首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Release of endogenous amino acids labelled via D-[U-14C]glucose was compared with that of several exogenous labelled amino acids using slices of guinea pig cerebral cortex. Electrical field stimulation evoked a selective release of endogenous [14C]glutamate, [14C]aspartate, and gamma-amino[14C]butyrate (14C-labelled GABA). The selectivity of release correlated well with 14C incorporation into endogenous amino acids. Calculations of the fraction of the tissue radioactivity released indicated that the selectivity was not an artifact due to differential incorporation. Because glucose in mammalian brain is metabolized almost entirely by the so-called 'large compartment', it is tentatively concluded that the releasable 'transmitter pool' of glutamate, aspartate, and GABA is located in this 'large compartment'.  相似文献   

2.
The intralaminar distributions of transmitter and nontransmitter enzyme activities and amino acid levels were determined in the midtemporal cortices from normal individuals and established cases of Alzheimer's disease. In the normal, choline acetyltransferase (CAT) and acetylcholinesterase (AChE) activities were relatively high in the outer cortical layers, particularly, for CAT, in the two granular layers (II and IV). Both activities were reduced in Alzheimer's disease at all, although generally most extensively in the outer and middle layers of the grey matter whereas activities were near normal in the white matter. Further, the enzyme distribution patterns of these cholinergic activities were also disrupted in Alzheimer's disease and the activity of CAT throughout the cortex was generally reduced to that found in the white matter. No such differences in distribution were found for two other enzymes, pseudocholinesterase and lactate dehydrogenase. Assessment of the gamma-aminobutyric acid (GABA) system in the normal revealed a much more extensive intralaminar variation in the enzyme, glutamate decarboxylase, compared with the level of GABA itself. In contrast with the cholinergic enzymes, neither the levels nor intralaminar patterns of GABA were altered in Alzheimer's disease. From an analysis of free amino acids at the different cortical levels, the cortical pattern of glutamic acid in the normal was different from that for GABA, aspartic acid, or nontransmitter amino acids such as alanine. Neither of the putative amino acids, glutamate or aspartate, was altered in Alzheimer's disease. These findings demonstrate the relatively selective nature of microchemical changes occurring in the cortex in Alzheimer's disease and suggest that a functional abnormality in cholinergic input to the outer neocortical layers (I-IV) with predominantly receptive and associative functions may be an important feature of the disease.  相似文献   

3.
Abstract— In an effort to identify neurotransmitters in slices of guinea-pig cerebral cortex, a study was made of the release of endogenous amino acids which had become labelled via metabolism of d -[U-14C]glucose. While incorporation of 14C into endogenous glutamate, aspartate, GABA, alanine and threonine-serine-glutamine (unseparated) was large enough to permit measurement of their release, that into other amino acids was not. In parallel experiments, the release of exogeneous labelled glutamate, aspartate, GABA and α-aminoisobutyrate was examined. Electrical field stimulation evoked a transient increase in the release of all the adequately labelled endogenous amino acids and all the exogenous amino acids. The stimulated ‘increase’ in the release of each of the endogenous 14C-labelled transmitter candidates (glutamate, aspartate and GABA) was larger than that of any other amino acid (except that of exogenous GABA). When the experiments were performed without the glucose (5 mm ) usually present in the medium bathing the slices, larger amounts of each labelled amino acid were released from the slices than in the presence of glucose. Moreover, the pattern of selective release of the endogenous labelled transmitter candidates was much more pronounced in the absence of glucose. It is likely that in the absence of glucose, release from the tissue was larger because cells in the slice were relatively depolarized and uptake of amino acids into cells was impaired. Because previous evidence suggests that over 90% of glucose consumption occurs in the ‘large metabolic compartment’ which is thought to be composed of neuronal elements, neurons were probably the main site from which the larger release of endogenous 14C-labelled transmitter candidates was evoked. The exogenous amino acids were probably released from several cellular elements in the slices. It was concluded that the pattern of a selective release of the endogenous labelled transmitter candidates may have been indicative of a transmitter releasing mechanism in nerve terminals.  相似文献   

4.
Abstract—
  • 1 GABAstimulated the incorporation of L-[U-14C]leucine, primarily into the particulate protein of a ribosomal system from immature rat brain, but not from immature rat liver.
  • 2 The GABA effect required the presence of Na+ and occurred at GABA concentrations which are thought to be physiological (1–5 mM).
  • 3 Of all other amino acids tested at tissue extract concentrations in the system, only glycine had a similar effect. No analogues of GABA tested had a significant stimulatory effect upon leucine incorporation into protein, with the exception of homocarnosine which was mildly stimulatory.
  • 4 The effect of GABA upon the incorporation of L-[U-14C]leucine was examined in the presence of added amino acid substrates, both individually and as mixtures. Also, the incorporation of L-[U-14C]leucine was compared with incorporation of L-[U-14C]Iysine and L-[U-14C]phenylalanine. The results are discussed in terms of GABA interaction with activating, transfer and transport mechanisms of other amino acids, inhibition of proteinase activity, and the possibility that GABA is stimulating the synthesis or turnover of specific proteins in the brain ribosomal system.
  • 5 The results illustrate the fact that studies of ‘protein synthesis’ in immature rat brain ribosomes, as measured by amino acid incorporation, will yield answers which depend heavily upon substrate conditions and upon the labelled amino acid used as the marker for protein synthesis or turnover.
  相似文献   

5.
Spontaneous and electrically evoked release of exogenous labelled amino acids and endogenous amino acids labelled from D-[U-14C]glucose were compared in control and Ca2+-free medium using guinea pig cerebral cortex slices. Spontaneous release of all labelled amino acids, except that of endogenous 14C-labelled threonine-serine-glutamine (unseparated) and exogenous [14C]aspartate, was doubled in Ca2+-free medium. The major portion of the electrically evoked release of endogenous [14C]glutamate, [14C]aspartate, gamma-amino[14C]butyrate (14C-labelled GABA) and exogenous 3H-labelled GABA was Ca2+-inpendent. More than half of the evoked release of the other labelled amino acids was Ca2+-independent. As the pattern of Ca2+-dependence of the evoked release concurred with the selectivity of the evoked release for endogenous [14C]-glutamate, [14C]aspartate, and 14C-labelled GABA, it was concluded that these labelled amino acids were probably released from the amino acid 'transmitter pool'.  相似文献   

6.
The level and activity of seven amino acids were examined in both the right and left areas of the cerebral cortex of the rat in order to determine their respective symmetrical distribution. In the first experiment, alanine, glycine, threonine, serine, GABA, aspartate, and glutamate were measured in six different regions of the cortex: medial, sulcal, and dorsal prefrontal as well as parietal, temporal, and occipital. The differences in the level of these amino acids in symmetrical regions of either side of the cortex were not statistically significant. In the second experiment, the in vivo synthesis from the [14C]glucose precursor of three amino acids, glutamate, glutamine, and GABA was measured using the cortical push-pull perfusion technique in the freely moving rat. Although differences in synthesis were found between the prefrontal and parietal areas of the cortex, no changes occurred between right and left hemispheres. These results indicate that for the resting levels of the amino acids examined in this study, no differential asymmetric distribution exists between right or left cortical regions of the rat's brain.  相似文献   

7.
Role of peptide bond breaks in the incorporation of amino acids into proteins in a "protein--amino acid" system is investigated. For this purpose the incorporation of labelled amino acids into trypsin under the inhibition of its autolysis by a specific inhibitor from soybean and epsilon-amino-caproic acid is studied. The trypsin inhibitor from soybean is found to suppress considerably the incorporation of 14C-glycine, 14C-lysine and 14C-methionine into crystal trypsin and not to affect the incorporation of labelled amino acids into chomotrypsin, papain and carboxypeptidase. Epsilon-Aminocaproic acid inhibited 14C-glycine incorporation into crystal trypsin by 40% and did not change its incorporation level into serum albumin. The dependency of amino acid incorporation level into trypsin on the activity of autolysis in the "protein--amino acid" system is demonstrated.  相似文献   

8.
1. Cerebral-cortex slices prelabelled with gamma-amino[1-(14)C]butyrate (GABA) were incubated in a glucose-saline medium. After the initial rapid uptake there was no appreciable re-entry of (14)C into the GABA pool, either from the medium or from labelled metabolites formed in the tissue. The kinetic constants of GABA metabolism were determined by computer simulation of the experimental results by using mathematical procedures. The GABA flux was estimated to be 0.03mumol per min/g, or about 8% of the total flux through the tricarboxylic acid cycle. It was found that the assumption of compartmentation did not greatly affect the estimates of the GABA flux. 2. The time-course of incorporation of (14)C into amino acids associated with the tricarboxylic acid cycle was followed with [1-(14)C]GABA and [U-(14)C]-glucose as labelled substrates. The results were consistent with the utilization of GABA via succinate. This was confirmed by determining the position of (14)C in the carbon skeletons of aspartate and glutamate formed after the oxidation of [1-(14)C]GABA. These results also indicated that under the experimental conditions the reversal of reactions catalysed by alpha-oxoglutarate dehydrogenase and glutamate decarboxylase respectively was negligible. The conversion of [(14)C]GABA into gamma-hydroxybutyrate was probably also of minor importance, but decarboxylation of oxaloacetate did occur at a relatively slow rate. 3. When [1-(14)C]GABA was the labelled substrate there was evidence of a metabolic compartmentation of glutamate since, even before the peak of the incorporation of (14)C into glutamate had been reached, the glutamine/glutamate specific-radioactivity ratio was greater than unity. When [U-(14)C]glucose was oxidized this ratio was less than unity. The heterogeneity of the glutamate pool was indicated also by the relatively high specific radioactivity of GABA, which was comparable with that of aspartate during the whole incubation time (40min). The rates of equilibration of labelled amino acids between slice and medium gave evidence that the permeability properties of the glutamate compartments labelled as a result of oxidation of [1-(14)C]GABA were different from those labelled by the metabolism of [(14)C]glucose. The results showed therefore that in brain tissue incubated under the conditions used, the organization underlying metabolic compartmentation was preserved. The observed concentration ratios of amino acids between tissue and medium were also similar to those obtaining in vivo. These ratios decreased in the order: GABA>acidic acids>neutral amino acids>glutamine. 4. The approximate pool sizes of the amino acids in the different metabolic compartments were calculated. The glutamate content of the pool responsible for most of the labelling of glutamine during oxidation of [1-(14)C]GABA was estimated to be not more than 30% of the total tissue glutamate. The GABA content of the ;transmitter pool' was estimated to be 25-30% of the total GABA in the tissue. The structural correlates of metabolic compartmentation were considered.  相似文献   

9.
(1) The metabolism of glucose and amino acids in vitro was compared in the rat cerebral cortex and the optic and vertical lobes of the octopus brain. (2) Specific activities and pool sizes of the five amino acids, glutamate, aspartate, glutamine, alanine and γ-aminobutyric acid (GABA), were determined in octopus and rat brain slices after 2 hr incubation with 10 mm -[U-14C]glucose, 10 mm -L-[U-14C]glutamate, and 10mm -L-[U-14C]glutamate with added 10 mM-glucose. Amino acid pool sizes were similar in rat and octopus brain, with the exception of alanine, which was higher in the octopus. Generally specific activities were from four- to 20-fold higher in rat brain. With [U-14C]glucose as substrate, specific activities of GABA and glutamate were highest in rat; those of alanine and glutamine highest in octopus brain. With L-[U-14C]glutamate the specific activities of GABA and aspartate were highest in rat, that of aspartate highest and GABA lowest in octopus. The addition of glucose to L-[U-14C]glutamate as substrate had little effect on the specific activities of any of the amino acids. (3) The uptake of some amino acids was determined by incubation with [U-14C]amino acids for 2 hr, and 14CO2 formation was also measured. The amount of label taken up by octopus was uniformly 20-25 per cent of that found for rat brain. The amount of 14CO2, however, differed according to the amino acid. Four times as much 14CO2 was generated from alanine by octopus optic lobe and twice as much by the vertical lobe than rat cortex, but from glutamate, only 24 per cent in the optic and 15 per cent in the vertical lobe. No 14CO2 was generated from [U-14C]GABA in the octopus, by contrast with the rat. (4) Activity of some of the enzymes involved in amino acid metabolism was determined in homogenates of rat cortex and octopus optic and vertical lobes, with and without activation by Triton X-100. Enzymic activities in the octopus, with the exception of alanine aminotransferase, were lower than in the rat, and glutamate decarboxylase could not be detected in octopus brain, in the absence of detergent.  相似文献   

10.
Concentrations of 11 amino acids, including the neurotransmitters GABA, glutamate, aspartate, glycine and taurine, were determined in 12 brain regions of female rats during different stages of the estrous cycle. In addition, amino acids and sex hormone levels were determined in plasma. All sample collections were done in the forenoon between 9 and 11 a.m. Most regional amino acid levels measured did not change signficantly during estrous cycle, but significant alterations were found for GABA and glutamate in hypothalamus. Both amino acids were slightly decreased in hypothalamus during proestrus, which might reflect an alteration of GABA turnover in response to the high estrogen levels during this stage. A decreased glutamate level during proestrus was also found in thalamus, while both glutamate and GABA did not vary throughout estrous cycle in any of the other examined regions, including substantia nigra, amygdala, striatum, cortex and hippocampus. When diestrus was subdivided according to progesterone levels, high levels of this hormone seemed to be associated with effects on metabolism of certain amino acids, including glycine in substantia nigra, alanine in thalamus and threonine in pons/medulla. However, the few changes in regional amino acid concentrations found during the estrous cycle were so small that the functional significance of these changes cannot be ascertained without further determination of the cellular or subcellular compartments of brain tissue involved.  相似文献   

11.
Uptake of valine by Arthrobotrys conoides was an active process and was independent of its incorporation into cellular protein. Chemical fractionation of cells supplied with (14)C-l-valine for different time intervals revealed that the amino acid initially entered a pool of metabolic intermediates and was extractable with cold trichloroacetic acid. After a 4-min interval, some intracellular valine was incorporated into cell proteins, but most underwent metabolic transformation to a variety of products that included carboxylic acids and other amino acids. Carbon derived from valine was not localized in the lipid or nucleic acid fraction of cells, but some was completely oxidized and recovered as metabolic (14)CO(2). Autoradiograms of paper and thin-layer chromatograms of acid hydrolysates of cellular protein identified the following amino acids as having originated from valine: glutamate, aspartate, alanine, and leucine. Similar analysis of cold trichloroacetic acid extracts established that (14)C supplied as l-valine had been transformed also to alpha-ketoisovalerate, isobutyrate, propionate, succinate, malate, oxalacetate, pyruvate, and alpha-ketoglutarate. Pathways for transformation of the carbon skeleton of valine to various metabolic products are proposed.  相似文献   

12.
The effects of high plasma concentrations of homocystine and methionine on the free amino acids of brain have been examined. Incorporation of the label from [35S]methionine into the free amino acid pools of rabbit brain was enhanced in response to high plasma homocystine or high plasma homocystine and mcthionine. Under comparable conditions a marked decrease in the incorporation of the label from [14C]glycine into the free pool was observed. The corresponding incorporation of 35S and 14C into brain proteins parallelled the results obtained with incorporation into the free pools of amino acids. Amino acid analyses of the free amino acid pools of rabbit brain revealed a general decrease in the concentration of amino acids in response to high plasma homocystine or high plasma homocystine and methionine. Inhibition of protein synthesis which occurs under the above experimental conditions is a general phenomenon. myelin and other brain fractions being equally affected. The decrease in concentration of brain amino acids also results in a diminution in concentration of the neurotransmitters GABA, dopamine and noradrenaline. The possible relationship of the observed changes to homocystinuria is discussed.  相似文献   

13.
Ligands binding to the benzodiazepine-binding site in gamma-aminobutyric acid type A (GABA(A)) receptors may allosterically modulate function. Depending upon the ligand, the coupling can either be positive (flunitrazepam), negative (Ro15-4513), or neutral (flumazenil). Specific amino acid determinants of benzodiazepine binding affinity and/or allosteric coupling have been identified within GABA(A) receptor alpha and gamma subunits that localize the binding site at the subunit interface. Previous photolabeling studies with [(3)H]flunitrazepam identified a primary site of incorporation at alpha(1)His-102, whereas studies with [(3)H]Ro15-4513 suggested incorporation into the alpha(1) subunit at unidentified amino acids C-terminal to alpha(1)His-102. To determine the site(s) of photoincorporation by Ro15-4513, we affinity-purified ( approximately 200-fold) GABA(A) receptor from detergent extracts of bovine cortex, photolabeled it with [(3)H]Ro15-4513, and identified (3)H-labeled amino acids by N-terminal sequence analysis of subunit fragments generated by sequential digestions with a panel of proteases. The patterns of (3)H release seen after each digestion of the labeled fragments determined the number of amino acids between the cleavage site and labeled residue, and the use of sequential proteolytic fragmentation identified patterns of cleavage sites unique to the different alpha subunits. Based upon this radiochemical sequence analysis, [(3)H]Ro15-4513 was found to selectively label the homologous tyrosines alpha(1)Tyr-210, alpha(2)Tyr-209, and alpha(3)Tyr-234, in GABA(A) receptors containing those subunits. These results are discussed in terms of a homology model of the benzodiazepine-binding site based on the molluscan acetylcholine-binding protein structure.  相似文献   

14.
It has been a generally held view that insulin does not significantly affect the incorporation of amino acids into liver protein. This interpretation was based on data obtained from studies using the branched chain amino acids, which are poorly metabolized by the hepatic tissue. The effect of insulin on 14CO2 formation and protein incorporation of several 1-14C-labeled or U-14C-labeled amino acids was studied in isolated rat hepatocytes and diaphragm pieces. It was shown that insulin enhanced 14CO2 formation and protein incorporation primarily of those carbons of amino acids which are metabolized through the mitochondrial Krebs cycle. Using aminooxyacetic acid (0.5 mM), a potent inhibitor of the transamination reaction, it was shown that there exists an "insulin-sensitive" pool of glutamate which is preferentially utilized for protein synthesis in the presence of insulin. The insulin effect on protein incorporation of 14C-labeled glutamate generated in the Krebs cycle was abolished in the presence of aminooxyacetic acid. We interpret these results to signify that mitochondrial transamination of alpha-ketoglutarate to glutamate is essential for insulin stimulation of 14C incorporation into hepatocyte protein.  相似文献   

15.
—The metabolism of free amino acids: γ-aminobutyric acid (GABA), glutamine, glycine and glutathione has been studied. The labelling of these free amino acids in normal and in myelin-deficient brains of Jimpy mice was followed after intraperitoneal injection of 14C-labelled glucose precursor. The quantitative distribution of these amino acids in the two kinds of mouse brain has been compared. A higher level of GABA and a faster labelling of the amino acids in Jimpy than in normal mouse brain was observed.  相似文献   

16.
Accumulation of GABA and a concurrent block in the Krebs cycle suggest a functional GABA bypass in the acidogenic Aspergillus niger. Apart from the demonstration of enzyme machinery required, a direct measurement of flux through this glutamate decarboxylation loop was attempted. The distribution of carbon from glucose and glutamate was studied using A. niger mycelia grown on different media. The uptake and incorporation of (14)C label into organic acids and amino acids was followed by paper chromatography. Flow of label from glucose into citrate, glutamate and GABA increased in cells harvested at later stages of acidogenic growth. Very little citrate was derived from glutamate while ten times more label reached GABA from labeled glutamate. Radioactivity from L-[U-(14)C]glutamate and not from L-[1-(14)C]glutamate was recovered in GABA. This demonstrated that alpha-decarboxylation of L-glutamate was the source of GABA. Unless grown on GABA, A. niger mycelia did not take up externally supplied GABA. A direct measure of GABA shunt flux was thus not feasible. Therefore a combination of metabolite balance technique and the kinetic approach was applied to evaluate flux from glutamate to succinate in normal and acidogenic A. niger. The flux relative to TCA cycle was estimated by using uptake rate for radiolabeled glutamate, rate of accumulation of certain metabolites and the reactions of GABA metabolism. The analysis indicated that GABA shunt is operative in A. niger and its operation is enhanced during acidogenic growth of the fungus. This is the first report of an estimation of the flux through GABA shunt in a fungus.  相似文献   

17.
Awake, unrestrained, and behaviourally normal animals with superfusion cannulae implanted over the sensorimotor cortex were used in a study of the capacity of infused [U-14C]glutamine for labelling glutamate and other amino acids released by depolarising stimuli. A spontaneous background release of [14C]glutamate was detected. This was increased by tityustoxin (1 microM). The specific radioactivity of glutamate increased eightfold during the evoked-release period. [14C]Aspartate was also detected and showed increased release, but not increased specific labelling, in response to depolarisation. Evoked gamma-aminobutyric acid (GABA) release occurred but only small amounts of [14C]GABA were detected. Glutamine showed increased rates of uptake to the sensorimotor cortex during stimulation periods, suggesting an accelerated breakdown via glutaminase.  相似文献   

18.
The effect of hemidecortication on the in vivo release of amino acids was examined in different areas of the cerebral cortex of the freely-moving rat. After one side of the cortex was lesioned by aspiration, four guide tubes for push-pull perfusion were implanted chronically on the contralateral side so as to rest above the frontal, parietal, temporal and occipital areas of the cortex. After 10–14 days elapsed, each of these regions was perfused with an artificial cerebrospinal fluid (CSF) at a rate of 25.0 l/min. Two types of assays were undertaken to determine the release of either newly synthesized amino acids from [14C]glucose precursor or the actual endogenous content in samples of perfusate. The separation of the [14C]amino acids was performed by thin layer chromatography, whereas endogenous amino acids were separated by HPLC with electrochemical detection and quantitated in the range of 1.0–10.0 picomoles. When compared to the control group, samples collected in the hemidecorticate rat showed no significant differences in the new synthesis of glutamate, aspartate, glutamine, glycine, and GABA from the precursor. On the other hand, the analysis of the endogenous amino acid neurotransmitters revealed that the levels of glutamic acid and glutamine declined in samples obtained from the parietal and frontal cortex, respectively. These results implicate further the potential role of glutamic acid as a neurotransmitter of interhemispheric connections in the cerebral cortex.  相似文献   

19.
The turnover of protein in discrete areas of rat brain   总被引:4,自引:3,他引:1  
1. Rats were injected serially with [(14)C]glucose to obtain a constant specific radioactivity of brain amino acids. Measurements with this system for periods of up to 8h gave an apparent mean half-life for protein in whole brain of 85h (indicating the presence of a protein fraction with much more rapid turnover than this). 2. The half-lives of proteins in the granule-cell, molecular and white-matter layers of cerebellum were also determined. These had values of 33, 59 and 136h respectively. In addition, the incorporation into protein in six layers of the cerebral cortex, subjacent white matter and five layers of Ammon's horn was studied. All cell-body layers incorporated amino acids at about the same rate irrespective of location, and these rates were considerably higher than those for incorporation into proteins in areas rich in dendrites or fibre tracts. 3. A new method for measuring small amounts of glutamate with a cyclic enzyme system is presented.  相似文献   

20.
The purpose of this study was to examine and validate the use of microdialysis for sampling and pharmacologically manipulating extracellular amino acids in the brain. Repeated use of microdialysis probes in acute intracerebral experiments did not significantly alter the relative recovery in vitro for the amino acids quantitated (GABA, aspartate, glutamate, glycine, taurine, and alanine). Regional differences in basal levels of some of the amino acids were detected in dialysates collected from the dorsomedial hypothalamus, striatum, and frontal cortex. The percent in vitro recoveries for the amino acids from the probes used in the three regions were not significantly different suggesting that the regional differences in basal levels of amino acids were functionally derived and not a consequence of variations in probe recovery. Perfusion with nipecotic acid, an inhibitor of GABA uptake, resulted in selective elevations in extracellular GABA in the three regions studied. Conversely, perfusion with high-potassium, a depolarizing agent, resulted in significant elevations in not only extracellular GABA but also aspartate, glutamate, and taurine. Thus, microdialysis is a method which can be employed to assess and to pharmacologically manipulate extracellular amino acids in the rat brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号