首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mutualisms between fig trees and their pollinator fig wasps and between yucca plants and yucca moths are spectacular examples of coevolution. The characteristics of these independently evolved mutualisms have resulted from long‐term processes, the first stages of which are unknown. A fundamental question in the study of mutualism is how these interactions evolve. Seed predator/pollinator and host plant interactions, which may initially be considered as mainly antagonistic, have the potential to provide good model systems for the study of the first stages of evolution towards mutualism. We present here theoretical models assessing the consequences of interactions between specialized seed predator insects and their host plants. These models describe the parameters that affect the fitness of an individual female seed predator and her influence on the fitness of the host plant. In an optimal strategy for the seed predator, the number of eggs laid in each flower depends on the interaction between the adult and larva survival. Along with a growing predation pressure on adults and larvae several eggs must be laid in each flower by the female seed predator to enhance her fitness. However, in a situation where the host plant selectively aborts flowers with a high number of eggs the fitness of the seed predator will seriously decrease. If the cost of selective abortion is less than the cost of seed predation the host plant will maintain fitness. In a mutualistic relationship a balance between the cost and the benefit of the parameters in the fitness models of the seed predator and the host plant has to occur so that the net seed output is larger than zero (0). Any unselfish behaviour or quality of the seed predator that would benefit the host plant in such a way that the net seed output increases might be a first stage in an interaction becoming mutualistic. The models presented here will not only provide a platform for empirical studies on interactions that may swing from parasitism to mutualism, but also for seed predator/pollinator and host plant interactions in general.  相似文献   

2.
Mutualisms are balanced antagonistic interactions where both species gain a net benefit. Because mutualisms generate resources, they can be exploited by individuals that reap the benefits of the interaction without paying any cost. The presence of such 'cheaters' may have important consequences, yet we are only beginning to understand how cheaters evolve from mutualists and how their evolution may be curtailed within mutualistic lineages. The yucca-yucca moth pollination mutualism is an excellent model in this context as there have been two origins of cheating from within the yucca moth lineage. We used nuclear and mitochondrial DNA markers to examine genetic structure in a moth population where a cheater species is parapatric with a resident pollinator. The results revealed extensive hybridization between pollinators and cheaters. Hybrids were genetically intermediate to parental populations, even though all individuals in this population had a pollinator phenotype. The results suggest that mutualisms can be stable in the face of introgression of cheater genes and that the ability of cheaters to invade a given mutualism may be more limited than previously appreciated.  相似文献   

3.
Anna Westerbergh 《Oikos》2004,105(3):564-574
Seed predator/pollinator and host plant interactions, which may be considered as antagonistic, have the potential to provide good model systems for the study of the early stages of evolution towards mutualism. I describe a relationship between a seed predator, the geometrid moth Perizoma affinitatum , and the dioecious plant Silene dioica . The moth is an obligate seed predator on its host plant. The searching and ovipositing behaviour of the female moths, number of eggs deposited per flower, the pollinating ability of the moths and the seed consumption by the larvae are described as different parameters and studied in two Finnish coastal populations. A high pollinating ability and limited seed consumption by the predator was found and discussed in relation to fitness models of P. affinitatum and S. dioica . In a mutualistic relationship there must be a balance between the costs and benefits so that the seed production by the moths is larger than the seed consumption by the larvae, given a net seed output larger than zero. The data of the parameters included in a seed production/consumption model give a positive seed output when the proportion of S. dioica flowers pollinated by other non-predating insects is less than 60%. Accordingly, even if P. affinitatum would become the exclusive pollinator it would not endanger the survival of the host plant and both partners would benefit from this interaction. Limited seed consumption, high pollinating ability and host specificity as seen in the P. affinitatum and S. dioica interaction are considered to have been important pre-existing qualities in the evolution of the obligate mutualisms between yucca and yucca moths and fig and fig wasps. In isolated serpentine populations where the gene flow is restricted and co-pollinators are rare the interaction between P. affinitatum and S. dioica has the potential to shift from parasitism to mutualism.  相似文献   

4.

Background  

Mutualisms are inherently conflictual as one partner always benefits from reducing the costs imposed by the other. Despite the widespread recognition that mutualisms are essentially reciprocal exploitation, there are few documented examples of traits that limit the costs of mutualism. In plant/seed-eating pollinator interactions the only mechanisms reported so far are those specific to one particular system, such as the selective abortion of over-exploited fruits.  相似文献   

5.
The Benefits of Mutualism: A Conceptual Framework   总被引:6,自引:0,他引:6  
There are three general mechanisms by which phenotypic benefits are transferred between unrelated organisms. First, one organism may purloin benefits from another by preying on or parasitizing the other organism. Second, one organism may enjoy benefits that are incidental to or a by-product of the self-serving traits of another organism. Third, an organism may invest in another organism if that investment produces return benefits which outweigh the cost of the investment. Interactions in which both parties gain a net benefit are mutualistic. The three mechanisms by which benefits are transferred between organisms can be combined in pairs to produce six possible kinds of original or 'basal' mutualisms that can arise from an amutualistic state. A review of the literature suggests that most or all interspecific mutualism have origins in three of the six possible kinds of basal mutualism. Each of these three basal mutualisms have byproduct benefits flowing in at least one direction. The transfer of by-product benefits and investment are common to both intra- and interspecific mutualisms, so that some interspecific mutualisms have intraspecific analogs. A basal mutualism may evolve to the point where each party invests in the other, sometimes obscuring the nature of the original interaction along the way. Two prominent models for the evolution of mutualism do not include by-product benefits: Roughgarden's model for the evolution of the damsel-fish anemone mutualism and the 'Tit-for-Tat' model of reciprocity. Using the conceptual framework presented here, including in particular by-product benefits, I have shown how it is possible to construct more parsimonious alternatives to both models.  相似文献   

6.
John F. Addicott 《Oecologia》1986,70(4):486-494
Summary Yucca moths are both obligate pollinators and obligate seed predators of yuccas. I measured the costs and net benefits per fruit arising for eight species of yuccas from their interaction with the yucca moth Tegeticula yuccasella. Yucca moths decrease the production of viable seeds as a result of oviposition by adults and feeding by larvae. Oviposition through the ovary wall caused 2.3–28.6% of ovules per locule to fail to develop, leaving fruit with constrictions, and overall, 0.6–6.6% of ovules per fruit were lost to oviposition by yucca moths. Individual yucca moth larvae ate 18.0–43.6% of the ovules in a locule. However, because of the number of larvae per fruit and the proportion of viable seeds, yucca moth larvae consumed only 0.0–13.6% of potentially viable ovules per fruit. Given both oviposition and feeding effects, yucca moths decreased viable seed production by 0.6–19.5%. The ratio of costs to (gross) benefits varied from 0% to 30%, indicating that up to 30% of the benefits available to yuccas are subsequently lost to yucca moths. The costs are both lower and more variable than in a similar pollinator-seed predator mutualism involving figs and fig wasps.There were differences between species of yuccas in the costs of associating with yucca moths. Yuccas with baccate fruit experienced lower costs than species with capsular fruit. There were also differences in costs between populations within species and high variation in costs between fruit within populations. High variability was the result of no yucca moth larvae being present in over 50% of the fruit in some populations, while other fruit produced up to 24 larvae. I present hypotheses explaining both the absence and high numbers of larvae per fruit.  相似文献   

7.
Interspecific mutualisms are often vulnerable to instability because low benefit : cost ratios can rapidly lead to extinction or to the conversion of mutualism to parasite-host or predator-prey interactions. We hypothesize that the evolutionary stability of mutualism can depend on how benefits and costs to one mutualist vary with the population density of its partner, and that stability can be maintained if a mutualist can influence demographic rates and regulate the population density of its partner. We test this hypothesis in a model of mutualism with key features of senita cactus (Pachycereus schottii)-senita moth (Upiga virescens) interactions, in which benefits of pollination and costs of larval seed consumption to plant fitness depend on pollinator density. We show that plants can maximize their fitness by allocating resources to the production of excess flowers at the expense of fruit. Fruit abortion resulting from excess flower production reduces pre-adult survival of the pollinating seed-consumer, and maintains its density beneath a threshold that would destabilize the mutualism. Such a strategy of excess flower production and fruit abortion is convergent and evolutionarily stable against invasion by cheater plants that produce few flowers and abort few to no fruit. This novel mechanism of achieving evolutionarily stable mutualism, namely interspecific population regulation, is qualitatively different from other mechanisms invoking partner choice or selective rewards, and may be a general process that helps to preserve mutualistic interactions in nature.  相似文献   

8.
Parasites of mutualisms   总被引:13,自引:0,他引:13  
Cooperation invites cheating, and nowhere is this more apparent than when different species cooperate, known as mutualism. In almost all mutualisms studied, specialist parasites have been identified that purloin the benefits that one mutualist provides another. Explaining how parasites are kept from driving mutualisms extinct remains an unsolved problem because existing theories explaining the maintenance of cooperation do not apply to parasites of mutualisms. Nonetheless, these theories can be summarized in such a way as to suggest how mutualisms can persist in the face of parasites. (1) For cooperation to occur, the recipient of a benefit must reciprocate, and the recriprocated benefit must be captured by the initial giver or its offspring. (2) For cooperation to persist, the mutualism must be re-assembled each generation. Because most mutualisms are of the "by-product' type, broadly defined, the first condition is normally always fulfilled. Thus, the maintenance of mutualism usually requires enforcement of the second condition: reliable re-assembly. Hence, I argue that the persistence of mutualism is best understood by using theories of species coexistence, because each mutualist can be considered a resource for the other, and species coexistence theory explains how multiple taxa (e.g. parasites and mutualists) can stably partition a resource over multiple generations. This approach connects the study of mutualism to theories of population regulation and helps to identify key factors that have promoted the evolution, maintenance and breakdown of mutualism. I discuss how these ideas might apply to and be tested in ant-plant, fig-wasp and yucca-moth mutualisms.  相似文献   

9.
The exploitation of mutualisms   总被引:8,自引:0,他引:8  
Mutualisms (interspecific cooperative interactions) are ubiquitously exploited by organisms that obtain the benefits mutualists offer, while delivering no benefits in return. The natural history of these exploiters is well-described, but relatively little effort has yet been devoted to analysing their ecological or evolutionary significance for mutualism. Exploitation is not a unitary phenomenon, but a set of loosely related phenomena: exploiters may follow mixed strategies or pure strategies at either the species or individual level, may or may not be derived from mutualists, and may or may not inflict significant costs on mutualisms. The evolutionary implications of these different forms of exploitation, especially the threats they pose to the stability of mutualism, have as yet been minimally explored. Studies of this issue are usually framed in terms of a "temptation to defect" that generates a destabilizing conflict of interest between partners. I argue that this idea is in fact rather inappropriate for interpreting most observed forms of exploitation in mutualisms. I suggest several alternative and testable ideas for how mutualism can persist in the face of exploitation.  相似文献   

10.
A. Bradley Duthie  John D. Nason 《Oikos》2016,125(11):1597-1606
Mutualism is ubiquitous in nature, and nursery pollination mutualisms provide a system well suited to quantifying the benefits and costs of symbiotic interactions. In nursery pollination mutualisms, pollinators reproduce within the inflorescence they pollinate, with benefits and costs being measured in the numbers of pollinator offspring and seeds produced. This type of mutualism is also typically exploited by seed‐consuming non‐pollinators that obtain resources from plants without providing pollination services. Theory predicts that the rate at which pollen‐bearing ‘foundresses’ visit a plant will strongly affect the plant's production of pollinator offspring, non‐pollinator offspring, and seeds. Spatially aggregated plants are predicted to have high rates of foundress visitation, increasing pollinator and seed production, and decreasing non‐pollinator production; very high foundress visitation may also decrease seed production indirectly through the production of pollinators. Working with a nursery mutualism comprised of the Sonoran Desert rock fig, Ficus petiolaris, and host‐specific pollinating and non‐pollinating fig wasps, we use linear models to evaluate four hypotheses linking species interactions to benefits and costs: 1) foundress density increases with host‐tree connectivity, 2) pollinator production increases with foundress density, and 3) non‐pollinator production and 4) seed production decrease with pollinator production. We also directly test how tree connectivity affects non‐pollinator production. We find strong support for our four hypotheses, and we conclude that tree connectivity is a key driver of foundress visitation, thereby strongly affecting spatial distributions in the F. petiolaris community. We also find that foundress visitation decreases at the northernmost edge of the F. petiolaris range. Finally, we find species‐specific effects of tree connectivity on non‐pollinators to be strongly correlated with previously estimated non‐pollinator dispersal abilities. We conclude that plant connectivity is highly important for predicting plant‐pollinator‐exploiter dynamics, and discuss the implications of our results for species coexistence and adaptation.  相似文献   

11.
Studying how the fitness benefits of mutualism differ among a wide range of partner genotypes, and at multiple spatial scales, can shed light on the processes that maintain mutualism and structure coevolutionary interactions. Using legumes and rhizobia from three natural populations, I studied the symbiotic fitness benefits for both partners in 108 plant maternal family by rhizobium strain combinations. Genotype‐by‐genotype (G × G) interactions among local genotypes and among partner populations determined, in part, the benefits of mutualism for both partners; for example, the fitness effects of particular rhizobium strains ranged from uncooperative to mutualistic depending on the plant family. Correlations between plant and rhizobium fitness benefits suggest a trade off, and therefore a potential conflict, between the interests of the two partners. These results suggest that legume–rhizobium mutualisms are dynamic at multiple spatial scales, and that strictly additive models of mutualism benefits may ignore dynamics potentially important to both the maintenance of genetic variation and the generation of geographic patterns in coevolutionary interactions.  相似文献   

12.
The origins of obligate pollination mutualisms, such as the classic yucca–yucca moth association, appear to require extensive trait evolution and specialization. To understand the extent to which traits truly evolved as part of establishing the mutualistic relationship, rather than being pre‐adaptations, we used an expanded phylogenetic estimate with improved sampling of deeply‐diverged groups to perform the first formal reconstruction of trait evolution in pollinating yucca moths and their nonpollinating relatives. Our analysis demonstrates that key life‐history traits of yucca moths, including larval feeding in the floral ovary and the associated specialized cutting ovipositor, as well as colonization of woody monocots in xeric habitats, may have been established before the obligate mutualism with yuccas. Given these pre‐existing traits, novel traits in the mutualist moths are limited to the active pollination behaviours and the tentacular appendages that facilitate pollen collection and deposition. These results suggest that a highly specialized obligate mutualism was built on the foundation of pre‐existing interactions between early Prodoxidae and their host plants, and arose with minimal trait evolution. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 847–855.  相似文献   

13.
Aanen DK 《Biology letters》2006,2(2):209-212
At present there is no consensus theory explaining the evolutionary stability of mutualistic interactions. However, the question is whether there are general 'rules', or whether each particular mutualism needs a unique explanation. Here, I address the ultimate evolutionary stability of the 'agricultural' mutualism between fungus-growing termites and Termitomyces fungi, and provide a proximate mechanism for how stability is achieved. The key to the proposed mechanism is the within-nest propagation mode of fungal symbionts by termites. The termites suppress horizontal fungal transmission by consuming modified unripe mushrooms (nodules) for food. However, these nodules provide asexual gut-resistant spores that form the inoculum of new substrate. This within-nest propagation has two important consequences: (i) the mutualistic fungi undergo severe, recurrent bottlenecks, so that the fungus is likely to be in monoculture and (ii) the termites 'artificially' select for high nodule production, because their fungal food source also provides the inoculum for the next harvest. I also provide a brief comparison of the termite-fungus mutualism with the analogous agricultural mutualism between attine ants and fungi. This comparison shows that--although common factors for the ultimate evolutionary stability of mutualisms can be identified--the proximate mechanisms can be fundamentally different between different mutualisms.  相似文献   

14.
Mutualisms, beneficial interactions between species, are expected to be unstable because delivery of benefit likely involves fitness costs and selection should favour partners that deliver less benefit. Yet, mutualisms are common and persistent, even in the largely promiscuous associations between plants and soil microorganisms such as arbuscular mycorrhizal fungi. In two different systems, we demonstrate preferential allocation of photosynthate by host plants to the more beneficial of two AM fungal symbionts. This preferential allocation could allow the persistence of the mutualism if it confers sufficient advantage to the beneficial symbiont that it overcomes the cost of mutualism. We find that the beneficial fungus does increase in biomass when the fungi are spatially separated within the root system. However, in well-mixed fungal communities, non-beneficial fungi proliferate as expected from their reduced cost of mutualism. Our findings suggest that preferential allocation within spatially structured microbial communities can stabilize mutualisms between plants and root symbionts.  相似文献   

15.
Climate change is altering the timing of life history events in a wide array of species, many of which are involved in mutualistic interactions. Because many mutualisms can form only if partner species are able to locate each other in time, differential phenological shifts are likely to influence their strength, duration and outcome. At the extreme, climate change‐driven shifts in phenology may result in phenological mismatch: the partial or complete loss of temporal overlap of mutualistic species. We have a growing understanding of how, when, and why phenological change can alter one type of mutualism–pollination. However, as we show here, there has been a surprising lack of attention to other types of mutualism. We generate a set of predictions about the characteristics that may predispose mutualisms in general to phenological mismatches. We focus not on the consequences of such mismatches but rather on the likelihood that mismatches will develop. We explore the influence of three key characteristics of mutualism: 1) intimacy, 2) seasonality and duration, and 3) obligacy and specificity. We predict that the following characteristics of mutualism may increase the likelihood of phenological mismatch: 1) a non‐symbiotic life history in which co‐dispersal is absent; 2) brief, seasonal interactions; and 3) facultative, generalized interactions. We then review the limited available data in light of our a priori predictions and point to mutualisms that are more and less likely to be at risk of becoming phenologically mismatched, emphasizing the need for research on mutualisms other than plant–pollinator interactions. Future studies should explicitly focus on mutualism characteristics to determine whether and how changing phenologies will affect mutualistic interactions.  相似文献   

16.
We develop an approach for studying population dynamics resulting from mutualism by employing functional responses based on density-dependent benefits and costs. These functional responses express how the population growth rate of a mutualist is modified by the density of its partner. We present several possible dependencies of gross benefits and costs, and hence net effects, to a mutualist as functions of the density of its partner. Net effects to mutualists are likely a monotonically saturating or unimodal function of the density of their partner. We show that fundamental differences in the growth, limitation, and dynamics of a population can occur when net effects to that population change linearly, unimodally, or in a saturating fashion. We use the mutualism between senita cactus and its pollinating seed-eating moth as an example to show the influence of different benefit and cost functional responses on population dynamics and stability of mutualisms. We investigated two mechanisms that may alter this mutualism's functional responses: distribution of eggs among flowers and fruit abortion. Differences in how benefits and costs vary with density can alter the stability of this mutualism. In particular, fruit abortion may allow for a stable equilibrium where none could otherwise exist.  相似文献   

17.
Kailen A. Mooney  Kunal Mandal 《Oikos》2010,119(5):874-882
Protection mutualisms often involve multiple species of protector that vary in quality as mutualists. Because protectors may compete for access to mutualists, concordance between competitive ability and degree of benefit will determine the overall strength of multi‐species mutualisms. We compared the abilities of two similarly sized congener ants as competitors for, and mutualists of pine‐feeding aphids, and how insectivorous birds affected each ant–aphid mutualism. Formica planipilis and F. podzolica were indistinguishable in forager abundance, but the former was 13‐fold more abundant at competition baits and provided 11‐fold more benefits to aphids. These results highlight how, in a single environment, a great ecological distance can exist between two congener ants of similar size. Insectivorous birds disrupted the two mutualisms to a similar extent, reducing aphid and ant abundance by 91% and 39% respectively. Nevertheless, birds had an important influence on the relative benefits of the two ants to aphids: where F. planipilis consistently benefited aphids, F. podzolica only did so in the absence of birds. Consequently, the presence of insectivorous birds and ant species identity jointly determined whether ant–aphid mutualisms occurred in pine canopies and the strength of such interactions. Our study highlights the inter‐relatedness of competition, predation and mutualism, and how competition can serve to strengthen mutualism by filtering inferior mutualists.  相似文献   

18.
Keenan M. L. Mack 《Oikos》2012,121(3):442-448
The evolution and maintenance of mutually beneficial interactions has been one of the oldest problems for evolutionary theory. For cooperation to be stable, mechanisms such as spatial population structure must exist that prevent non‐cooperative individuals from invading cooperative groups. Selection for certain traits like increased dispersal can erode that structure. Here, I used a spatially explicit individual based dual lattice computer simulation to investigate how the evolution of dispersal interacts with the evolution of mutualism and how this interaction affects the stability of mutualism in the face of non‐mutualists. I ran simulations manipulating the self‐structuring phenotype, dispersal distance, over a range of environmental conditions, as well as letting both dispersal and mutualism evolve independently, with and without a cost of dispersal. I found that environmental productivity is negatively correlated with the stability of mutualism, and that the stability of mutualism relied on the ability of mutualists to evolve shorter dispersal distances than non‐mutualists. The inclusion of a dispersal cost essentially fixed the upper limit of dispersal, and therefore limits the ability of non‐mutualists to evolve higher average dispersal than mutualists, but as costs are relaxed, the differences are recovered. These results show how selection on seemingly unrelated traits can align suites of traits into holistic life history strategies.  相似文献   

19.
Brood pollination mutualisms—interactions in which specialized insects are both the pollinators (as adults) and seed predators (as larvae) of their host plants—have been influential study systems for coevolutionary biology. These mutualisms include those between figs and fig wasps, yuccas and yucca moths, leafflowers and leafflower moths, globeflowers and globeflower flies, Silene plants and Hadena and Perizoma moths, saxifrages and Greya moths, and senita cacti and senita moths. The high reciprocal diversity and species‐specificity of some of these mutualisms have been cited as evidence that coevolution between plants and pollinators drives their mutual diversification. However, the mechanisms by which these mutualisms diversify have received less attention. In this paper, we review key hypotheses about how these mutualisms diversify and what role coevolution between plants and pollinators may play in this process. We find that most species‐rich brood pollination mutualisms show significant phylogenetic congruence at high taxonomic scales, but there is limited evidence for the processes of both cospeciation and duplication, and there are no unambiguous examples known of strict‐sense contemporaneous cospeciation. Allopatric speciation appears important across multiple systems, particularly in the insects. Host‐shifts appear to be common, and widespread host‐shifts by pollinators may displace other pollinator lineages. There is relatively little evidence for a “coevolution through cospeciation” model or that coevolution promotes speciation in these systems. Although we have made great progress in understanding the mechanisms by which brood pollination mutualisms diversify, many opportunities remain to use these intriguing symbioses to understand the role of biotic interactions in generating biological diversity.  相似文献   

20.
Summary The yucca-yucca moth interaction is a classic case of obligate mutualism. Female moths pollinate and oviposit in the gynoecium of the flower; however, maturing larvae eat a fraction of the developing seeds. We studied within-fruit distributions of four seed types (fertile, infertile, eaten and uneaten seeds) in order to evaluate costs and benefits in aYucca schottii population in southeastern Arizona. We focused on how the spatial arrangement of seeds affected larval behaviour and, hence, the costs of the mutualism to the yucca. Infertile seeds were distributed throughout both infested and uninfested locules. Additionally, moth larvae feeding in a single locule preferred fertile seeds and even avoided infertile seeds and left the fruit significantly more often when they encountered infertile seeds. We suggest that, regardless of the cause of infertile seeds, they function as blocking units within seed locules and therefore reduce seed predation by moth larvae. We also suggest that, together with certain other fruit traits, the presence of infertile seeds promotes the evolutionary stability of this pollination mutualism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号