the rate of inactivation. Loss of enzyme activity was irreversible since the reappearance of enzyme activity, following the addition of glucose to carbon-starved cultures, was blocked by cycloheximide. A specific rabbit antibody was prepared against the NADP-GDH from C. utilis and used to quantitate the enzyme during inactivation promoted by carbon starvation. The amount of precipitable antigenic material paralleled the rapid decrease of enzyme activity observed after transition of cells from NH(4) (+)-glucose to glutamate medium. No additional small-molecular-weight protein was precipitated by the antibody as a result of the inactivation, suggesting that the enzyme is considerably altered during the primary steps of the inactivation process. Analysis by immunoprecipitation of the reappearance of enzyme activity after enzyme inactivation showed that increase of NADP-GDH activity was almost totally due to de novo synthesis, ruling out the possibility that enzyme activity modulation is achieved by reversible covalent modification. Enzyme degradation was also measured during steady-state growth and other changes in nitrogen and carbon status of the culture media. In all instances so far estimated, the enzyme was found to be very stable and not normally subject to high rates of degradation. Therefore, the possibility that inactivation was caused by a change in the ratio of synthesis to degradation can be excluded.  相似文献   

17.
Mechanism-based inactivation of pyridoxal phosphate-dependent histidine decarboxylase by (S)-alpha-(fluoromethyl)histidine was studied. The molar ratio of inactivator to enzyme subunit required for complete inactivation increased from 1.63 at 10 degrees C to 3.00 at 37 degrees C. Two inactivation products were isolated by chromatographic fractionation of the reaction mixture and identified by NMR spectroscopy as 1-(4-imidazolyl)-3(5'-P-pyridoxylidene) acetone (I), the adduct formed between pyridoxal phosphate and inactivator, and 1-(4-imidazolyl) acetone (II), an intermediate compound formed during inactivation. Formation of these two products supports a previously proposed mechanism of inactivation (Hayashi, H., Tanase, S., and Snell, E. E. (1986) J. Biol. Chem. 261, 11003-11009), with minor modifications. A precursor of I was linked covalently to the enzyme by NaBH4 reduction if the reaction was carried out immediately after inactivation, before development of the 403 nm peak of I. A mutant histidine decarboxylase (S322A) in which Ser-322 was changed to Ala was also inactivated by alpha-fluoromethylhistidine demonstrating that Ser-322 is not essential for inactivation even though it is close to the active site and is derivatized by borohydride reduction of the inactivated wild-type enzyme. Following inactivation, both the wild-type and the S322A mutant enzyme could be partially reactivated by prolonged dialysis against buffer.  相似文献   

18.
Exchange-inert beta, gamma-bidentate Cr(H2O)x(NH3)y ATP complexes inactivate yeast phosphoglycerate kinase (PGK) by forming a coordination complex at the enzyme active site. The observed inactivation rates ranged from 0.019 min-1 to 0.118 min-1 for Cr(NH3)4ATP and Cr(H2O)4ATP, respectively. Incorporation of one mol of Cr-ATP to the enzyme was sufficient for complete inactivation of the enzyme. The presence of Mg-ATP protected the enzyme against inactivation by Cr-ATP. The other substrate 3-phosphoglycerate (3-PGA), when present, reduced the observed inactivation rates. The reduction of the k(obs) by 3-PGA was proportional to the number of NH3 ligands present in the coordination sphere of Cr3+ in the Cr-ATP complex, suggesting that in the ternary enzyme-Cr-ATP-3-PGA complex 3-PGA may be coordinated to the metal ion. When the effector sulfate ion was present, the presence of 3-PGA did not cause any further effects on the observed inactivation rates. This suggests that bound substrates are in a different arrangement at the active site when sulfate is present and therefore 3-PGA may not need to displace a ligand from Cr3+. Additionally, PGK exhibited a stereoselectivity for the binding of Cr(H2O)4ATP. delta diastereomer of Cr(H2O)4ATP yielded an order of magnitude smaller Ki value compared to the value observed with the lambda isomer. The recovery of enzyme activity was observed over a period of a few hours upon removal of excess Cr-ATP. The presence of substrates and/or effector ion sulfate did not alter the observed reactivation rate. There was no difference in the reactivation rates of the enzyme which was inactivated with Cr(H2O)4ATP or Cr(NH3)4ATP with and without 3-PGA. Increasing the ligand exchange rates of Cr3+ of Cr-ATP by increasing the pH value of the recovery medium from 5.9 to 6.8 increased the rate of recovery by a factor of 8. The pH dependence of the reactivation indicated that one hydroxyl group is involved in the recovery of the enzyme activity in enzyme CrATP and enzyme.CrATP.3-PGA complexes.  相似文献   

19.
The exchange-inert tetra-ammino-chromium complex of ATP [Cr(NH3)4ATP], unlike the analogous cobalt complex Co(NH3)4ATP, inactivated Na+/K(+)-ATPase slowly by interacting with the high-affinity ATP binding site. The inactivation proceeded at 37 degrees C with an inactivation rate constant of 1.34 x 10(-3) min-1 and with a dissociation constant of 0.62 microM. To assess the potential role of the water ligands of metal in binding and inactivation, a kinetic analysis of the inactivation of Na+/K(+)-ATPase by Cr(NH3)4ATP, and its H2O-substituted derivatives Cr(NH3)3(H2O)ATP, Cr(NH3)2(H2O)2ATP and Cr(H2O)4ATP was carried out. The substitution of the H2O ligands with NH3 ligands increased the apparent binding affinity and decreased the inactivation rate constants of the enzyme by these complexes. Inactivation by Cr(H2O)4ATP was 29-fold faster than the inactivation by Cr(NH3)4ATP. These results suggested that substitution to Cr(III) occurs during the inactivation of the enzyme. Additionally hydrogen bonding between water ligands of metal and the enzyme's active-site residues does not seem to play a significant role in the inactivation of Na+/K(+)-ATPase by Cr(III)-ATP complexes. Inactivation of the enzyme by Rh(H2O)nATP occurred by binding of this analogue to the high-affinity ATP site with an apparent dissociation constant of 1.8 microM. The observed inactivation rate constant of 2.11 x 10(-3) min-1 became higher when Na+ or Mg2+ or both were present. The presence of K+ however, increased the dissociation constant without altering the inactivation rate constant. High concentrations of Na+ reactivated the Rh(H2O)nATP-inactivated enzyme. Co(NH3)4ATP inactivates Na+/K(+)-ATPase by binding to the low-affinity ATP binding site only at high concentrations. However, inactivation of the enzyme by Cr(III)-ATP or Rh(III)-ATP complexes was prevented when low concentrations of Co(NH3)4ATP were present. This indicates that, although Co(NH3)4ATP interacts with both ATP sites, inactivation occurs only through the low-affinity ATP site. Inactivation of Na+/K(+)-ATPase was faster by the delta isomer of Co(NH3)4ATP than by the delta isomer. Co(NH3)4ATP, but not Cr(H2O)4ATP or adenosine 5'-[beta,gamma-methylene]triphosphate competitively inhibited K(+)-activated p-nitrophenylphosphatase activity of Na+/K(+)-ATPase, which is assumed to be a partial reaction of the enzyme catalyzed by the low-affinity ATP binding site.  相似文献   

20.
The inactivation of the catecholase activity of mushroom tyrosinase was investigated under nonaqueous conditions. The enzyme was immobilized on glass beads, and assays were conducted in chloroform, toluene, amyl acetate, isopropyl ether, and butanol. The reaction components were pre-equilibrated for 2 weeks with a saturated salt solution at a water activity of 0.90. The initial reaction velocity varied between 1.3 x 10(3) mol product/((mol enzyme)(min)) in toluene and 8.7 x 10(3) mol product/((mol enzyme)(min)) in amyl acetate. The turnover number varied between 8.1 x 10(3) mol product/mol enzyme in toluene and 7.2 x 10(4) mol product/mol enzyme in amyl acetate. In each solvent, the tyrosinase reaction inactivation parameters were represented by a probabilistic model. Changes in the probability of inactivation were followed throughout the course of the reaction using a second model which relates the reaction velocity to the amount of product formed. These models reveal that the inactivation rate of tyrosinase decreases as the reaction progresses, and that the inactivation kinetics are independent of the quinone concentration in toluene, chloroform, butanol, and amyl acetate. Significant effects of quinone concentration were, however, observed in isopropyl ether. The likelihood of inactivation of the enzyme was found to be greatest toward the beginning of the reaction. In the latter phase of the reaction, inactivation probability was less and tended to remain constant until the completion of the reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号