首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment of purified ATPase of the thermophilic bacterium PS-3 with the arginine reagent phenylglyoxal or with Woodward's reagent K, gave complete inactivation of the enzyme. The inactivation rates followed apparent first-order kinetics. The apparent order of reaction with respect to inhibitor concentrations gave values near to 1 with both reagents, suggesting that inactivation was a consequence of modifying one arginine or carboxyl group per active site. ADP and ATP strongly protected the thermophilic ATPase against both reagents. GDP and IDP protected less, whilst CTP did not protect. Experiments in which the incorporation of [14C]phenylglyoxal into the enzyme was measured show that extrapolation of incorporation to 100% inactivation of the enzyme gives 8-9 mol [14C]phenylglyoxal per mol ATPase, whilst ADP or ATP prevent modification of about one arginine per mol.  相似文献   

2.
3'-O-(4-Benzoyl)benzoyl ADP (BzADP) was used as a photoaffinity label for covalent binding of adenine nucleotide analogs to the nucleotide binding site(s) of the thermophilic bacterium PS3 ATPase (TF1). As with the CF1-ATPase (Bar-Zvi, D. and Shavit, N. (1984) Biochim. Biophys. Acta 765, 340-356) noncovalently bound BzADP is a reversible inhibitor of the TF1-ATPase. BzADP changes the kinetics of ATP hydrolysis from noncooperative to cooperative in the same way as ADP does, but, in contrast to the effect on the CF1-ATPase, it has no effect on the Vmax. In the absence of Mg2+ 1 mol BzADP binds noncovalently to TF1, while with Mg2+ 3 mol are bound. Photoactivation of BzADP results in the covalent binding of the analog to the nucleotide binding site(s) on TF1 and correlates with the inactivation of the ATPase. Complete inactivation of the TF1-ATPase occurs after covalent binding of 2 mol BzADP/mol TF1. Photoinactivation of TF1 by BzADP is prevented if excess of either ADP or ATP is present during irradiation. Analysis by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate of the Bz[3H]ADP-labeled TF1-ATPase shows that all the radioactivity is incorporated into the beta subunit.  相似文献   

3.
Chloroplast thylakoid membranes contain tightly bound ADP which is intimately involved in the mechanism of photophosphorylation. The photoaffinity analog 2-azido-ADP binds tightly to spinach thylakoid membrane-bound coupling factor one (CF1) and, in a manner similar to ADP, inhibits the light-triggered ATPase activity (Czarnecki, J.J., Abbott, M.S. and Selman, B.R. (1983) Eur. J. Biochem. 136, 19-24). Ultraviolet irradiation of thylakoid membranes containing noncovalently, tightly bound 2-azido[beta-32P]ADP results in the inactivation of both the methanol-stimulated MgATPase activity of the membrane-bound CF1 and the octylglucoside-dependent MgATPase activity of the solubilized enzyme. There is a linear correlation between the loss of enzyme activity and the covalent incorporation of the photoaffinity analog. Full inactivation of catalytic activity is estimated to occur upon incorporation of 1.07 mol analog and 0.65 mol analog per mol enzyme for the methanol- and octylglucoside-stimulated activities, respectively. Since 2-azido-ADP modifies only the beta subunit of the CF1 and since there are probably three beta subunits per CF1, these results indicate strong cooperativity among beta subunits and between the site of tightly bound nucleotides and the catalytic sites.  相似文献   

4.
The photoaffinity analog of ATP, 3'-O-(4-benzoyl) benzoyl ATP (BzATP), was used to covalently modify the catalytic sites on the beef heart mitochondrial F1-ATPase. In the absence of actinic illumination, BzATP was a slow substrate for the enzyme (Vmax = 0.19 mumol min-1 mg-1; kcat/Km = 2.2 X 10(6) M-1s-1) and behaved as a classical competitive inhibitor versus ATP (Ki = 0.85 microM). Under photolytic conditions, BzATP inactivated F1 with pseudo first-order kinetics, and the photoinactivation reaction showed rate saturation suggesting specific, reversible binding of BzATP to F1 prior to covalent bond formation. ATP protected against F1 photoinactivation (Kprotect = 0.3 microM) and partially covalently modified F1 yielded the same Km for ATP as unmodified enzyme. These results strongly suggested that BzATP was bound to catalytic sites on the enzyme. In the absence of photolysis, BzATP saturated two binding sites on the F1 (KD = 1.6 microM), and under photolytic conditions, 1 mol of BzATP was shown to be covalently liganded to the beta subunit of the enzyme coincident with 100% loss in ATPase activity. Previous studies with the mitochondrial F1-ATPase have suggested a mechanism involving catalytic cooperativity during ATP hydrolysis. Our demonstration of a molar stoichiometry of 1 for photoinactivation is in accord with this mechanism. It is suggested that either F1 is unable to hydrolyze covalently bound BzATP, or that subsequent to hydrolysis, the BzADP product can not be released from the catalytic site. It is therefore inferred that F1 hydrolytic activity requires cooperativity between multiple, viable catalytic sites and that covalent modification of a single catalytic site is sufficient for complete enzyme inactivation.  相似文献   

5.
In the crystal structure of the bovine heart mitochondrial F(1)-ATPase (Abrahams, J. P., Leslie, A. G. W., Lutter, R., and Walker, J. E. (1994) Nature 370, 621-628), the two liganded beta subunits, one with MgAMP-PNP bound to the catalytic site (beta(T)) and the other with MgADP bound (beta(D)) have closed conformations. The empty beta subunit (beta(E)) has an open conformation. In beta(T) and beta(D), the distance between the carboxylate of beta-Asp(315) and the guanidinium of beta-Arg(337) is 3.0-4.0 A. These side chains are at least 10 A apart in beta(E). The alpha(3)(betaD311C/R333C)(3)gamma subcomplex of TF(1) with the corresponding residues substituted with cysteine has very low ATPase activity unless it is reduced prior to assay or assayed in the presence of dithiothreitol. The reduced subcomplex hydrolyzes ATP at 50% the rate of wild-type and is rapidly inactivated by oxidation by CuCl(2) with or without magnesium nucleotides bound to catalytic sites. Titration of the subcomplex with iodo[(14)C]acetamide after prolonged treatment with CuCl(2) in the presence or absence of 1 mM MgADP revealed nearly two free sulfhydryl groups/mol of enzyme. Therefore, one pair of introduced cysteines is located on a beta subunit that exists in the open or partially open conformation even when catalytic sites are saturated with MgADP. Since V(max) of ATP hydrolysis is attained when three catalytic sites of F(1) are saturated, the catalytic site that binds ATP must be closing as the catalytic site that releases products is opening.  相似文献   

6.
A novel ATPase was solubilized from membranes of an acidothermophilic archaebacterium, Sulfolobus acidocaldarius, with low ionic strength buffer containing EDTA. The enzyme was purified to homogeneity by hydrophobic chromatography and gel filtration. The molecular weight of the purified enzyme was estimated to be 360,000. Polyacrylamide gel electrophoresis of the purified enzyme in the presence of sodium dodecyl sulfate revealed that it consisted of three kinds of subunits, alpha, beta, and gamma, whose molecular weights were approximately 69,000, 54,000, and 28,000, respectively, and the most probable subunit stoichiometry was alpha 3 beta 3 gamma 1. The purified ATPase hydrolyzed ATP, GTP, ITP, and CTP but not UTP, ADP, AMP, or p-nitrophenylphosphate. The enzyme was highly heat stable and showed an optimal temperature of 85 degrees C. It showed an optimal pH of around 5, very little activity at neutral pH, and another small activity peak at pH 8.5. The ATPase activity was significantly stimulated by bisulfite and bicarbonate ions, the optimal pH remaining unchanged. The Lineweaver-Burk plot was linear, and the Km for ATP and the Vmax were estimated to be 1.6 mM and 13 mumol Pi.mg.-1.min-1, respectively, at pH 5.2 at 60 degrees C in the presence of bisulfite. The chemical modification reagent, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole, caused inactivation of the ATPase activity although the enzyme was not inhibited by N,N'-dicyclohexylcarbodiimide, N-ethyl-maleimide, azide or vanadate. These results suggest that the ATPase purified from membranes of S. acidocaldarius resembles other archaebacterial ATPases, although a counterpart of the gamma subunit has not been found in the latter. The relationship of the S. acidocaldarius ATPase to other ion-transporting ATPases, such as F0F1 type or E1E2 type ATPases, was discussed.  相似文献   

7.
(1)N-4-Azido-2-nitrophenyl-gamma-[3H]aminobutyryl-AdoPP[NH] P(NAP4-AdoPP[NH]P) a photoactivable derivative of 5-adenylyl imidodiphosphate (AdoPP[NH]P), was synthesized. (2) Binding of [3H]NAP4-AdoPP[NH]P to soluble ATPase from beef heart mitochondria (F1) was studied in the absence of photoirradiation, and compared to that of [3H]AdoPP[NH]P. The photoactivable derivative of AdoPP[NH]P was found to bind to F1 with high affinity, like AdoPP[NH]P. Once [3H]NAP4-AdoPP[NH]P had bound to F1 in the dark, it could be released by AdoPP[NH]P, ADP and ATP, but not at all by NAP4 or AMP. Furthermore, preincubation of F1 with unlabeled AdoPP[NH]P, ADP, or ATP prevented the covalent labeling of the enzyme by [3H]NAP4-AdoPP[NH]P upon photoirradiation. (3) Photoirradiation of F1 by [3H]NAP4-AdoPP[NH]P resulted in covalent photolabeling and concomitant inactivation of the enzyme. Full inactivation corresponded to the binding of about 2 mol [3H]NAP4-AdoPP[NH]P/mol F1. Photolabeling by NAP4-AdoPP[NH]P was much more efficient in the presence than in the absence of MgCl2. (4) Bound [3H]NAP4-AdoPP[NH]P was localized on the alpha- and beta- subunits of F1. At low concentrations (less than 10 microM), bound [3H]NAP4-AdoPP[NH]P was predominantly localized on the alpha-subunit; at concentrations equal to, or greater than 75 microM, both alpha- and beta-subunits were equally labeled. (5) The extent of inactivation was independent of the nature of the photolabeled subunit (alpha or beta), suggesting that each of the two subunits, alpha and beta, is required for the activity of F1. (6) The covalently photolabeled F1 was able to form a complex with aurovertin, as does native F1. The ADP-induced fluorescence enhancement was more severely inhibited than the fluorescence quenching caused by ATP. The precentage of inactivation of F1 was virtually the same as the percentage of inhibition of the ATP-induced fluorescence quenching, suggestion that fluorescence quenching is related to the binding of ATP to the catalytic site of F1.  相似文献   

8.
D. Bar-Zvi  N. Shavit 《BBA》1984,765(3):340-346
3′-O-(4-benzoyl)benzoyl ADP (BzADP) acts as a reversible inhibitor of the chloroplast coupling factor 1 ATPase (CF1) when incubated with the enzyme in the dark. The Vmax of ATP hydrolysis is decreased and the kinetics of the reaction are altered from noncooperative to cooperative with respect to ATP. Photoactivation of the benzophenone group in BzADP by irradiation with ultraviolet light (366 nm) results in the covalent binding of BzADP to the enzyme and inactivation of its enzymic activity. Polyacrylamide gel electrophoresis of CF1-ATPase in the presence of sodium dodecyl sulfate shows that the analog is bound primarily to the enzyme's β subunit. Complete inactivation of the activated CF1-ATPase occurs upon covalent binding of 2.45 mol BzADP/mol CF1. Binding of BzADP and inactivation of the ATPase are prevented if ADP, but not ATP, is present during the photoactivation step. The presence of Ca2+ during irradiation enhances the rate of BzADP covalent binding as well as the rate of inactivation of the enzyme.  相似文献   

9.
Escherichia coli strain AN718 contains the alpha S373F mutation in F1F0-ATP synthase which blocks ATP synthesis (oxidative phosphorylation) and steady-state F1-ATPase activity. The revertant strain AN718SS2 containing the mutation alpha C373 was isolated and shown to confer a phenotype of higher growth yield than that of the wild type in liquid medium containing limiting glucose, succinate, or LB. Purified F1 from strain AN718SS2 was found to have 30% of wild-type steady-state ATPase activity and 60% of wild-type oxidative phosphorylation activity. Azide sensitivity of ATPase activity and ADP-induced enhancement of bound aurovertin fluorescence, both of which are lost in alpha S373F mutant F1, were regained in alpha C373 F1. N-Ethylmaleimide (NEM) inactivated alpha C373 F1 steady-state ATPase potently but had no effect on unisite ATPase. Complete inactivation of alpha C373 F1 steady-state ATPase corresponded to incorporation of one NEM per F1 (mol/mol), in just one of the three alpha subunits. NEM-inactivated enzyme showed azide-insensitive residual ATPase activity and loss of ADP-induced enhancement of bound aurovertin fluorescence. The data confirm the view that placement at residue alpha 373 of a bulky amino acid side-chain (phenylalanyl or NEM-derivatized cysteinyl) blocks positive catalytic cooperativity in F1. The fact that NEM inhibits steady-state ATPase when only one alpha subunit of three is reacted suggests a cyclical catalytic mechanism.  相似文献   

10.
The mitochondrial F1-ATPase is irreversibly inactivated by the adenine nucleotide analogue, p-fluorosulfonylbenzoyl-5'-adenosine. This inactivation is partly prevented by the presence of bound adenine nucleotides. Inactivations of the ATPase with p-fluorosulfonyl[14C]benzoyl-5'-adenosine were most efficiently accomplished with the nucleotide-free enzyme at pH 7.0, in a buffer containing 20% glycerol. Under these conditions, 4.2 g atoms of 14C are incorporated per 350,000 g of enzyme when the ATPase is inactivated by 90% by its reaction with 2 mM p-fluorosulfonyl[14C]benzoyl-5'-adenosine. Isolation of the component polypeptide chains of the labeled ATPase showed that all of the radioactivity was associated with the two largest subunits. The isolated alpha subunit contained 0.45 g atom of 14C/mol and the isolated beta subunit contained 0.88 g atom of 14C/mol. Hence, the inactivation can be correlated with the incorporation of 14C into the beta subunit. This suggests that the hydrolytic site of the enzyme resides on this subunit. The majority of the radioactivity in a tryptic digest of labeled beta subunit is contained ina tryptic peptide that has the following amino acid sequence: Ile-Met-Asp-Pro-Asn-Ile-Val-Gly-Ser-Glu-His-Tyr-Asp-Val-Ala-Arg, where Tyr is the radioactive derivative of the tyrosine residue that was sulfonylated during the inactivation.  相似文献   

11.
Nucleotide-binding sites of the ATPase from the halophilic archaebacterium Halobacterium saccharovorum were labeled by ultraviolet irradiation in the presence of [alpha-32P]ATP. A high-affinity site, located on subunit I (98 kDa), was identified as catalytic by the following criteria: ATP bound to subunit I was hydrolyzed and the cross-linked nucleotide was ADP; the specificity for ATP or ADP compared to that of other nucleotides was high; the tightly bound radionucleotide was exchangeable in the presence of excess unlabeled ATP and Mg2+; photolabeling of this site and enzyme inhibition due to tightly bound ADP were both dependent on the presence of Mg2+ and showed identical Kd values; treatment that restored the activity of the ADP-inhibited enzyme also led to the release of the tightly bound nucleotide from subunit I. In addition, a non-catalytic nucleotide-binding site was found, located on subunit II (71 kDa). This site did not hydrolyze ATP, its occupation was Mg2+ independent and the affinity for ATP and the nucleotide specificity were much lower than that of subunit I. We suspect that this site is nonspecific. These results indicate that H. saccharovorum ATPase is different from F1-ATPases which contain the catalytic site on the second largest subunit, but may be similar to other archaebacterial and vacuolar ATPases.  相似文献   

12.
We performed kinetic studies on the reactions of a fluorescent ATP analog, 2'-(5-dimethyl-aminonaphthalene-1-sulfonyl) amino-2'-deoxyATP (DNS-ATP), with E. coli F1-ATPase (EF1) and its subunits, to clarify the role of each subunit in the ATPase reaction. The following results were obtained. 1. One mol of EF1, which contains nonexchangeable 2 mol ATP and 0.5 mol ADP, binds 3 mol of DNS-ATP. The apparent dissociation constant, in the presence of Mg2+, was 0.23 microM. Upon binding, the fluorescence intensity of DNS-ATP at 520 nm increased exponentially with t1/2 of 35 s, and reached 3.5 times the original fluorescence level. Following the fluorescence increase, DNS-ATP was hydrolyzed, and the fluorescence intensity maintained its enhanced level. 2. The addition of an excess of ATP over the EF1-DNS-nucleotide complex, in the presence of Mg2+, decreased the fluorescence intensity rapidly, indicating the acceleration of DNS-nucleotide release from EF1. ADP and GTP also decreased the fluorescence intensity. 3. DCCD markedly inhibited the accelerating effect of ATP on DNS-nucleotide release from EF1 and the EF1-DNS-ATPase or -ATPase activity in a steady state. On the other hand, DCCD only slightly inhibited the fluorescence increase of DNS-ATP, due to its binding to EF1, and the rate of single cleavage of 1 mol of DNS-ATP per mol of alpha subunit of EF1. 4. In the presence of Mg2+, 0.65-0.82 mol of DNS-ATP binds to 1 mol of the isolated alpha subunit of EF1 with an apparent dissociation constant of 0.06-0.07 microM. Upon binding, the fluorescence intensity of DNS-ATP at 520 nm increased 1.55 fold very rapidly (t1/2 less than 1 s). No hydrolysis of DNS-ATP was observed upon the addition of the isolated alpha subunit. The fluorescence intensity of DNS-ATP was unaffected by the addition of the isolated beta subunit. DNS-ATP was also unhydrolyzed by the isolated beta subunit. 5. EF1-ATPase was reconstituted from alpha, beta, and gamma subunits in the presence of Mg2+ and ATP. The kinetic properties of the fluorescence change of DNS-ATP in the reaction with the reconstituted EF1-ATPase were quite similar to those of native EF1. Most of our findings are consistent with a simple mechanism that the high affinity catalytic site and low affinity regulatory site exist in the alpha subunit and beta subunit, respectively. However, the findings mentioned in (4) suggest that the binding of the alpha and beta subunit, which is mediated by the gamma subunit, induces conformational change(s) in the ATP binding site located probably in the alpha subunit, and that the conformational change(s) is essential to exert the full hydrolyzing activity.  相似文献   

13.
This review concerns the catalytic sector of F1 factor of the H+-dependent ATPases in mitochondria (MF1), bacteria (BF1) and chloroplasts (CF1). The three types of F1 have many similarities with respect to the structural parameters, subunit composition and catalytic mechanism. An alpha 3 beta 3 gamma delta epsilon stoichiometry is now accepted for MF1 and BF1; the alpha 2 beta 2 gamma 2 delta 2 epsilon 2 stoichiometry for CF1 remains as matter of debate. The major subunits alpha, beta and gamma are equivalent in MF1, BF1 and CF1; this is not the case for the minor subunits delta and epsilon. The delta subunit of MF1 corresponds to the epsilon subunit of BF1 and CF1, whereas the mitochondrial subunit equivalent to the delta subunit of BF1 and CF1 is probably the oligomycin sensitivity conferring protein (OSCP). The alpha beta gamma assembly is endowed with ATPase activity, beta being considered as the catalytic subunit and gamma as a proton gate. On the other hand, the delta and epsilon subunits of BF1 and CF1 most probably act as links between the F1 and F0 sectors of the ATPase complex. The natural mitochondrial ATPase inhibitor, which is a separate protein loosely attached to MF1, could have its counterpart in the epsilon subunit of BF1 and CF1. The generally accepted view that the catalytic subunit in the different F1 species is beta comes from a number of approaches, including chemical modification, specific photolabeling and, in the case of BF1, use of mutants. The alpha subunit also plays a central role in catalysis, since structural alteration of alpha by chemical modification or mutation results in loss of activity of the whole molecule of F1. The notion that the proton motive force generated by respiration is required for conformational changes of the F1 sector of the H+-ATPase complex has gained acceptance. During the course of ATP synthesis, conversion of bound ADP and Pi into bound ATP probably requires little energy input; only the release of the F1-bound ATP would consume energy. ADP and Pi most likely bind at one catalytic site of F1, while ATP is released at another site. This mechanism, which underlines the alternating cooperativity of subunits in F1, is supported by kinetic data and also by the demonstration of partial site reactivity in inactivation experiments performed with selective chemical modifiers. One obvious advantage of the alternating site mechanism is that the released ATP cannot bind to its original site.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
The 2′,3′-dialdehyde derivative of ATP (dial-ATP) has been shown to be an affinity label for the ATP binding site of the H+-ATPase from tonoplast of etiolated mung bean seedlings (Vigna radiata L.). The dial-ATP caused marked inactivation of enzymatic activities of both membrane-bound and soluble ATPase and its associated proton translocation. The inactivation was reversible, but could be stabilized by NaBH4. The sodium dodecyl sulfatepolyacrylamide gel electrophoresis pattern revealed that the dial-ATP binding site was in the large (A) subunit of ATPase. The inhibition could be substantially protected by its physiological substrate ATP, pyrophosphate, and nucleotides in the decreasing order: ATP > pyrophosphate > ADP = AMP > GTP > CTP = UTP. A Lineweaver-Burk plot showed that the mode of inhibition was competitive with respect to ATP. Loss of ATPase activity followed pseudo-first order kinetics with a Ki of 4.1 millimolar, a minimum inactivation half-time of 20 seconds, and a pseudo-first order rate constant of 0.035 s−1. The double logarithmic plot of apparent rate constant versus dial-ATP concentration gave a slope of 0.927, indicating that inactivation results from reaction of at least one lysine residue at the catalytic site of the large subunit. Labeling studies with [3H]dial-ATP indicate that the incorporation of approximately 1 mole of dial-ATP per mole ATPase is sufficient to completely inhibit the ATPase. A working model of nonequivalent subunits for enzymatic mechanism of vacuolar ATPase is suggested.  相似文献   

15.
1. Beef-heart mitochondrial ATPase (F1) is inactivated and dissociated by incubation with 0.85 M LiCl. ATP partly protects against inactivation. Three dissociation products could be identified after chromatography on diethylaminoethylcellulose: the delta subunit which is not adsorbed, the beta subunit which may be eluted from the column, and the alpha and gamma subunits which remain bound to the column. 2. Aurovertin binds to dissociated F1 with a fluorescence enhancement equal to about 30% that found with F1. Unlike intact F1 which shows two kinetically separated phases of fluorescence enhancement, only a fast phase is found with dissociated enzyme. 3. Fluorescence measurements at varying aurovertin and protein concentrations indicate that aurovertin binds to dissociated F1 in a simple 3-component reaction with dissociation constant 0.4 muM. There are two indistinguishable binding sites, calculated on the basis of the initial F1 concentration before dissociation. 4. The beta subunit was isolated from dissociated F1 by DEAE-cellulose chromatography. It has no ATPase activity but reacts with aurovertin with a fluorescence enhancement similar to that of dissociated F1. 5. The isolated beta subunit contains one aurovertin binding site with a dissociation constant of 0.56 muM. 6. It is concluded that F1 contains two beta subunits.  相似文献   

16.
W Chen  W D Frasch 《Biochemistry》2001,40(25):7729-7735
Site-directed mutants Y317C, Y317E, Y317F, Y317G, and Y317K were made to the catch-loop tyrosine on the beta subunit of the chloroplast F(1)-ATPase in Chlamydomonas. EPR spectra of VO(2+)-ATP bound to site 3 of CF(1) from wild type and mutants were obtained. Every mutant changed the (51)V hyperfine parameters of the VO(2+) bound at this site in the catalytically active conformation of the enzyme but had no effect on these parameters in the form that predominates when the enzyme activity is latent. These results indicate that this residue is a ligand to the metal of the Mg(2+)-nucleotide complex that binds to the empty catalytic site. The mutations also decreased the k(cat) of the ATPase activity to a much greater extent than k(cat)/K(M). Thus, these mutations limit the rate of product (Mg(2+)-ADP and phosphate) release in the ATPase direction or, conversely, the initial binding of substrates in the ATP synthesis direction. On the basis of these observations, coordination of betaY317 by Mg(2+)-ADP that binds to the empty catalytic site provides a means by which substrate binding could trigger gamma subunit rotation and consequent conformation changes of beta subunits during ATP synthesis.  相似文献   

17.
Z X Xue  J M Zhou  T Melese  R L Cross  P D Boyer 《Biochemistry》1987,26(13):3749-3753
The photolabeling of chloroplast F1 ATPase, following exposure to Mg2+ and 2-azido-ATP and separation from medium nucleotides, results in derivatization of two separate peptide regions of the beta subunit. Up to 3 mol of the analogue can be incorporated per mole of CF1, with covalent binding of one moiety or two moieties per beta subunit that can be either AMP, ADP, or ATP derivatives. These results, the demonstration of noncovalent tight binding of at least four [3H]adenine nucleotides to the enzyme and the presence of three beta subunits per enzyme, point to six potential adenine nucleotide binding sites per molecule. The tightly bound 2-azido nucleotides on CF1, found after exposure of the heat-activated and EDTA-treated enzyme to Mg2+ and 2-azido-ATP, differ in their ease of replacement during subsequent hydrolysis of ATP. Some of the bound nucleotides are not readily replaced during catalytic turnover and covalently label one peptide region of the beta subunit. They are on noncatalytic sites. Other tightly bound nucleotides are readily replaced during catalytic turnover and label another peptide region of the beta subunit. They are at catalytic sites. No alpha-subunit labeling is detected upon photolysis of the bound 2-azido nucleotides. However, one or both of the sites could be at an alpha-beta-subunit interface with the 2-azido region close to the beta subunit, or both binding sites may be largely or entirely on the beta subunit.  相似文献   

18.
Modification of Tyr-345 at a catalytic site in a single beta subunit of the bovine heart mitochondrial F1-ATPase (MF1) by 5'-p-fluorosulfonylbenzoylinosine did not affect subsequent labeling of noncatalytic sites at Tyr-368 and His-427 in three copies of the beta subunit by 5'-p-fluorosulfonylbenzoyladenosine (FSBA). These results clearly show that the beta subunit contains at least parts of the catalytic and noncatalytic nucleotide binding sites. Inactivation of MF1 by 96% with FSBA was accompanied by a decrease in the endogenous ADP content from 1.86 to 0.10 mol per mol of MF1. Decrease in the endogenous ADP content during the inactivation of the enzyme with FSBA paralleled loss in activity in a manner which suggests that the reaction of FSBA with an open noncatalytic site promoted release of ADP from another noncatalytic site until the third site reacted with FSBA. Two pKa values of about 5.9 and 7.6 were observed on the acid side of the pH optimum in the pH-rate profile for ATP hydrolysis catalyzed by MF1 in neutral acid buffers. In contrast, a single pKa of 5.9 was present in the pH-rate profile for ITP hydrolysis catalyzed by the enzyme in the same buffers. The augmented rate observed for ATP hydrolysis at pH 8.0, over that observed at pH 6.5, was lost as the enzyme was inactivated by FSBA in a manner suggesting that modulation is lost as the third noncatalytic site is modified. This suggests that ATP hydrolysis by MF1 is modulated in a pH-dependent manner by ATP binding to an open noncatalytic site. Two other modulations associated with binding of adenine nucleotides to noncatalytic sites, ADP-induced hysteretic inhibition and apparent negative cooperativity reflected by the Hill coefficient for the hydrolysis of 50-3000 microM ATP at pH 8.0, also disappeared as the third noncatalytic site reacted with FSBA.  相似文献   

19.
R N Puri  D Bhatnagar  R Roskoski 《Biochemistry》1985,24(23):6499-6508
The catalytic subunit of adenosine cyclic 3',5'-monophosphate dependent protein kinase from bovine skeletal muscle was rapidly inactivated by o-phthalaldehyde at 25 degrees C (pH 7.3). The reaction followed pseudo-first-order kinetics, and the second-order rate constant was 1.1 X 10(2) M-1 s-1. Absorbance and fluorescence spectroscopic data were consistent with the formation of an isoindole derivative (1 mol/mol of enzyme). The reaction between the catalytic subunit and o-phthalaldehyde was not reversed by the addition of reagents containing free primary amino and sulfhydryl functions following inactivation. The reaction, however, could be arrested at any stage during its progress by the addition of an excess of cysteine or less efficiently by homocysteine or glutathione. The catalytic subunit was protected from inactivation by the presence of the substrates magnesium adenosine triphosphate and an acceptor serine peptide substrate. The decrease in fluorescence emission intensity of incubation mixtures containing iodoacetamide- or 5'-[p-(fluorosulfonyl)benzoyl]adenosine-modified catalytic subunit and o-phthalaldehyde paralleled the loss of phosphotransferase activity. Catalytic subunit denatured with urea failed to react with o-phthalaldehyde. Inactivation of the catalytic subunit by o-phthalaldehyde is probably due to the concomitant modification of lysine-72 and cysteine-199. The proximal distance between the epsilon-amino function of the lysine and the sulfhydryl group of the cysteine residues involved in isoindole formation in the native enzyme is estimated to be approximately 3 A. The molar transition energy of the catalytic subunit-o-phthalaldehyde adduct was 121 kJ/mol and compares favorably with a value of 127 kJ/mol for the 1-[(beta-hydroxyethyl)thio]-2-(beta-hydroxyethyl)isoindole in hexane, indicating that the active site lysine and cysteine residues involved in formation of the isoindole derivative of the catalytic subunit are located in a hydrophobic environment. o-Phthalaldehyde probably acts as an active site specific reagent for the catalytic subunit.  相似文献   

20.
Pyridoxal phosphate (PLP) and adenosine diphospho (AP2-PL)-, triphospho (AP3-PL)-, and tetraphospho (AP4-PL)-pyridoxals (Tagaya, M., and Fukui, T. (1986) Biochemistry 25, 2958-2964) were tested as potential affinity probes for F1 ATPase of Escherichia coli. Both AP3-PL and AP4-PL bound and inhibited F1 ATPase, whereas PLP and AP2-PL were weak inhibitors. The concentrations of AP3-PL and AP4-PL for half-maximal inactivations of the multisite (steady state) ATPase activity were both 18 microM. The binding of these reagents to a reactive lysyl residue(s) was confirmed from the difference absorption spectra, and the stoichiometry of binding of [3H]AP3-PL to F1 at the saturating level was about 1 mol/mol F1. The analogue bound to both the alpha subunit (about two-thirds of the radioactivity) and the beta subunit (about one-third of the radioactivity). No inactivation of multisite ATPase activity or binding of AP3-PL was observed in the presence of ATP. F1 modified with about one mol of AP3-PL had essentially no uni- and multisite hydrolysis of ATP. The rate of binding of ATP decreased to 10(-2) of that of unmodified F1, and the rate of release of ATP was about two times faster. The equilibrium F1 X ATP in equilibrium F1 X ADP X Pi was shifted toward F1 X ATP, and no promotion of ATP hydrolysis at unisite was observed with excess ATP. These results suggest that the AP3-PL or AP4-PL bound to an active site, and catalysis by the two remaining sites was completely abolished.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号