首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phenotypic modulation of smooth muscle cells (SMC) involves dramatic changes in expression and organization of contractile and cytoskeletal proteins, but little is known of how this process is regulated. The present study used a cell culture model to investigate the possible involvement of RhoA, a known regulator of the actin cytoskeleton. In rabbit aortic SMC seeded into primary culture at moderate density, Rho activation was high at two functionally distinct time-points, first as cells modulated to the "synthetic" phenotype, and again upon confluence and return to the "contractile" phenotype. Rho expression increased with time, such that maximal expression occurred upon return to the contractile state. Transient transfection of synthetic state cells with constitutively active RhoA (Val14RhoA) caused a reduction in cell size and reorganization of cytoskeletal proteins to resemble that of the contractile phenotype. Actin and myosin filaments were tightly packed and highly organised while vimentin localised to the perinuclear region; focal adhesions were enlarged and concentrated at the cell periphery. Conversely, inhibition of endogenous Rho by C3 exoenzyme resulted in complete loss of contractile filaments without affecting vimentin distribution; focal adhesions were reduced in size and number. Treatment of synthetic state SMC with known regulators of SMC phenotype, heparin and thrombin, caused a modest increase in Rho activation. Long-term confluence and serum deprivation induced cells to return to a more contractile phenotype and this was augmented by heparin and thrombin. The results implicate RhoA for a role in regulating SMC phenotype and further show that activation of Rho by heparin and thrombin correlates with the ability of these factors to promote the contractile phenotype.  相似文献   

2.
3.
4.
Recently, a potent vasoconstrictor peptide, endothelin (EDT), was isolated from vascular endothelial cells. We examined its effect on rat vascular smooth muscle cells (VSMCs). EDT induced the elevation of intracellular calcium, which was dependent on extracellular calcium and inhibited by a calcium-channel antagonist in a competitive manner. EDT caused a rapid and transient increase in the c-fos and c-myc mRNA levels and stimulated the DNA synthesis of VSMCs in a dose-dependent manner. This effect of EDT on the proliferation of VSMCs might be related to the development of atherosclerosis.  相似文献   

5.
The effects of interleukin-6 (IL-6), a cytokine recently found to be secreted by monocytes and macrophages, on c-myc expression and proliferation of cultured vascular smooth muscle cells (VSMC) were investigated. Treatment with IL-6 caused rapid increase in the c-myc mRNA level of VSMC. It also stimulated DNA synthesis and proliferation of the cells significantly and dose-dependently at concentrations of more than 10 U/ml. These results suggest that IL-6 may be important in the proliferation of VSMC, which is a key event in the development of arteriosclerosis, as a factor mediating immune cell-VSMC interaction.  相似文献   

6.
The synthesis and extracellular deposition of elastin by cultured neonatal rat aorta smooth muscle cells has been followed. The addition of beta-aminopropionitrile to the culture medium promotes accumulation of soluble precursors of elastin. Under such conditions, a protein possessing characteristics of a soluble elastin precursor with an apparent molecular weight of 77,000 was detected and partially purified. Pulse-chase studies suggested that this 77-kDa protein undergoes an extracellular, enzymatically catalyzed process to a 71-kDa protein. This 71-kDa protein is strikingly similar to tropoelastins isolated from other tissue systems, in which no evidence for higher molecular weight soluble precursors is at present available. Data presented in this communication suggest that the 77-kDa protein, which we have designated protropoelastin, represents a precursor to the tropoelastin moiety produced in the neonatal rat smooth muscle cell culture.  相似文献   

7.
Effects of endothelin on DNA synthesis were investigated in two clones of vascular smooth muscle cells, 1YB4 and A7r5. The peptide stimulated DNA synthesis in both clones with apparent EC50 of less than 1 ng/ml. More than 17 h was required before initiating endothelin-stimulated DNA synthesis. The platelet-derived growth factor at a concentration which had no effects by itself on DNA synthesis enhanced the effect of low concentrations of endothelin. A calcium antagonist, nifedipine, inhibited endothelin-induced DNA synthesis. These data suggest that endothelin stimulates DNA synthesis in vascular smooth muscle cells through nifedipine-sensitive mechanisms that can be modulated by platelet-derived growth factor.  相似文献   

8.
To investigate the role of intracellular Ca2+ in the mechanism of cellular proliferation of vascular smooth muscle cells (VSMC), the effects of Ca2+-antagonists and calmodulin (CaM) inhibitors on DNA synthesis stimulated by serum-derived growth factors were studied in cultured VSMCs derived from rat aorta. DNA synthesis assessed by incorporation of [3H]thymidine into the cells was significantly stimulated by epidermal growth factor (EGF), platelet-derived growth factor (PDGF) or fetal bovine serum (FBS), of which the effects were dose-dependently inhibited by a variety of Ca2+-antagonists, such as verapamil, diltiazem and nicardipine. Trifluoperazine and W-7, both specific CaM inhibitors, similarly inhibited DNA synthesis stimulated by EGF, PDGF or FBS in a dose-dependent manner, whereas W-5, a less specific CaM inhibitor, was minimally effective. These data suggest that the Ca2+-CaM system plays an important role in the mechanism of growth factor-induced DNA synthesis in VSMCs.  相似文献   

9.
Quiescent, serum-starved human aortic smooth muscle cells were restimulated with 20% foetal calf serum in Dulbecco's modified Eagle medium, in the presence and absence of beta-carotene, canthaxanthin, zeaxanthin, lycopene, lutein or beta-cryptoxanthin, at final concentrations up to 23 microM. Concentration-dependent inhibition of DNA synthesis, measured by [methyl-3H]thymidine incorporation, was observed for the carotenoids, except for canthaxanthin and lutein which had no effect. Lycopene was the most potent of the carotenoids tested. The results suggest that antiproliferative effects of dietary carotenoids might be of significance in vivo.  相似文献   

10.
Studies were conducted to determine if in vivo exposure to dinitrotoluenes (DNT), which is associated with circulatory disorders of atherosclerotic etiology in humans, is associated with alterations of vascular smooth muscle cells (SMC) consistent with the atherogenic process. Sprague-Dawley rats (150-180 g) were injected IP for 5 days/week for 8 weeks with 2,4- or 2,6-DNT (0.5, 5, or 10 mg/kg) or medium chain triglyceride (MCT) oil. Histopathologic evaluation of aortae from animals exposed to either isomer showed dysplasia and rearrangement of SMC at all doses tested. Reduced 3H-thymidine incorporation was observed in primary cultures of aortic SMC from DNT-exposed animals relative to vehicle controls. This inhibitory response was maintained for up to two passages in culture after which a significant increase in thymidine incorporation was observed. Exposure of SMC from naive animals to DNT in vitro (1–100 µM) did not alter the extent of thymidine incorporation in cycling or growth-arrested cultures. In contrast, exposure to 2,4- or 2,6-diaminotoluene (DAT) (1–100 µM), carcinogens which share toxic metabolic intermediates in common with DNT, inhibited replicative DNA synthesis and stimulated unscheduled DNA synthesis in cycling and growth-arrested cultures of SMC, respectively. Our results suggest that modulation of DNA synthesis in aortic SMC by DNT metabolites generated in vivo contribute to the development of vascular lesions.Abbreviation DAT diaminotuluene - tDNT technical grade dinitrotoluene - DNT dinitrotoluenes - HU hydroxyurea - IP intraperitoneal - LDH lactate dehydrogenase - MCT oil medium chain triglyceride - NPTC non-protein thiol content - RDS replicative DNA synthesis - SEM standard error of the mean - SMC smooth muscle cells - UDS unscheduled DNA synthesis  相似文献   

11.
12.
13.
14.
15.
16.
Summary The weak base chloroquine and the Na+/H+ ionophore monensin were used to study the role of lysosomes in the induction of DNA synthesis by platelet-derived growth factor (PDGF) in rat arterial smooth muscle cells cultivated in vitro. The results show that PDGF initiates DNA synthesis in a defined, serum-free medium. This indicates that a single factor may control, directly or indirectly, the transition from the G0 to the G1 phase, the progress through the G1 phase, and the entrance into the S phase of the cell cycle. It is further demonstrated that PDGF has to be present throughout most of the prereplicative period (12–16 h) to induce DNA synthesis in the maximum number of cells, suggesting that one or more processes need to be stimulated continually or successively to push the cell into the S phase. Chloroquine and monensin inhibit induction of DNA replication by PDGF, with maximum effect at 50 M and 5 M, respectively. To be fully active, the drugs have to be added within 4–8 h after the growth factor, but a partial inhibition persists if they are added at any time during the prereplicative period. Both drugs reduce PDGF-stimulated RNA and protein synthesis, and suppress degradation of [3H]leucine-labeled cellular protein and [125I]-labeled PDGF. Fine-structurally, they give rise to an accumulation of lysosomes or prelysosomal vacuoles with inclusions of incompletely degraded material. These findings suggest that the mitogenic effect of PDGF is dependent on a normal function of lysosomes during the prereplicative phase, especially its first half (0–8 h).  相似文献   

17.
Although elevated plasma prorenin levels are commonly found in diabetic patients and correlate with microvascular complications, the pathological role of these increases, if any, remains unclear. Prorenin/renin binding to the prorenin/renin receptor [(p)RR] enhances the efficiency of angiotensinogen cleavage by renin and unmasks prorenin catalytic activity. We asked whether plasma prorenin could be activated in local vascular tissue through receptor binding. Immunohistochemical staining showing localization of the (p)RR in the aorta to vascular smooth muscle cells (VSMCs). After cultured rat VSMCs were incubated with 10(-7) M inactive prorenin, cultured supernatant acquired the ability to generate ANG I from angiotensinogen, indicating that prorenin had been activated. Activated prorenin facilitated angiotensin generation in cultured VSMCs when exogenous angiotensinogen was added. Small interfering RNA (siRNA) against the (p)RR blocked this activation and subsequent angiotensin generation. Prorenin alone induced dose- and time-dependent increases in mRNA and protein for the profibrotic molecule plasminogen activator inhibitor (PAI)-1, effects that were blocked by siRNA, but not by the ANG II receptor antagonist saralasin. When inactive prorenin and angiotensinogen were incubated with cells, PAI-1 mRNA increased a striking 54-fold, 8-fold higher than the increase seen with prorenin alone. PAI-1 protein increased 2.75-fold. These effects were blocked by treatment with siRNA + saralasin. We conclude that prorenin at high concentration binds the (p)RR on VSMCs and is activated. This activation leads to increased expression of PAI-1 via ANG II-independent and -dependent mechanisms. These data provide a mechanism by which elevated prorenin levels in diabetes may contribute to the progression of fibrotic disease.  相似文献   

18.
Cultured smooth muscle cells (SMC) undergo induction of smooth muscle (SM) alpha actin at confluency. Since confluent cells exhibit contact inhibition of growth, this finding suggests that induction of SM alpha actin may be associated with cell cycle withdrawal. This issue was further examined in the present study using fluorescence-activated cell sorting of SMC undergoing induction at confluency and by examination of the effects of FBS and platelet-derived growth factor (PDGF) on SM alpha actin expression in postconfluent SMC cultures that had already undergone induction. Cell sorting was based on DNA content or differential incorporation of bromodeoxyuridine (Budr). The fractional synthesis of SM alpha actin in confluent cells was increased two- to threefold compared with subconfluent log phase cells, but no differences were observed between confluent cycling (Budr+) and noncycling (Budr-) cells. In cultures not exposed to Budr, confluent cycling S + G2 cells exhibited similar induction. These data indicate that cell cycle withdrawal is not a prerequisite for the induction of SM alpha actin synthesis in SMC at confluency. Growth stimulation of postconfluent cultures with either FBS or PDGF resulted in marked repression of SM alpha actin synthesis but the level of repression was not directly related to entry into S phase in that PDGF was a more potent repressor of SM alpha actin synthesis than was FBS despite a lesser mitogenic effect. This differential effect of FBS versus PDGF did not appear to be due to transforming growth factor-beta present in FBS since addition of transforming growth factor-beta had no effect on PDGF-induced repression. Likewise, FBS (0.1-10.0%) failed to inhibit PDGF-induced repression. Taken together these data demonstrate that factors other than replicative frequency govern differentiation of cultured SMC and suggest that an important function of potent growth factors such as PDGF may be the repression of muscle-specific characteristics.  相似文献   

19.
Previous reports have suggested that phorbol esters can decrease the affinity of epidermal growth factor (EGF) for its cellular receptors. Investigations of the consequences of the interaction between phorbol esters and EGF, however, have been limited to EGF-stimulated Na/H exchange in A431 cells (Whitely, B., D. Cassel, Y.-X. Zuang, and L. Glaser, 1984, J. Cell Biol., 99:1162-1166). In the present study, the effect of the phorbol ester 12-O-tetradecanoyl phorbol-13-acetate (TPA) on EGF-stimulated ion transport and DNA synthesis was determined in cultured vascular smooth muscle cells (A7r5). It was found that TPA stimulated Na/H exchange when added alone (half-maximal stimulatory concentration, 25 nM). However, when cells were pretreated with TPA and then challenged with EGF, TPA significantly inhibited EGF-stimulated Na/H exchange (78%; half-maximal inhibition [Ki] at 2.5 nM). Subsequently the effects of TPA on Na/K/Cl co-transport were measured. TPA was observed to inhibit Na/K/Cl co-transport (half-maximal inhibitory concentration, 50 nM) and also to inhibit EGF-stimulated Na/K/Cl co-transport (100%; Ki at 5 nM). Finally, the effects of TPA on DNA synthesis were assessed. TPA had a modest stimulatory effect on DNA synthesis (half-maximal stimulatory concentration, 6 nM), but had a significant inhibitory effect on EGF-stimulated DNA synthesis (56%; Ki at 5 nM). These findings suggest that the inhibitory effect of TPA on EGF-receptor functions goes beyond previously reported effects on Na/H exchange in A431 cells and extends to EGF-stimulation of Na/K/Cl co-transport and DNA synthesis in vascular smooth muscle cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号