首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbohydrate recognition by bovine serum conglutinin has been investigated by inhibition and direct binding assays using glycoproteins and polysaccharides from Saccharomyces cerevisiae (baker's yeast), and neoglycolipids derived from N-acetylglucosamine oligomers, mannobiose and human milk oligosaccharides. The results clearly show that conglutinin is a lectin which binds terminal N-acetylglucosamine, mannose and fucose residues as found in chitobiose (GlcNAc beta 1-4GlcNAc), mannobiose (Man alpha 1-3Man) and lacto-N-fucopentaose II [Fuc alpha 1-4(Gal beta 1-3)GlcNAc beta 1-3Gal beta 1-4Glc] respectively.  相似文献   

2.
The carbohydrate-binding specificity of a novel plant lectin isolated from the seeds of Tetracarpidium conophorum (Nigerian walnut) has been studied by quantitative hapten inhibition assays and by determining the behavior of a number of oligosaccharides and glycopeptides on lectin-Sepharose affinity columns. The Tetracarpidium lectin shows preference for simple, unbranched oligosaccharides containing a terminal Gal beta 1----4GlNAc sequence over a Gal beta 1----3GlcNAc sequence and substitution by sialic acid or fucose of the terminal galactose residue, the subterminal N-acetylglucosamine or more distally located sugar residues of oligosaccharides reduce binding activity. Branched complex-type glycans containing either Gal beta 1----4GlcNAc or Gal beta 1----3GlcNAc termini bind with higher affinity than simpler oligosaccharides. The lectin shows highest affinity for a tri-antennary glycan carrying Gal beta 1----4GlcNAc substituents on C-2 and C-4 of Man alpha 1----3 and C-2 of Man alpha 1----6 core residues. Bi- and tri-glycans lacking this branching pattern bind more weakly. Tetra-antennary glycans and mono- and di-branched hybrid-type glycans also bind weakly to the immobilized lectin. Therefore, Tetracarpidium lectin complements the binding specificities of well-known lectins such as Datura stramonium agglutinin, Phaseolus vulgaris agglutinin, and lentil lectin and will be a useful additional tool for the identification and separation of complex-type glycans.  相似文献   

3.
A comparative study of thin carbohydrate specificity of the lectin from the bark of laburnum Laburnum anagyroides (LABA) and fucolectin from asparagus pea Tetragonolobus purpureus (TPA) was performed using inhibition of agglutination of the complex formed by H-active neoglycoprotein and nanoparticles of colloidal gold. Both lectins bound most strongly the H type 2 oligosaccharides comprising O-glycanes; however, TPA was almost unable to discriminate between them. LABA bound more weakly the H type 6 trisaccharide (Fuc alpha 1-2Gal beta 1-4Glc) and difucosyllactose (Fuc alpha 1-2Gal beta 1-4[Fuc alpha 1-3]Glc), a glucoanalogue of the Le(y) antigen, and, even more weakly, the Le(a) pentasaccharide lacto-N-fucopentaose II (Gal beta 1-3[Fuc alpha 1-4]GlcNAc beta 1-3Gal beta 1-4Glc). However, LABA did not bind the antigens Le(b), Le(c), and Le(d), very poorly interacted with the terminal Le(x), and somewhat more strongly bound the internal Le(x). The lectin also had a hydrophobic binding site. Both lectins exhibited a cluster effect with polymeric ligands (neoglycoproteins).  相似文献   

4.
5.
Oligosaccharide patterns obtained by gel filtration of the urine of GM1-gangliosidosis Type 1 patients are quite different from those of GM1-gangliosidosis Type 2. By studies of oligosaccharides in the four major peaks obtained from the Type 1 subgroup using sequential exoglycosidase digestion, methylation analysis, and periodate oxidation, the structures of 15 oligosaccharides: Gal beta 1 leads to 4GlcNAc beta 1 leads to 2Man alpha 1 leads to 3Man beta 1 leads to 4GlcNAc, Gal beta 1 leads to 4GlcNAc beta 1 leads to 2Man alpha 1 leads to 6Man beta 1 leads to 4GlcNAc, Man alpha 1 leads to 6(Gal beta 1 leads to 4GlcNAc beta 1 leads to 2Man alpha 1 leads to 3)Man beta 1 leads to 4GlcNAc, Gal beta 1 leads to 4GlcNAc beta 1 leads to 2Man alpha 1 leads to 6(Gal beta 1 leads to 4GlcNAc beta 1 leads to 2Man alpha 1 leads to 3)Man beta 1 leads to 4GlcNAc, Gal beta 1 leads to 4GlcNAc beta 1 leads to 2Man alpha 1 leads to 6[Gal beta 1 leads to 4GlcNAc beta 1 leads to 4(Gal beta 1 leads to 4GlcNAc beta 1 leads to 2)Man alpha 1 leads to 3]Man beta 1 leads to 4GlcNAc, Gal beta 1 leads to 4GlcNAc beta 1 leads to 6(Gal beta 1 leads to 4GlcNAc beta 1 leads to 2)Man alpha 1 leads to 6(Gal beta 1 leads to 4Glc NAc beta 1 leads to 2Man alpha 1 leads to 3)Man beta 1 leads to 4GlcNAc, Gal beta 1 leads to 4GlcNAc beta 1 leads to 6(Gal beta 1 leads to 4GlcNAc beta 1 leads to 2)Man alpha 1 leads to 6[Gal beta 1 leads to 4GlcNAc beta 1 leads to 4(Gal beta 1 leads to 4GlcNAc beta 1 leads to 2)Man alpha 1 leads to 3]Man beta 1 leads to 4GlcNAc, Gal beta 1 leads to 4GlcNAc beta 1 leads to 2Man alpha 1 leads to 6, and 3(Gal beta 1 leads to 4GlcNAc beta 1 leads to 3Gal beta 1 leads to 4GlcNAc beta 1 leads to 2Man alpha 1 leads to 3 and 6)Man beta 1 leads to 4GlcNAc, (formula see text) were elucidated. The amounts of total oligosaccharides excreted in the urine of the Type 2 subgroup were approximately one-tenth of those of Type 1. Moreover, the last eight oligosaccharides shown above, which have a Gal beta 1 leads to 4GlcNAc beta 1 leads to 3Gal beta 1 leads to 4GlcNAc beta 1 leads to outer chain, were completely missing in the urine of Type 2.  相似文献   

6.
The structural determinants required for interaction of oligosaccharides with Ricinus communis agglutinin I (RCAI) and Ricinus communis agglutinin II (RCAII) have been studied by lectin affinity high-performance liquid chromatography (HPLC). Homogeneous oligosaccharides of known structure, purified following release from Asn with N-glycanase and reduction with NaBH4, were tested for their ability to interact with columns of silica-bound RCAI and RCAII. The characteristic elution position obtained for each oligosaccharide was reproducible and correlated with specific structural features. RCAI binds oligosaccharides bearing terminal beta 1,4-linked Gal but not those containing terminal beta 1,4-linked GalNAc. In contrast, RCAII binds structures with either terminal beta 1,4-linked Gal or beta 1,4-linked GalNAc. Both lectins display a greater affinity for structures with terminal beta 1,4-rather than beta 1,3-linked Gal, although RCAII interacts more strongly than RCAI with oligosaccharides containing terminal beta 1,3-linked Gal. Whereas terminal alpha 2,6-linked sialic acid partially inhibits oligosaccharide-RCAI interaction, terminal alpha 2,3-linked sialic acid abolishes interaction with the lectin. In contrast, alpha 2,3- and alpha 2,6-linked sialic acid equally inhibit but do not abolish oligosaccharide interaction with RCAII. RCAI and RCAII discriminate between N-acetyllactosamine-type branches arising from different core Man residues of dibranched complex-type oligosaccharides; RCAI has a preference for the branch attached to the alpha 1,3-linked core Man and RCAII has a preference for the branch attached to the alpha 1,6-linked core Man. RCAII but not RCAI interacts with certain di- and tribranched oligosaccharides devoid of either Gal or GalNAc but bearing terminal GlcNAc, indicating an important role for GlcNAc in RCAII interaction. These findings suggest that N-acetyllactosamine is the primary feature required for oligosaccharide recognition by both RCAI and RCAII but that lectin interaction is strongly modulated by other structural features. Thus, the oligosaccharide specificities of RCAI and RCAII are distinct, depending on many different structural features including terminal sugar moieties, peripheral branching pattern, and sugar linkages.  相似文献   

7.
Incubation of UDP-GlcNAc and radiolabeled GlcNAc beta 1-3Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4GlcNAc (1) with human serum resulted in the formation of the branched hexasaccharide GlcNAc beta 1-3Gal beta 1-4GlcNAc beta 1-3(GlcNAc beta 1-6)Gal beta 1-4GlcNAc (2) in yields of up to 22.2%. The novel reaction represents midchain branching of the linear acceptor; the previously known branching reactions of oligo-(N-acetyllactosaminoglycans) involve the nonreducing end of the growing saccharide chains. The structure of 2 was established by use of appropriate isotopic isomers of it for degradative experiments. The hexasaccharide 2 was cleaved by an exhaustive treatment with jack bean beta-N-acetylhexosaminidase, liberating two GlcNAc units and the tetrasaccharide Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4GlcNAc (3). Endo-beta-galactosidase from Bacteroides fragilis cleaved 2 at one site only, yielding the disaccharide GlcNAc beta 1-3Gal (4) and the branched tetrasaccharide GlcNAc beta 1-3(GlcNAc beta 1-6)Gal beta 1-4GlcNAc (5). The structure of 5 was established by partial acid hydrolysis and subsequent identification of the disaccharide GlcNAc beta 1-6Gal (6), together with the trisaccharides GlcNAc beta 1-6Gal beta 1-4GlcNAc (7) and GlcNAc beta 1-3(GlcNAc beta 1-6)Gal (8) among the cleavage products. Galactosylation of 2 with bovine milk beta 1,4-galactosyltransferase and UDP-[6-3H]Gal gave the octasaccharide [6-3H]Gal beta 1-4GlcNAc beta 1-3 Gal beta 1-4GlcNAc beta 1-3([6-3H]-Gal beta 1-4GlcNAc beta 1-6)[U-14C] Gal beta 1-4GlcNAc (17), which could be cleaved with endo-beta-galactosidase into the trisaccharide [6-3H]Gal beta 1-4GlcNAc beta 1-3Gal (18) and the branched pentasaccharide GlcNAc beta 1-3-([6-3H]Gal beta 1-4GlcNAc beta 1-6) [U-14C]Gal beta 1-4GlcNAc (19). Partial hydrolysis of 2 with jack-bean beta-N-acetylhexosaminidase gave the linear pentasaccharide 1 and the branched pentasaccharide Gal beta 1-4GlcNAc beta 1-3(GlcNAc beta 1-6)Gal beta 1-4GlcNAc (20). The serum beta 1,6-GlcNAc transferase catalyzed also the formation of GlcNAc beta 1-3Gal beta 1-4GlcNAc beta 1-3(GlcNAc beta 1-6)Gal beta 1-4Glc (11) from UDP-GlcNAc and GlcNAc beta 1-3Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc (10). The pentasaccharide Gal alpha 1-3Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4GlcNAc (16), too, served as an acceptor for the enzyme.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
The sialic acid-specific leukoagglutinating lectin from the seeds of Maackia amurensis (MAL) has been studied by the techniques of quantitative precipitin formation, hapten inhibition of precipitation, hapten inhibition using an enzyme-linked immunosorbent assay, and lectin affinity chromatography. The ability of the immobilized lectin to fractionate oligosaccharides based on their content of sialic acid has also been investigated. Our results indicate that MAL reacts with greatest affinity with the trisaccharide sequence Neu5Ac/Gc alpha 2,3Gal beta 1,4GlcNAc/Glc. The lectin requires three intact sugar units for binding and does not interact when the beta 1,4-linkage is replaced by a beta 1,3-linkage nor when the "reducing sugar" of the trisaccharide is reduced. Results from enzyme-linked immunosorbent assays show that an N-acetyllactosamine repeating sequence is not required; however, the N-acetyllactosamine repeating sequence does appear to enhance the binding of MAL to a series of glycolipids. In addition, the sialic acid may be substituted with either N-acetyl or N-glycolyl groups without reduction in binding. The C-8 and C-9 hydroxyl groups of sialic acid do not play a role in binding as shown by the strong reaction of periodate-treated glycoproteins. Comparison of the specificity of the three sialic acid-binding lectins indicates that Limax flavus agglutinin binds to Neu5Ac in any linkage and in any position in a glycoconjugate, Sambucus nigra lectin requires a disaccharide of the structure Neu5Ac alpha 2,6Gal/GalNAc, and MAL has a binding site complimentary to the trisaccharide Neu5Ac alpha 2,3Gal beta 1,4GlcNAc/Glc, to which sialic acid contributes less to the total binding affinity than for either S. nigra lectin or L. flavus agglutinin.  相似文献   

9.
The structure of a nonasaccharide and of two decasaccharides isolated from human milk has been investigated by using methylation, fast atom bombardment mass spectrometry and 1H-/13C-nuclear magnetic resonance spectroscopy. The structures of these oligosaccharides were: trifucosyllacto-N-hexaose; Fuc alpha 1-2Gal beta 1-3(Fuc alpha 1-4)GlcNAc beta 1-3[Gal beta 1-4(Fuc alpha 1-3)GlcNAc beta 1-6]Gal beta 1-4Glc, difucosyllacto-N-octaoses; Gal beta 1-3(Fuc alpha 1-4)GlcNAc beta 1-3Gal beta 1-4(Fuc alpha 1-3)GlcNAc beta 1-6[Gal beta 1-3GlcNAc beta 1-3]Gal beta 1-4Glc and Gal beta 1-3GlcNAc beta 1-3Gal beta 1-4(Fuc alpha 1-3)GlcNAc beta 1-6[Fuc alpha 1-3 Gal beta 1-3GlcNAc beta 1-3]Gal beta 1-4Glc. The two decasaccharides possess a new type of core structure proposed to be named iso-lacto-N-octaose.  相似文献   

10.
Structures of the sugar chains of mouse immunoglobulin G   总被引:2,自引:0,他引:2  
The asparagine-linked sugar chains of mouse immunoglobulin G (IgG) were quantitatively liberated as radioactive oligosaccharides from the polypeptide portions by hydrazinolysis followed by N-acetylation, and NaB3H4 reduction. After fractionation by paper electrophoresis, lectin (RCA120) affinity high-performance liquid chromatography, and gel filtration, their structures were studied by sequential exoglycosidase digestion in combination with methylation analysis. Mouse IgG was shown to contain the biantennary complex type sugar chains. Eight neutral oligosaccharide structures, viz, +/- Gal beta 1----4GlcNAc beta 1----2Man alpha 1----6(+/- Gal beta 1---- 4GlcNAc beta 1----2Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4(+/- Fuc alpha 1----6)GlcNAc, were found after the sialidase treatment. The molar ratio of the sugar chains with 2,1, and 0 galactose residues was 2:5:3. The galactose residue in the monogalactosylated sugar chains was distributed on Man alpha 1----3 and Man alpha 1----6 sides in the ratio of 1:3. The oligosaccharides were almost wholly fucosylated and contained no bisecting N-acetylglucosamine which is present in human, rabbit, and bovine IgGs.  相似文献   

11.
Twenty-two neutral O-linked oligosaccharides ranging from monosaccharides to octasaccharides were identified in bovine submaxillary-gland-mucin glycoprotein by a combination of liquid secondary-ion mass spectrometry, methylation analysis and 1H-NMR. Only five of these have been previously detected in bovine submaxillary-gland mucin although several have been described from other sources of mucin. The structures include short linear sequences 3-linked to N-acetylgalactosaminitol (GalNAcol) and branched structures based on either a GlcNAc(beta 1-6) [Gal(beta 1-3)]GalNAcol or GlcNAc(beta 1-6)[GlcNAc(beta 1-3)]GalNAcol core region. Oligosaccharides not previously characterised from any source were the disaccharide GalNAc alpha 1-6GalNAcol (GalNAc, N-acetylgalactosamine and the hexasaccharide GlcNAc(beta 1-6) [GalNAc(alpha 1-3)( Fuc (alpha 1-2)]Gal(beta 1-4)GlcNAc(beta 1-3)]GalNAcol (Fuc, L-fucose). Oligosaccharides of the blood-group-A type have not been detected previously in bovine submaxillary-gland mucin although their occurrence on bovine gastric-mucosal glycoproteins has been established by classical immunochemical studies.  相似文献   

12.
To investigate the factors regulating the biosynthesis of poly-N-acetyllactosamine chains containing the repeating disaccharide [3Gal beta 1,4GlcNAc beta 1] in animal cell glycoproteins, we have examined the structures and terminal sequences of these chains in the complex-type asparagine-linked oligosaccharides from the mouse lymphoma cell line BW5147. Cells were grown in medium containing [6-3H]galactose, and radiolabeled glycopeptides were prepared and fractionated by serial lectin affinity chromatography. The glycopeptides containing the poly-N-acetyllactosamine chains in these cells were complex-type tri- and tetraantennary asparagine-linked oligosaccharides. The poly-N-acetyllactosamine chains in these glycopeptides had four different terminal sequences with the structures: I, Gal beta 1,4GlcNAc beta 1,3Gal-R; II, Gal alpha 1,3Gal beta 1,4GlcNac beta 1,3Gal-R; III, Sia alpha 2,3Gal beta 1,4GlcNAc beta 1,3Gal-R; and IV, Sia alpha 2,6Gal beta 1,4GlcNAc beta 1,3Gal-R. We have found that immobilized tomato lectin interacts with high affinity with glycopeptides containing three or more linear units of the repeating disaccharide [3Gal beta 1,4GlcNAc beta 1] and thereby allows for a separation of glycopeptides on the basis of the length of the chain. A high percentage of the long poly-N-acetyllactosamine chains bound by immobilized tomato lectin were not sialylated and contained the simple terminal sequence of Structure I. In addition, a high percentage of the sialic acid residues that were present in the long chains were linked alpha 2,3 to penultimate galactose residues (Structure III). In contrast, a high percentage of the shorter poly-N-acetyllactosamine chains not bound by the immobilized lectin were sialylated, and most of the sialic acid residues in these chains were linked alpha 2,6 to galactose (Structure IV). These results indicate that there is a relationship in these cells between poly-N-acetyllactosamine chain length and the degree and type of sialylation of these chains.  相似文献   

13.
K Yamashita  K Umetsu  T Suzuki  T Ohkura 《Biochemistry》1992,31(46):11647-11650
Two lectins were purified from tuberous roots of Trichosanthes japonica. The major lectin, which was named TJA-II, interacted with Fuc alpha 1-->2Gal beta/GalNAc beta 1-->groups, and the other one, which passed through a porcine stomach mucin-Sepharose 4B column, was purified by sequential chromatography on a human alpha 1-antitrypsin-Sepharose 4B column and named TJA-I. The molecular mass of TJA-I was determined to be 70 kDa by sodium dodecyl sulfate gel electrophoresis. TJA-I is a heterodimer of 38-kDa (36-kDa) and 32-kDa (30-kDa) subunits with disulfide linkage(s), and the difference between 38 and 36 kDa, and between 32 and 30 kDa, is due to secondary degradation of the carboxyl-terminal side. It was determined by equilibrium dialysis that TJA-I has four equal binding sites per molecule, and the association constant toward tritium-labeled Neu5Ac alpha 2-->6Gal beta 1-->4GlcNAc beta 1-->3Gal beta 1-->4GlcOT is Ka = 8.0 x 10(5) M-1. The precise carbohydrate binding specificity was studied using hemagglutinating inhibition assay and immobilized TJA-I. A series of oligosaccharides possessing a Neu5Ac alpha 2-->6Gal beta 1-->4GlcNAc or HSO3(-)-->6Gal beta 1-->4GlcNAc group showed tremendously stronger binding ability than oligosaccharides with a Gal beta 1-->4GlcNAc group, indicating that TJA-I basically recognizes an N-acetyllactosamine residue and that the binding strength increases on substitution of the beta-galactosyl residue at the C-6 position with a sialic acid or sulfate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Wu AM  Singh T  Wu JH  Lensch M  André S  Gabius HJ 《Glycobiology》2006,16(6):524-537
Cell-surface glycans are functional docking sites for tissue lectins such as the members of the galectin family. This interaction triggers a wide variety of responses; hence, there is a keen interest in defining its structural features. Toward this aim, we have used enzyme-linked lectinosorbent (ELLSA) and inhibition assays with the prototype rat galectin-5 and panels of free saccharides and glycoconjugates. Among 45 natural glycans tested for lectin binding, galectin-5 reacted best with glycoproteins (gps) presenting a high density of Galbeta1-3/4GlcNAc (I/II) and multiantennary N-glycans with II termini. Their reactivities, on a nanogram basis, were up to 4.3 x 10(2), 3.2 x 10(2), 2.5 x 10(2), and 1.7 x 10(4) times higher than monomeric Galbeta1-3/4GlcNAc (I/II), triantennary-II (Tri-II), and Gal, respectively. Galectin-5 also bound well to several blood group type B (Galalpha1-3Gal)- and A (GalNAcalpha1-3Gal)-containing gps. It reacted weakly or not at all with tumor-associated Tn (GalNAcalpha1-Ser/Thr) and sialylated gps. Among the mono-, di-, and oligosaccharides and mammalian glycoconjugates tested, blood group B-active II (Galalpha1-3Gal beta1-4GlcNAc), B-active IIbeta1-3L (Galalpha1-3Galbeta1-4GlcNAc beta1-3Galbeta1-4Glc), and Tri-II were the best. It is concluded that (1) Galbeta1-3/4GlcNAc and other Galbeta1-related oligosaccharides with alpha1-3 extensions are essential for binding, their polyvalent form in cellular glycoconjugates being a key recognition force for galectin-5; (2) the combining site of galectin-5 appears to be of a shallow-groove type sufficiently large to accommodate a substituted beta-galactoside, especially with alpha-anomeric extension at the non-reducing end (e.g., human blood group B-active II and B-active IIbeta1-3L); (3) the preference within beta-anomeric positioning is Galbeta1-4 > or = Galbeta1-3 > Galbeta1-6; and (4) hydrophobic interactions in the vicinity of the core galactose unit can enhance binding. These results are important for the systematic comparison of ligand selection in this family of adhesion/growth-regulatory effectors with potential for medical applications.  相似文献   

15.
We have purified, to apparent homogeneity, a mucin beta 6N-acetylglucosaminyltransferase (beta 6GlcNAc transferase) from bovine tracheal epithelium. Golgi membranes were isolated from a 0.25 M sucrose homogenate of epithelial scrapings by discontinuous sucrose gradient centrifugation. The Golgi membranes were solubilized with 1% Triton X-100 in the presence of 1 mM Gal beta 1-3GalNAc alpha benzyl (Bzl) to stabilize the beta 6GlcNAc transferase. The solubilized enzyme was bound to a UDP-hexanolamine-Actigel-ALD Superflow affinity column equilibrated with 1 mM Gal beta 1-3GalNAc alpha Bzl and 5 mM Mn2+. Elution of the enzyme with 0.5 mM UDP-GlcNAc resulted in a 133,800-fold purification with a 1.3% yield and a specific activity of 70 mumol/min/mg protein. Radioiodination of the purified enzyme followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography revealed a single band at 69,000 Da. Kinetic analyses of the beta 6GlcNAc transferase-catalyzed reaction showed an ordered sequential mechanism in which UDP-GlcNAc binds to the enzyme first and UDP is released last. The Km values for UDP-GlcNAc and Gal beta 1-3GalNAc alpha Bzl were 0.36 and 0.14 mM, respectively. Acceptor competition studies showed that the purified beta 6GlcNAc transferase can use core 1 and core 3 mucin oligosaccharides as well as GlcNAc beta 1-3Gal beta R as acceptor substrates. Proton NMR analyses of the three products demonstrated that GlcNAc was added in a beta 1-6 linkage to the penultimate GalNAc or Gal, suggesting that this enzyme is capable of synthesizing all beta 6GlcNAc structures found in mucin-type oligosaccharides.  相似文献   

16.
R Kornfeld 《Biochemistry》1978,17(8):1415-1423
The carbohydrate composition and oligosaccharide structure of three glycopeptides isolated from delipidated calf thymocyte plasma membranes following Pronase digestion have been determined. Five major glycopeptide fractions were separated using Bio-Gel P-6 gel filtration and diethylaminoethylcellulose chromatography. The structure of the oligosaccharide chains of three of these glycopeptides was determined by a combination of sequential degradation with glycosidases and methylation analysis. These oligosaccharide structures consist of complex, highly branched N-linked chains containing at their nonreducing termini the unusual sequence Gal(beta1 leads to 3)Gal(beta1 leads to 4)GlcNAc leads to as well as the more usual sequence SA(alpha2 leads to 3)Gal(beta1 leads to 4)GlcNAc leads to. In addition, one glycopeptide also contains short O-linked chains with the structure Gal(beta leads to 3)GalNAc leads to Ser(Thr) which have receptor activity for the lectin from the mushroom Agaricus bisporus.  相似文献   

17.
Ricinus communis agglutinin I (RCA120) is considered a versatile tool for the detection of galactose-containing oligosaccharides. However, possible contamination by the highly toxic isolectin 'ricin' has become a critical issue for RCA120's continued use. From a practical viewpoint, it is necessary to find an effective substitute for RCA120. For this purpose, we examined by means of frontal affinity chromatography over 100 lectins which have similar sugar-binding specificities to that of RCA120. It was found that Erythrina cristagalli lectin (ECL) showed the closest similarity to RCA120. Both lectins prefer Gal beta1-4GlcNAc (type II) to Gal beta1-3GlcNAc (type I) structures, with increased affinity for highly branched N-acetyllactosamine-containing N-glycans. Their binding strength significantly decreased following modification of the 3-OH, 4-OH and 6-OH of the galactose moiety of the disaccharide, as well as the 3-OH of its N-acetylglucosamine residue. Several differences were also observed in the affinity of the two lectins for various other ligands, as well as effects of bisecting GlcNAc and terminal sialylation. Although six other Erythrina-derived lectins have been reported with different amino acid sequences, all showed quite similar profiles to that of ECL, and thus, to RCA120. Erythrina lectins can therefore serve as effective substitutes for RCA120, taking the above differences into consideration.  相似文献   

18.
Two trisaccharides, and a pentasaccharide were obtained from bovine colostrum. Their chemical structures were determined by using methylation and 13C-NMR analyses as follows: GalNac alpha 1-3Gal beta 1-4Glc, Gal alpha-1-3Gal beta 1-4Glc, GaL beta 1-3[Gal beta 1-4GlcNAc beta 1-6]Gal beta 1-4Glc. GalNAc alpha 1-3Gal beta 1-4Glc, which was identified in this study, is a novel oligosaccharide from natural sources. Gal alpha 1-3Gal beta 1-4Glc and Gal beta 1-3[Gal beta 1-4GlcNAc beta 1-6]Gal beta 1-4Glc (lacto-N-novopentaose) have been already found in ovine colostrum, and in horse colostrum and marsupial milk, respectively.  相似文献   

19.
A disialosylganglioside was isolated from adult bovine nasal cartilage, and its structure was determined by analysis of sugar composition, permethylation analysis, exoglycosidase treatment, and mild acid hydrolysis. The structure of this ganglioside was identified as disialo-lacto-N-norhexaosyl ceramide, NeuNAc(alpha 2-8)NeuNAc-(alpha 2-3)Gal(beta 1-4)GlcNAc(beta 1-3)Gal(beta 1-4)GlcNAc(beta 1-3)Gal(1-4)Glc(1-1)Cer. Furthermore, we also isolated from this cartilage gangliosides whose structures were presumed to be monosialo-lacto-N-norhexaosyl ceramide, and mono- and disialo-lacto-N-neotetraosyl ceramide. The major fatty acids of the four gangliosides isolated were palmitic, stearic, behenic and lignoceric acids. The predominant long chain bases were sphingenine, heptadecasphingenine and hexadecasphingenine.  相似文献   

20.
Treatment of blood group A active glycoprotein from human ovarian cyst fluid by one stage of Smith degradation followed by alkaline beta-elimination in the presence of NaB[ 3H4 ] (Carlson degradation) liberated tritiated oligosaccharide alditols. The carbohydrate mixture was fractionated by gel filtration, elution from charcoal, paper chromatography, and high pressure liquid chromatography. Structures were established based on sugar composition, periodate oxidation, methylation analysis, and analysis of oligosaccharide alditols as permethylated and N-trifluoroacetylated derivatives by gas-liquid chromatography-mass spectrometry. The following structures have been deduced: Gal beta 1----3GalNAc-ol, GlcNAc beta 1---- 6GalNAc -ol, Gal beta 1---- 3GlcNAc beta 1----6(3-deoxy)GalNAc-ol, Gal beta 1---- 3GlcNAc beta 1---- 6GalNAc -ol, Gal beta 1----4GlcNAc beta 1---- 6GalNAc -ol, GlcNAc beta 1----3Gal beta 1----3GalNAc-ol, Gal beta 1----3[GlcNAc beta 1----6]GalNAc-ol, Gal beta 1----3[Gal beta 1----4GlcNAc beta 1----6]GalNAc-ol, Gal beta 1---- 3GlcNAc beta 1----3Gal beta 1----3GalNAc-ol, GlcNAc beta 1----3Gal beta 1----4GlcNAc beta 1---- 6GalNAc -ol, GlcNAc beta 1----3Gal beta 1----3[Gal beta 1----4GlcNAc beta 1----6]GalNAc-ol, Gal beta 1---- 3GlcNAc beta 1----3Gal beta 1---- 3GlcNAc beta 1----3Gal beta 1----3Gal beta 1----3GalNAc-ol, Gal beta 1---- 3GlcNAc beta 1----3[Gal beta 1----4GlcNAc beta 1----6]Gal beta 1----3GalNAc-ol, Gal beta 1---- 3GlcNAc beta 1----3Gal beta 1----3[Gal beta 1----4GlcNAc beta 1----6]GalNAc-ol. The smaller structures represent pieces of the larger structures. Together they provide direct evidence for the core structure of the carbohydrate side chains in the blood group substances as proposed by K. O. Lloyd and E. A. Kabat [1968) Proc. Natl. Acad. Sci. U.S.A. 61, 1470-1477). Oligosaccharides previously isolated after Carlson degradation of intact human ovarian cyst fluid HLeb , Lea, and B substances and from human and horse B substances contained various alpha-linked L- fucopyranose and alpha-linked Gal substitutions on the composite structure.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号