首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Net ecosystem carbon dioxide (CO2) exchange (NEE) was measured in a northern temperate grassland near Lethbridge, Alberta, Canada for three growing seasons using the eddy covariance technique. The study objectives were to document how NEE and its major component processes—gross photosynthesis (GPP) and total ecosystem respiration (TER)—vary seasonally and interannually, and to examine how environmental and physiological factors influence the annual C budget. The greatest difference among the three study years was the amount of precipitation received. The annual precipitation for 1998 (481.7 mm) was significantly above the 1971–2000 mean (± SD, 377.9 ± 97.0 mm) for Lethbridge, whereas 1999 (341.3 mm) was close to average, and 2000 (275.5 mm) was significantly below average. The high precipitation and soil moisture in 1998 allowed a much higher GPP and an extended period of net carbon gain relative to 1999 and 2000. In 1998, the peak NEE was a gain of 5 g C m?2 d?1 (day 173). Peak NEE was lower and also occurred earlier in the year on days 161 (3.2 g C m?2 d?1) and 141 (2.4 g C m?2 d?1) in 1999 and 2000, respectively. Change in soil moisture was the most important ecological factor controlling C gain in this grassland ecosystem. Soil moisture content was positively correlated with leaf area index (LAI). Gross photosynthesis was strongly correlated with changes in both LAI and canopy nitrogen (N) content. Maximum GPP (Amax: value calculated from a rectangular hyperbola fitted to the relationship between GPP and incident photosynthetic photon flux density (PPFD)) was 27.5, 12.9 and 8.6 µmol m?2 s?1 during 1998, 1999 and 2000, respectively. The apparent quantum yield also differed among years at the time of peak photosynthetic activity, with calculated values of 0.0254, 0.018 and 0.018 during 1998, 1999 and 2000, respectively. The ecosystem accumulated a total of 111.9 g C m?2 from the time the eddy covariance measurements were initiated in June 1998 until the end of December 2000, with most of that C gained during 1998. There was a net uptake of almost 21 g C m?2 in 1999, whereas a net loss of 18 g C m?2 was observed in 2000. The net uptake of C during 1999 was the combined result of slightly higher GPP (287.2 vs. 272.3 g C m?2 year?1) and lower TER (266.6 vs. 290.4 g C m?2 year?1) than occurred in 2000.  相似文献   

2.
3.
To investigate the variations in annual and seasonal net ecosystem production (FNEP) during the development of a young forest, 3 years of continuous eddy covariance measurements of carbon dioxide (CO2) fluxes were collected following clearcut harvesting and replanting of a coastal Douglas‐fir stand on the east coast of Vancouver Island, BC, Canada. The impact of changing weather and stand structure on FNEP was examined by developing relationships between FNEP and variables such as light, temperature, soil moisture, and leaf area index (LAI). In all 3 years, the stand was a large source of CO2 (620, 520, and 600 g C m?2 yr?1 in the first, second, and third years, respectively). During this period, the growth of pioneer and understory species resulted in an increase in maximum growing season LAI from 0.2 in the year the seedlings were planted to 2.5 in the third year. The associated increase in annual gross ecosystem production (P=FNEP?Re, where Re is ecosystem respiration) from 220 g C m?2 yr?1 in the first year to 640 g C m?2 yr?1 in the third year was exceeded by an increase in annual Re from 840 to 1240 g C m?2 yr?1. Seasonal and interannual variations in daytime FNEP and P were well described by variations in photosynthetically active radiation, temperature, and changes in LAI. Night‐time measurements of Re exponentially increased with 2 cm soil temperature with an average Q10 of 2 (relative increase in Re for a 10°C increase in temperature) and R10 (Re at 10°C) that increased from 2.1 in the first year to 2.5 in the second year to 3.2 μmol m?2 s?1 in the third year. Although the re‐establishment of vegetation in this stand had a major impact on both P and Re, interannual variations in weather also affected annual FNEP. Drought, in the summer of the third year, resulted in early senescence and reduced both P and Re. This resulted in more C being lost from the stand in the third year after harvesting than in the second year.  相似文献   

4.
Over the last two and half decades, strong evidence showed that the terrestrial ecosystems are acting as a net sink for atmospheric carbon. However the spatial and temporal patterns of variation in the sink are not well known. In this study, we examined latitudinal patterns of interannual variability (IAV) in net ecosystem exchange (NEE) of CO2 based on 163 site-years of eddy covariance data, from 39 northern-hemisphere research sites located at latitudes ranging from ∼29°N to ∼64°N. We computed the standard deviation of annual NEE integrals at individual sites to represent absolute interannual variability (AIAV), and the corresponding coefficient of variation as a measure of relative interannual variability (RIAV). Our results showed decreased trends of annual NEE with increasing latitude for both deciduous broadleaf forests and evergreen needleleaf forests. Gross primary production (GPP) explained a significant proportion of the spatial variation of NEE across evergreen needleleaf forests, whereas, across deciduous broadleaf forests, it is ecosystem respiration (Re). In addition, AIAV in GPP and Re increased significantly with latitude in deciduous broadleaf forests, but AIAV in GPP decreased significantly with latitude in evergreen needleleaf forests. Furthermore, RIAV in NEE, GPP, and Re appeared to increase significantly with latitude in deciduous broadleaf forests, but not in evergreen needleleaf forests. Correlation analyses showed air temperature was the primary environmental factor that determined RIAV of NEE in deciduous broadleaf forest across the North American sites, and none of the chosen climatic factors could explain RIAV of NEE in evergreen needleleaf forests. Mean annual NEE significantly increased with latitude in grasslands. Precipitation was dominant environmental factor for the spatial variation of magnitude and IAV in GPP and Re in grasslands.  相似文献   

5.
Switchgrass (Panicum virgatum L.) has gained importance as feedstock for bioenergy over the last decades due to its high productivity for up to 20 years, low input requirements, and potential for carbon sequestration. However, data on the dynamics of CO2 exchange of mature switchgrass stands (>5 years) are limited. The objective of this study was to determine net ecosystem exchange (NEE), ecosystem respiration (Re), and gross primary production (GPP) for a commercially managed switchgrass field in its sixth (2012) and seventh (2013) year in southern Ontario, Canada, using the eddy covariance method. Average NEE flux over two growing seasons (emergence to harvest) was ?10.4 μmol m?2 s?1 and reached a maximum uptake of ?42.4 μmol m?2 s?1. Total annual NEE was ?380 ± 25 and ?430 ± 30 g C m?2 in 2012 and 2013, respectively. GPP reached ?1354 ± 23 g C m?2 in 2012 and ?1430 ± 50g C m?2 in 2013. Annual Re in 2012 was 974 ± 20 g C m?2 and 1000 ± 35 g C m?2 in 2013. GPP during the dry year of 2012 was significantly lower than that during the normal year of 2013, but yield was significantly higher in 2012 with 1090 g  m?2, compared to 790 g m?2 in 2013. If considering the carbon removed at harvest, the net ecosystem carbon balance came to 106 ± 45 g C  m?2 in 2012, indicating a source of carbon, and to ?59 ± 45 g C m?2 in 2013, indicating a sink of carbon. Our results confirm that switchgrass can switch between being a sink and a source of carbon on an annual basis. More studies are needed which investigate this interannual variability of the carbon budget of mature switchgrass stands.  相似文献   

6.
In China, croplands account for a relatively large form of vegetation cover. Quantifying carbon dioxide exchange and understanding the environmental controls on carbon fluxes over croplands are critical in understanding regional carbon budgets and ecosystem behaviors. In this study, the net ecosystem exchange (NEE) at a winter wheat/summer maize rotation cropping site, representative of the main cropping system in the North China Plain, was continuously measured using the eddy covariance technique from 2005 to 2009. In order to interpret the abiotic factors regulating NEE, NEE was partitioned into gross primary production (GPP) and ecosystem respiration (Reco). Daytime Reco was extrapolated from the relationship between nighttime NEE and soil temperature under high turbulent conditions. GPP was then estimated by subtracting daytime NEE from the daytime estimates of Reco. Results show that the seasonal patterns of the temperature responses of Reco and light‐response parameters are closely related to the crop phenology. Daily Reco was highly dependent on both daily GPP and air temperature. Interannual variability showed that GPP and Reco were mainly controlled by temperature. Water availability also exerted a limit on Reco. The annual NEE was ?585 and ?533 g C m?2 for two seasons of 2006–2007 and 2007–2008, respectively, and the wheat field absorbed more carbon than the maize field. Thus, we concluded that this cropland was a strong carbon sink. However, when the grain harvest was taken into account, the wheat field was diminished into a weak carbon sink, whereas the maize field was converted into a weak carbon source. The observations showed that severe drought occurring during winter did not reduce wheat yield (or integrated NEE) when sufficient irrigation was carried out during spring.  相似文献   

7.
The annual carbon (C) budget of grasslands is highly dynamic, dependent on grazing history and on effects of interannual variability (IAV) in climate on carbon dioxide (CO2) fluxes. Variability in climatic drivers may directly affect fluxes, but also may indirectly affect fluxes by altering the response of the biota to the environment, an effect termed ‘functional change’. We measured net ecosystem exchange of CO2 (NEE) and its diurnal components, daytime ecosystem CO2 exchange (PD) and night‐time respiration (RE), on grazed and ungrazed mixed‐grass prairie in North Dakota, USA, for five growing seasons. Our primary objective was to determine how climatic anomalies influence variability in CO2 exchange. We used regression analysis to distinguish direct effects of IAV in climate on fluxes from functional change. Functional change was quantified as the improvement in regression on fitting a model in which slopes of flux–climate relationships vary among years rather than remain invariant. Functional change and direct effects of climatic variation together explained about 20% of variance in weekly means of NEE, PD, and RE. Functional change accounted for more than twice the variance in fluxes of direct effects of climatic variability. Grazing did not consistently influence the contribution of functional change to flux variability, but altered which environmental variable best explained year‐to‐year differences in flux–climate slopes, reduced IAV in seasonal means of fluxes, lessened the strength of flux–climate correlations, and increased NEE by reducing RE relatively more than PD. Most of these trends are consistent with the interpretation that grazing reduced the influence of plants on ecosystem fluxes. Because relationships between weekly values of fluxes and climatic regulators changed annually, year‐to‐year differences in the C balance of these ecosystems cannot be predicted from knowledge of IAV in climate alone.  相似文献   

8.
This paper presents results of 1 year (from March 25, 2003 to March 24, 2004, 366 days) of continuous measurements of net ecosystem CO2 exchange (NEE) above a steppe in Mongolia using the eddy covariance technique. The steppe, typical of central Mongolia, is dominated by C3 plants adapted to the continental climate. The following two questions are addressed: (1) how do NEE and its components: gross ecosystem production (GEP) and total ecosystem respiration (Reco) vary seasonally? (2) how do NEE, GEP, and Reco respond to biotic and abiotic factors? The hourly minimal NEE and the hourly maximal Reco were −3.6 and 1.2 μmol m−2 s−1, respectively (negative values denoting net carbon uptake by the canopy from the atmosphere). Peak daily sums of NEE, GEP, and Reco were −2.3, 3.5, and 1.5 g C m−2 day−1, respectively. The annual sums of GEP, Reco, and NEE were 179, 138, and −41 g C m−2, respectively. The carbon removal by sheep was estimated to range between 10 and 82 g C m−2 yr−1 using four different approaches. Including these estimates in the overall carbon budget yielded net ecosystem productivity of −23 to +20 g C m−2 yr−1. Thus, within the remaining experimental uncertainty the carbon budget at this steppe site can be considered to be balanced. For the growing period (from April 23 to October 21, 2003), 26% and 53% of the variation in daily NEE and GEP, respectively, could be explained by the changes in leaf area index. Seasonality of GEP, Reco, and NEE was closely associated with precipitation, especially in the peak growing season when GEP and Reco were largest. Water stress was observed in late July to early August, which switched the steppe from a carbon sink to a carbon source. For the entire growing period, the light response curves of daytime NEE showed a rather low apparent quantum yield (α=−0.0047 μmol CO2 μmol−1 photons of photosynthetically active radiation). However, the α values varied with air temperature (Ta), vapor pressure deficit, and soil water content.  相似文献   

9.
Understanding carbon dynamics of switchgrass ecosystems is crucial as switchgrass (Panicum virgatum L.) acreage is expanding for cellulosic biofuels. We used eddy covariance system and examined seasonal changes in net ecosystem CO2 exchange (NEE) and its components – gross ecosystem photosynthesis (GEP) and ecosystem respiration (ER) – in response to controlling factors during the second (2011) and third (2012) years of stand establishment in the southern Great Plains of the United States (Chickasha, OK). Larger vapor pressure deficit (VPD > 3 kPa) limited photosynthesis and caused asymmetrical diurnal NEE cycles (substantially higher NEE in the morning hours than in the afternoon at equal light levels). Consequently, rectangular hyperbolic light–response curve (NEE partitioning algorithm) consistently failed to provide good fits at high VPD. Modified rectangular hyperbolic light–VPD response model accounted for the limitation of VPD on photosynthesis and improved the model performance significantly. The maximum monthly average NEE reached up to ?33.02 ± 1.96 μmol CO2 m?2 s?1 and the highest daily integrated NEE was ?35.89 g CO2 m?2 during peak growth. Although large differences in cumulative seasonal GEP and ER were observed between two seasons, total seasonal ER accounted for about 75% of GEP regardless of the growing season lengths and differences in aboveground biomass production. It suggests that net ecosystem carbon uptake increases with increasing GEP. The ecosystem was a net sink of CO2 during 5–6 months and total seasonal uptakes were ?1128 ± 130 and ?1796 ± 217 g CO2 m?2 in 2011 and 2012, respectively. In conclusion, our findings suggest that the annual carbon status of a switchgrass ecosystem can be a small sink to small source in this region if carbon loss from biomass harvesting is considered. However, year‐round measurements over several years are required to assess a long‐term source‐sink status of the ecosystem.  相似文献   

10.
Variability in three Pacific teleconnection patterns are examined to see if net carbon exchange at a low‐elevation, old‐growth forest is affected by climatic changes associated with these periodicities. Examined are the Pacific Decadal Oscillation (PDO), Pacific/North American Oscillation (PNA) and El Niño‐Southern Oscillation (ENSO). We use 9 years of eddy covariance CO2, H2O and energy fluxes measured at the Wind River AmeriFlux site, Washington, USA and 8 years of tower‐pixel remote sensing data from the Moderate Resolution Imaging Spectroradiometer (MODIS) to address this question. We compute a new Composite Climate Index (CCI) based on the three Pacific Oscillations to divide the measurement period into positive‐ (2003 and 2005), negative‐ (1999 and 2000) and neutral‐phase climate years (2001, 2002, 2004, 2006 and 2007). The forest transitioned from an annual net carbon sink (NEP=+217 g C m?2 yr?1, 1999) to a source (NEP=?100 g C m?2 yr?1, 2003) during two dominant teleconnection patterns. Net ecosystem productivity (NEP), water use efficiency (WUE) and light use efficiency (LUE) were significantly different (P<0.01) during positive (NEP=?0.27 g C m?2 day?1, WUE=4.1 mg C g?1 H2O, LUE=0.94 g C MJ?1) and negative (NEP=+0.37 g C m?2 day?1, WUE=3.4 mg C g?1 H2O, LUE=0.83 g C MJ?1) climate phases. The CCI was linked to variability in the MODIS Enhanced Vegetation Index (EVI) but not to MODIS Fraction of absorbed Photosynthetically Active Radiation (FPAR). EVI was highest during negative climate phases (1999 and 2000) and was positively correlated with NEP and showed potential for using MODIS to estimate teleconnection‐driven anomalies in ecosystem CO2 exchange in old‐growth forests. This work suggests that any increase in the strength or frequency of ENSO coinciding with in‐phase, low frequency Pacific oscillations (PDO and PNA) will likely increase CO2 uptake variability in Pacific Northwest conifer forests.  相似文献   

11.
Nine years (2003–2011) of carbon dioxide (CO2) flux were measured at a black spruce forest in interior Alaska using the eddy covariance method. Seasonal and interannual variations in the gross primary productivity (GPP) and ecosystem respiration (RE) were associated primarily with air temperature: warmer conditions enhanced GPP and RE. Meanwhile, interannual variation in annual CO2 balance was controlled predominantly by RE, and not GPP. During these 9 years of measurement, the annual CO2 balance shifted from a CO2 sink to a CO2 source, with a 9‐year average near zero. The increase in autumn RE was associated with autumn warming and was mostly attributed to a shift in the annual CO2 balance. The increase in autumn air temperature (0.22 °C yr?1) during the 9 years of study was 15 times greater than the long‐term warming trend between 1905 and 2011 (0.015 °C yr?1) due to decadal climate oscillation. This result indicates that most of the shifts in observed CO2 fluxes were associated with decadal climate variability. Because the natural climate varies in a cycle of 10–30 years, a long‐term study covering at least one full cycle of decadal climate oscillation is important to quantify the CO2 balance and its interaction with the climate.  相似文献   

12.
We present a decadal (1994–2004) record of carbon dioxide flux in a 160‐year‐old black spruce forest/veneer bog complex in central Manitoba, Canada. The ecosystem shifted from a source (+41 g C m−2, 1995) to a sink (−21 g C m−2, 2004) of CO2 over the decade, with an average net carbon balance near zero. Annual mean temperatures increased 1–2° during the period, consistent with the decadal trend across the North American boreal biome. We found that ecosystem carbon exchange responded strongly to air temperature, moisture status, potential evapotranspiration, and summertime solar radiation. The seasonal cycle of ecosystem respiration significantly lagged that of photosynthesis, limited by the rate of soil thaw and the slow drainage of the soil column. Factors acting over long time scales, especially water table depth, strongly influenced the carbon budget on annual time scales. Net uptake was enhanced and respiration inhibited by multiple years of rainfall in excess of evaporative demand. Contrary to expectations, we observed no correlation between longer growing seasons and net uptake, possibly because of offsetting increases in ecosystem respiration. The results indicate that the interactions between soil thaw and water table depth provide critical controls on carbon exchange in boreal forests underlain by peat, on seasonal to decadal time scales, and these factors must be simulated in terrestrial biosphere models to predict response of these regions to future climate.  相似文献   

13.
Terrestrial ecosystems contribute most of the interannual variability (IAV) in atmospheric carbon dioxide (CO2) concentrations, but processes driving the IAV of net ecosystem CO2 exchange (NEE) remain elusive. For a predictive understanding of the global C cycle, it is imperative to identify indicators associated with ecological processes that determine the IAV of NEE. Here, we decompose the annual NEE of global terrestrial ecosystems into their phenological and physiological components, namely maximum carbon uptake (MCU) and release (MCR), the carbon uptake period (CUP), and two parameters, α and β, that describe the ratio between actual versus hypothetical maximum C sink and source, respectively. Using long‐term observed NEE from 66 eddy covariance sites and global products derived from FLUXNET observations, we found that the IAV of NEE is determined predominately by MCU at the global scale, which explains 48% of the IAV of NEE on average while α, CUP, β, and MCR explain 14%, 25%, 2%, and 8%, respectively. These patterns differ in water‐limited ecosystems versus temperature‐ and radiation‐limited ecosystems; 31% of the IAV of NEE is determined by the IAV of CUP in water‐limited ecosystems, and 60% of the IAV of NEE is determined by the IAV of MCU in temperature‐ and radiation‐limited ecosystems. The Lund‐Potsdam‐Jena (LPJ) model and the Multi‐scale Synthesis and Terrestrial Model Inter‐comparison Project (MsTMIP) models underestimate the contribution of MCU to the IAV of NEE by about 18% on average, and overestimate the contribution of CUP by about 25%. This study provides a new perspective on the proximate causes of the IAV of NEE, which suggest that capturing the variability of MCU is critical for modeling the IAV of NEE across most of the global land surface.  相似文献   

14.
This paper presents an empirical model of net ecosystem CO2 exchange (NEE) developed for a subarctic fen near Churchill, Manitoba. The model with observed data helps explain the interannual variability in growing season NEE. Five years of tower‐flux data are used to test and examine the seasonal behaviour of the model simulations. Processes controlling the observed interannual variability of CO2 exchange at the fen are examined by exploring the sensitivity of the model to changes in air temperature, precipitation and leaf area index. Results indicate that the sensitivity of NEE to changing environmental controls is complex and varies interannually depending on the initial conditions of the wetland. Changes in air temperature and the timing of precipitation events have a strong influence on NEE, which is largely manifest in gross ecosystem photosynthesis (GEP). Climate change scenarios indicate that warmer air temperatures will increase carbon acquisition during wet years but may act to reduce wetland carbon storage in years that experience a large water deficit early in the growing season. Model simulations for this subarctic sedge fen indicate that carbon acquisition is greatest during wet and warm conditions. This suggests therefore that carbon accumulation was greatest at this subarctic fen during its early developmental stages when hydroclimatic conditions were relatively wet and warm at approximately 2500 years before present.  相似文献   

15.
In high‐latitude regions, carbon dioxide (CO2) emissions during the winter represent an important component of the annual ecosystem carbon budget; however, the mechanisms that control the winter CO2 emissions are currently not well understood. It has been suggested that substrate availability from soil labile carbon pools is a main driver of winter CO2 emissions. In ecosystems that are dominated by annual herbaceous plants, much of the biomass produced during the summer is likely to contribute to the soil labile carbon pool through litter fall and root senescence in the autumn. Thus, the summer carbon uptake in the ecosystem may have a significant influence on the subsequent winter CO2 emissions. To test this hypothesis, we conducted a plot‐scale shading experiment in a boreal peatland to reduce the gross primary production (GPP) during the growing season. At the growing season peak, vascular plant biomass in the shaded plots was half that in the control plots. During the subsequent winter, the mean CO2 emission rates were 21% lower in the shaded plots than in the control plots. In addition, long‐term (2001–2012) eddy covariance data from the same site showed a strong correlation between the GPP (particularly the late summer and autumn GPP) and the subsequent winter net ecosystem CO2 exchange (NEE). In contrast, abiotic factors during the winter could not explain the interannual variation in the cumulative winter NEE. Our study demonstrates the presence of a cross‐seasonal link between the growing season biotic processes and winter CO2 emissions, which has important implications for predicting winter CO2 emission dynamics in response to future climate change.  相似文献   

16.
Difficulty in balancing the global carbon budget has lead to increased attention on tropical forests, which have been estimated to account for up to one third of global gross primary production. Whether tropical forests are sources, sinks, or neutral with respect to their carbon balance with the atmosphere remains unclear. To address this issue, estimates of net ecosystem exchange of carbon (NEE) were made for 3 years (1998–2000) using the eddy‐covariance technique in a tropical wet forest in Costa Rica. Measurements were made from a 42 m tower centred in an old‐growth forest. Under unstable conditions, the measurement height was at least twice the estimated zeroplane height from the ground. The canopy at the site is extremely rough; under unstable conditions the median aerodynamic roughness length ranged from 2.4 to 3.6 m. No relationship between NEE and friction velocity (u*) was found using all of the 30‐min averages. However, there was a linear relationship between the nighttime NEE and averaged u* (R2 = 0.98). The diurnal pattern of flux was similar to that found in other tropical forests, with mean daytime NEE ca. ? 18 μ mol CO2 m?2 s?1 and mean nighttime NEE 4.6 μ mol CO2 m?2 s?1. However, because ~ 80% of the nighttime data in this forest were collected during low u* conditions ( < 0.2 m s?1), nighttime NEE was likely underestimated. Using an alternative analysis, mean nighttime NEE increased to 7.05 μ mol CO2 m?2 s?1. There were interannual differences in NEE, but seasonal differences were not apparent. Irradiance accounted for ~ 51% of the variation in the daytime fluxes, with temperature and vapour pressure deficit together accounting for another ~ 20%. Light compensation points ranged from 100 to 207 μ mol PPFD m?2 s?1. No was relationship was found between 30‐min nighttime NEE and tower‐top air temperature. A weak relationship was found between hourly nighttime NEE and canopy air temperature using data averaged hourly over the entire sampling period (Q10 = 1.79, R2 = 0.17). The contribution of below‐sensor storage was fairly constant from day to day. Our data indicate that this forest was a slight carbon source in 1998 (0.05 to ?1.33 t C ha?1 yr?1), a moderate sink in 1999 (?1.53 to ?3.14 t C ha?1 yr?1), and a strong sink in 2000 (?5.97 to ?7.92 t C ha?1 yr?1). This trend is interpreted as relating to the dissipation of warm‐phase El Niño effects over the course of this study.  相似文献   

17.
For most ecosystems, net ecosystem exchange of CO2 (NEE) varies within and among years in response to environmental change. We analyzed measurements of CO2 exchange from eight native rangeland ecosystems in the western United States (58 site‐years of data) in order to determine the contributions of photosynthetic and respiratory (physiological) components of CO2 exchange to environmentally caused variation in NEE. Rangelands included Great Plains grasslands, desert shrubland, desert grasslands, and sagebrush steppe. We predicted that (1) week‐to‐week change in NEE and among‐year variation in the response of NEE to temperature, net radiation, and other environmental drivers would be better explained by change in maximum rates of ecosystem photosynthesis (Amax) than by change in apparent light‐use efficiency (α) or ecosystem respiration at 10 °C (R10) and (2) among‐year variation in the responses of NEE, Amax, and α to environmental drivers would be explained by changes in leaf area index (LAI). As predicted, NEE was better correlated with Amax than α or R10 for six of the eight rangelands. Week‐to‐week variation in NEE and physiological parameters correlated mainly with time‐lagged indices of precipitation and water‐related environmental variables, like potential evapotranspiration, for desert sites and with net radiation and temperature for Great Plains grasslands. For most rangelands, the response of NEE to a given change in temperature, net radiation, or evaporative demand differed among years because the response of photosynthetic parameters (Amax, α) to environmental drivers differed among years. Differences in photosynthetic responses were not explained by variation in LAI alone. A better understanding of controls on canopy photosynthesis will be required to predict variation in NEE of rangeland ecosystems.  相似文献   

18.
Marginal organic soils, abundant in the boreal region, are being increasingly used for bioenergy crop cultivation. Using long‐term field experimental data on greenhouse gas (GHG) balance from a perennial bioenergy crop [reed canary grass (RCG), Phalaris arundinaceae L.] cultivated on a drained organic soil as an example, we show here for the first time that, with a proper cultivation and land‐use practice, environmentally sound bioenergy production is possible on these problematic soil types. We performed a life cycle assessment (LCA) for RCG on this organic soil. We found that, on an average, this system produces 40% less CO2‐equivalents per MWh of energy in comparison with a conventional energy source such as coal. Climatic conditions regulating the RCG carbon exchange processes have a high impact on the benefits from this bioenergy production system. Under appropriate hydrological conditions, this system can even be carbon‐negative. An LCA sensitivity analysis revealed that net ecosystem CO2 exchange and crop yield are the major LCA components, while non‐CO2 GHG emissions and costs associated with crop production are the minor ones. Net bioenergy GHG emissions resulting from restricted net CO2 uptake and low crop yields, due to climatic and moisture stress during dry years, were comparable with coal emissions. However, net bioenergy emissions during wet years with high net uptake and crop yield were only a third of the coal emissions. As long‐term experimental data on GHG balance of bioenergy production are scarce, scientific data stemming from field experiments are needed in shaping renewable energy source policies.  相似文献   

19.
Tea plantations are widely distributed and continuously expanding across subtropical China in recent years. However, carbon flux exchanges from tea plantation ecosystems are poorly understood at the ecosystem level. In this study, we use the eddy covariance technique to quantify the magnitude and temporal variations of the net ecosystem exchange (NEE) in tea plantation in Southeast China over four years (2014–2017). The result showed that the tea plantation was a net carbon sink, with an annual NEE that ranged from ?182.40 to ?301.51 g C/m2, which was a much lower carbon sequestration potential than other ecosystems in subtropical China. Photosynthetic photon flux density (PPFD) explained the highest proportion of the variation in NEE and gross primary productivity (GPP) (for NEE: F = 389.89, p < .01; for GPP: F = 1,018.04, p < .01), and air temperature (Ta) explained the highest proportion of the variation in ecosystem respiration (RE) (F = 13,141.81, p < .01). The strong pruning activity in April not only reduced the carbon absorption capacity but also provided many plant residues for respiration, which switched the tea plantation to a carbon source from April to June. Suppression of NEE at higher air temperatures was due to the decrease in GPP more than the decrease in RE, which indicated that future global warming may transform this subtropical tea plantation from a carbon sink to carbon source.  相似文献   

20.
Continuous measurements of the net CO2 flux exchanged in a mixed forest with the atmosphere were performed over 5 years at the Vielsalm experimental site. The carbon sequestration at the site was deduced by a summation of the measurements. Problems associated with this summation procedure were discussed. The carbon sequestration in the ecosystem was presented and its interannual variability was discussed. An estimation of the night flux correction was given. The correction was applied by replacing measurements made during quiet nights by a parameterization. The impact of the correction was shown to vary between 10 and 20% of the uncorrected flux, according to the year. The need to include the storage flux during turbulent periods was emphasized: its neglect leads to an error which will be greater than the one it tries to correct. It was also shown that the heterogeneity of the site made it necessary to split the data into separate series corresponding to the different vegetation patches and to fill the data gaps by using an algorithm that takes account of the weather conditions. Two series were defined, one corresponding to a beech subplot, the other to a conifer subplot. The uncertainty owing to the data split and the data gap‐filling was about 15–20% annually. The carbon sequestration was then analysed in both the subplots. The length of the growing season was about 210 days in the beech and 240 days in the conifer. The carbon sequestration over 5 years was 2.28 kg C m2?2 in the beech and 3.58 kg C m2?2 in the conifer. The main difference between the species appeared in spring, between March and May, when the beeches were leafless. Significant interannual variations were observed in both the subplots. They appeared mainly in summer and were primarily because of the variations in the radiation and air humidity regimes. In addition, an impact of the interannual variation of the vegetation area index (VAI) and of the leaf initiation date was observed in the beech. Finally, a decline of the carbon sequestration efficiency of the ecosystem during the season was observed in both the subplots. It was because of neither the variation in any climatic variables nor VAI variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号