首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of nitrogen source (N(2) or nitrate) on carbon assimilation by photosynthesis and on carbon partitioning between shoots and roots was investigated in pea (Pisum sativum L. 'Baccara') plants at different growth stages using (13)C labelling. Plants were grown in the greenhouse on different occasions in 1999 and 2000. Atmospheric [CO(2)] and growth conditions were varied to alter the rate of photosynthesis. Carbon allocation to nodulated roots was unaffected by N source. At the beginning of the vegetative period, nodulated roots had priority for assimilates over shoots; this priority decreased during later stages and became identical to that of the shoot during seed filling. Carbon allocation to nodulated roots was always limited by competition with shoots, and could be predicted for each phenological stage: during vegetative and flowering stages a single, negative exponential relationship was established between sink intensity (percentage of C allocated to the nodulated root per unit biomass) and net photosynthesis. At seed filling, the amount of carbon allocated to the nodulated root was directly related to net photosynthesis. Respiration of nodulated roots accounted for more than 60 % of carbon allocated to them during growth. Only at flowering was respiration affected by N supply: it was significantly higher for strictly N(2)-fixing plants (83 %) than for plants fed with nitrate (71 %). At the vegetative stage, the increase in carbon in nodulated root biomass was probably limited by respiration losses.  相似文献   

2.
Abstract Small birch plants (Betula pendula Roth) were grown in a climate chamber at different levels of nutrient availability and at two photon flux densities. The extent to which starch storage was dependent upon nutrient availability and photon flux density was investigated. Acclimated values of starch concentration in leaves were highest at low nutrient availability and high photon flux density. Starch storage in roots was only found at the lowest nutrient availability. However, the relative rate of starch storage (starch stored per unit plant dry weight and time) was higher in plants with good nutrition. The data suggest that, at sub-optimal nutrient availability, the momentary rate of net shoot photosynthesis is unlikely to limit the structural (as opposed to carbon storage) growth of the plant. Although photosynthetic rate per unit leaf area (as measured at the growth climate) was slightly lower in plants with poor nutrient availability, photosynthetic rate per unit leaf nitrogen was higher. These data suggest a priority of leaf nitrogen usage in photosynthesis, with limiting amounts of leaf nitrogen (and possibly other nutrients) for subsequent growth processes. This argument is consistent with the higher concentrations of starch found in plants with poor nutrient availability.  相似文献   

3.
BOUMA  D. 《Annals of botany》1970,34(5):1131-1142
Growth analysis showed that reductions in the relative growth-rateof subterranean clover plants (cv. Mt. Barker), even those dueto moderate nitrogen deficiencies, were reflected in reductionsof the leaf-area ratio and particularly of the net assimilationrate. A decline in nitrogen supply in the culture solutions was foundto depress net rates of carbon dioxide uptake per unit leafarea and leaf expansion per plant to about the same extent,even at moderate levels of nitrogen stress. Four days aftertransfer of plants grown with adequate nitrogen to solutionswithout nitrogen, leaf area and net carbon dioxide uptake haddeclined to 84 per cent and 89 per cent of the values for thecontrol plants. After a further 4 days these values had decreasedto 71 per cent and 52 per cent respectively. When net carbon dioxide uptake was expressed per unit weightof chlorophyll, the effect of changes in nitrogen supply onnet photosynthesis largely disappeared, indicating a close relationshipwith the chlorophyll content of the leaves. However, anotherand perhaps more direct effect of nitrogen on photosynthesiswas suggested by the fact that, during the early stages of recoveryfrom a severe nitrogen stress, photosynthesis began to increasebefore the chlorophyll content of the leaves.  相似文献   

4.
The effect of infection by the Cowpea Mosaic Virus (CpMV) onseveral parameters relevant to symbiotic nitrogen fixation wasdetermined in cowpea (Vigna unguiculata (L.) Walp. var. Tuy)plants nodulated with two strains of Rhizobium cowpea: IVIC–124and IVIC–38. Plants were virus-infected at the seedlingstage before Rhizobium inoculation. The effect of CpMV infectionon plant growth was analysed in nodulated and nitrogen-suppliedplants at 18, 25 and 35 d after germination. At all developmentalstages of nodulated plants CpMV infection caused a reductionof leaf chlorophyll content, leaf area, dry weight of shootsand roots, total nodule weight and nodule number. Most of thenodules from 18- and 25-d-old CpMV-infected plants did not exhibitleghaemoglobin pigmentation. CpMV infection delayed the onsetof nitrogenase activity in nodules of the rhizobial strain IVIC–124and the enzyme activity measured on a per plant basis was reducedin both strains at the first and second harvests. Significantnitrogenase activity was detected in 35-d-old infected plants.Some of the nodules of the rhizobial strain IVIC-124 and mostof the nodules from plants nodulated with the strain IVIC-38developed leghaemoglobin; however, the nodule-specific nitrogenaseactivity, estimated on a milligram nodule dry weight basis,was always higher in virus-infected plants, particularly in18-d-old CpMV-infected plants harbouring the IVIC–124strain. CpMV-infected nodules had a larger peribacteroidal space,a reduced number of peribacteroid units, a greater number ofbacteroids per unit, a lower number of vesicles and 88% lowertotal reducing sugar content. Starch accumulation was detectedin infected leaves of nodulated plants during the first harvest,while high levels of leaf reducing sugars and protein were presentat the second harvest. In healthy nodulated plants the rhizobialstrain IVIC–124 was shown to be more efficient than IVIC–38in promoting plant growth. However, the results indicate thatnodulation by rhizobial strain IVIC–124 and growth ofplants harbouring this strain were affected to a greater extentby virus infection. The effect of CpMV infection on leaf chlorophyllcontent, leaf area, carbohydrate level, leaf proteins and growthof nitrogen-supplied plants, as well as the symptoms inducedin the leaves, were less conspicuous than in nodulated plants. Key words: Cowpea, Rhizobium, virus infection, nodule untrastructure  相似文献   

5.
The relationships between symbiotic nitrogen fixation (SNF) activity and C fluxes were investigated in pea plants (Pisum sativum L. cv. Baccara) using simultaneous 13C and 15N labelling. Analysis of the dynamics of labelled CO2 efflux from the nodulated roots allowed the different components associated with SNF activity to be calculated, together with root and nodule synthetic and maintenance processes. The carbon costs for the synthesis of roots and nodules were similar and decreased with time. Carbon lost by turnover, associated with maintenance processes, decreased with time for nodules while it increased in the roots. Nodule turnover remained higher than root turnover until flowering. The effect of the N source on SNF was investigated using plants supplied with nitrate or plants only fixing N2. SNF per unit nodule biomass (nodule specific activity) was linearly related to the amount of carbon allocated to the nodulated roots regardless of the N source, with regression slopes decreasing across the growth cycle. These regression slopes permitted potential values of SNF specific activity to be defined. SNF activity decreased as the plants aged, presumably because of the combined effects of both increasing C costs of SNF (from 4.0 to 6.7 g C g-1 N) and the limitation of C supply to the nodules. SNF activity competed for C against synthesis and maintenance processes within the nodulated roots. Synthesis was the main limiting factor of SNF, but its importance decreased as the plant aged. At seed-filling, SNF was probably more limited by nodule age than by C supply to the nodulated roots.  相似文献   

6.
Carob seedlings were grown hydroponically for 9 weeks under360 and 800 µl l-1CO2. One of two nitrogen sources, nitrateor ammonium, was added to the nutrient medium at concentrationsof 3 mol m-3. Root systems of the developing plants suppliedwith nitrate compared to those supplied with ammonium were characterizedby:(a)more biomass on the lower part of the root;(b)fewer lateralroots of first and second order;(c)longer roots;(d)higher specificroot length;(e)a smaller root diameter. The morphology of theroot systems of nitrate-fed plants changed in the presence ofelevated carbon dioxide concentrations, resembling, more closely,that of ammonium-fed plants. Total leaf area was higher in ammonium-than in nitrate-fed plants. Nitrate-fed plants had greater totalleaf area in the presence of high carbon dioxide than in normalCO2, due to an increase in epidermal cell size that led to developmentof larger leaflets with lower stomatal frequency. The observedchanges in the morphology of roots and shoots agreed with theresults observed for total biomass production. Nitrate-fed plantsincreased their biomass production by 100% in the presence ofelevated CO2compared to 15% in ammonium-fed plants, indicatingthat the response of carob to high CO2concentrations is verydependent on the nitrogen source. Under elevated CO2, nitrate-grownplants had a larger content of sucrose in both roots and shoots,while no significant difference was observed in the contentof sucrose in ammonium-grown plants, whether in ambient or enrichedcarbon dioxide. Hence, the differences in soluble carbohydratecontents can, at least partly, account for differences in rootand shoot morphology.Copyright 1997 Annals of Botany Company Ceratonia siliquaL.; carob; ammonium; carbohydrate; carbon dioxide; nitrate; morphology; sucrose  相似文献   

7.
Abstract: The aim of this study was to test the hypothesis that the reduction in supporting tissues in climbers compared to self-supporting plants is also true for their leaves, and that climbers generally require higher leaf nitrogen than self-supporting plants to accomplish fast growth. This hypothesis was tested using paired samples of both growth forms with assessment of leaf area index above the sampled plants (LAIa) in a tropical rain forest in Gabon. The sampling protocol ensured that within a highly fluctuating low canopy environment, the growth conditions were identical for each pair sampled. The results confirmed the hypothesis. Lianas had significantly lower leaf mass per unit leaf area (LMA) than their supporters. Liana leaves also contained significantly more nitrogen than host tree leaves. The differences in nitrogen concentration between liana and tree leaves reversed for the most shaded sites, when nitrogen was expressed on a leaf area base (Narea). Significant regression between leaf nitrogen and LAIa was found for the climbers on the shaded sites but not for their supporters. This indicated better acclimation of climbers to prevailing light conditions. Better nitrogen allocation at low LMA, together with lower carbon costs for building supporting tissues, makes lianas highly competitive, especially where high nitrogen availability is assured.  相似文献   

8.
The effects of N source (6 mm nitrogen as NO3 or urea) and tungstate (0, 100, 200, 300, and 400 μm Na2 WO4) on nitrate metabolism, nodulation, and growth of soybean (Glycine max [L.] Merr.) plants were evaluated. Nitrate reductase activity and, to a lesser extent, NO3 content of leaf tissue decreased with the addition of tungstate to the nutrient growth medium. Concomitantly, nodule mass and acetylene reduction activity of NO3-grown plants increased with addition of tungstate to the nutrient solution. In contrast, nodule mass and acetylene reduction activity of urea-grown plants decreased with increased nutrient tungstate levels. The acetylene reduction activity of nodulated roots of NO3-grown plants was less than 10% of the activity of nodulated roots of urea-grown plants when no tungstate was added. At 300 and 400 μm tungstate levels, acetylene reduction activity of nodulated roots of NO3-grown plants exceeded the activity of comparable urea-grown plants.  相似文献   

9.
Mycorrhizal symbiosis involves reciprocal transfer of carbon and nutrients between shoots on the one hand and roots colonized by symbiotic fungi on the other. Mycorrhizas may improve the mineral nutrient acquisition rates, but simultaneously increase the belowground demand for carbon. Mycorrhizal plants will have a selective advantage over non-mycorrhizal ones if they are more cost-efficient in terms of carbon cost per unit of acquired mineral nutrient. However, we demonstrate here in a simple model system that this is not a necessary condition. Mycorrhizas may evolve even when they are less cost-efficient, provided that photosynthesis and/or growth are strongly nutrient-limited. This result implies a unique hypothesis for the evolution of mycorrhizal associations which may be inherently cost-inefficient as compared to plant roots. Such symbioses may have evolved when the superior nutrient acquisition rate of fungi combines with the relatively high photosynthetic nutrient use efficiency of the host plant. Consequently, provided that mycorrhizas are really cost-inefficient, the selective advantage of mycorrhizal plants will disappear when an increase in the nutrient acquisition rate is not associated with a sufficiently high nutrient use efficiency of photosynthesis, as at high soil nutrient levels or due to a loss of leaf area, shading or low temperatures.  相似文献   

10.
Three-week-old sugar beet (Beta vulgaris L.) seedlings were grown for an additional four weeks under controlled conditions: in river sand watered with a modified Knop mixture containing one half-fold (0.5N), standard (1N), and or threefold (3N) nitrate amount, at the irradiance of 90 W/m2 PAR, and at the carbon dioxide concentrations of 0.035% (1C treatment) or 0.07% (2C treatment). The increase in the carbon dioxide concentration and in the nitrogen dose resulted in an increase in the leaf area and the leaf and root dry weight per plant. With the increase in the nitrogen dose, morphological indices characterizing leaf growth increased more noticeably in 1C plants than in 2C plants. And vice versa, the effects of increased CO2 concentration were reduced with the increase in the nitrogen dose. Roots responded to the changes in the CO2 and nitrate concentrations otherwise than leaves. At a standard nitrate dose (1N), the contents of proteins and nonstructural carbohydrates (sucrose and starch) in leaves depended little on the CO2 concentration. At a double CO2 concentration, the content of chlorophyll somewhat decreased, and the net photosynthesis rate (P n) calculated per leaf area unit increased. An increase in the nitrogen dose did not affect the leaf carbohydrate content of the 1C and 2C plants except the leaves of the 2C-3N plants, where the carbohydrate content decreased. In 1C and 2C plants, an increase in the nitrogen dose caused an increase in the protein and chlorophyll content. Specific P n values somewhat decreased in 1C-0.5N plants and had hardly any dependence on the nitrate dose in the 2C plants. The carbohydrate content in roots did not depend on the CO2 concentration, and the content was the highest at 0.5N. Characteristic nitrogen dose-independent acclimation of photosynthesis to an increased carbon dioxide concentration, which was postulated previously [1], was not observed in our experiments with sugar beet grown at doubled carbon dioxide concentration.  相似文献   

11.
DELAP  ANNE V. 《Annals of botany》1964,28(4):591-605
Rooted one-year shoots were grown for one season by sprayingtheir roots with nutrient solution. Iron supplied as Fe-EDTAat four concentrations resulted in plants which were respectively(a) severely chlorotic, (b) mildly chlorotic, (c) dark greenand healthy (controls), and (d) dark green but with slight reductionin growth. Severely deficient plants showed 40–70 per cent reductionsin growth as measured by fresh weight, shoot length, diameterincrease, leaf area, net assimilation and relative growth-rates.Dry weights were reduced 70–80 per cent and of the totaldry-weight increment a greater proportion remained in the leaves,which had a lower dry weight and higher water content per unitarea. However, because the initial old stem formed a greaterproportion of the total dry weight, the leaf area ratio remainedabout 11 per cent lower than in the controls. Severely deficientplants had, per unit of chlorophyll, a higher dry-weight increaseand net assimilation rate than the controls. Mild deficiency caused 10–20 per cent reductions in growthand net assimilation rate; the leaf area ratio was normal. Possible mechanisms of the effects of low iron supply are discussed,while the small growth reduction at the highest Fe-EDTA concentrationis attributed to chelate toxicity  相似文献   

12.
Nitrogen Use Efficiency in Growth of Polygonum cuspidatum Sieb. et Zucc   总被引:3,自引:0,他引:3  
HIROSE  T. 《Annals of botany》1984,54(5):695-704
The growth of Polygonum cuspidatum in sand culture was analysedunder varying nutrient conditions. Nitrogen availability influencednitrogen uptake of plants through the uptake rate per unit rootweight rather than the amount of root. In turn, the differentamounts of nitrogen taken up affected plant growth through theireffects on the rate of leaf expansion. Net assimilation rate (NAR) increased with nitrogen contentper unit leaf area (C), but further increase in leaf nitrogencaused diminishing returns of NAR Optimal nitrogen content perunit leaf area (Copt) to maximize dry-matter production of aleaf could be determined by drawing a tangent from the onginto a curvilinear relation between NAR and C. This optimal contentdivides a nitrogen-limiting range (C < Copt) from a carbon-limitingone (C> Copt) along the axis of nitrogen content. Under nitrogenlimitation, efficiency of nitrogen use in dry-matter productioncould increase if the plant had a larger carbon sink. This givesa qualitative explanation to reduced shoot-to-root ratio underlimited availability of nitrogen. Polygonum cuspidatum Sieb. et Zucc, Japanese knotweed, carbon sink, growth analysis, leaf nitrogen, net assimilation rate, nitrogen use efficiency  相似文献   

13.
Soybean stems were grafted between the first and second nodes6 weeks after planting. Three or 5 weeks after grafting, oneroot system was cut from grafted plants, doubling the shoot:root ratio. This technique was applied to plants grown in sandculture and supplied with an excess of water and minerals butwith no combined nitrogen so that doubling the shoot:root ratiogreatly increased the requirement for fixed nitrogen. When theshoot:root ratio was doubled during the flowering or seed formationstages, there was no statistically significant effect on totalnitrogen or dry matter of shoots compared to non-grafted controlsat maturity. The period between 2 and 21 d after doubling theshoot:root ratio was studied to determine changes in root weight,nodule weight, and rate of nitrogen fixation (acetylene reduction).Weight of roots and nodules increased relative to controls (graftedplants with one shoot per root) after about 1 week. The rateof acetylene reduction per gram of nodule was 75 per cent greaterwith roots having two shoots than with control roots 2 d afterdoubling the shoot:root ratio. Acetylene reduction per noduledeclined to near control rates as nodule weight increased, butroots with two shoots maintained a 60 to 70 per cent greaterrate of acetylene reduction per root for 2 weeks. The resultsindicated that nodulated soybean roots are capable of fixingnitrogen at rates greater than those which normally prevail.  相似文献   

14.
The effects of foliar sprays of gibberellic acid (GA) on thegrowth of tomato plants cv. Potentate were studied in growthrooms and a glasshouse. Four sprays of GA (5 ppm) increasedleaf area and whole plant weight relative to water controlsgrown at constant temperatures (7, 17, 22, and 27 °C) for12 days, the largest plants being obtained with 5 ppm. Experimentsmade at four photoperiods (5, 10, 15, and 20 h) and at two lightintensities (7000 and 10 750 lx) showed that GA increased leafand whole plant weight at 15 h, leaf area at 10 and 15 h andstem height at all photoperiods; area, height, and weight increaseswere obtained at both light intensities, leaf growth being increasedmore by GA at 7000 lx and stem growth more at 10 750 lx. Four foliar sprays of GA (5 ppm) were combined with N supplementsapplied via leaf and/or root to plants in sand culture. Withlow supply to the roots (20 ppm N) GA failed to increase growth,but increased it at higher levels. Total N in leaf and stemwas increased by GA or by NH4NO3 (10 sprays 280 ppm N) at alllevels of N supplied to roots, but when applied together theeffect on total leaf N was more than additive except at thehighest level (540 ppm) GA increased the concentration of N(as per cent dry matter) in leaf and stem at all levels of Nsupplied to roots. GA and NH4NO3 together resulted in a greateramount and a higher concentration of N in the shoots (and usuallyalso in roots) than did NH4NO3 alone. Leaf thickness (as freshweight/unit area) could only be increased appreciably by sprayingwith a complete nutrient solution which reduced leaf area butnot dry weight. Growth increases induced by GA were detectable 43 days afterthe first of four sprays in the glasshouse and after 30 daysin the growth room. The persistence of GA effects was comparedwith those induced by sprays of NH4NO3.  相似文献   

15.
Soybeans (Glycine max [L.] Merr. cv. NC 69-2774) were used to study the nonstructural carbohydrate and nitrogen content of plant tissues, and nitrogenase activity throughout the development of male-sterile and male-fertile plants. Male-sterile plants set approximately 85% fewer pods plus seed than the male-fertile siblings and retained green leaves until a killing frost at 145 days after emergence. Reduced pod set caused increased carbohydrate accumulation in the leaf and root systems of male-sterile plants. Total carbohydrate in roots of male-sterile plants increased from 1.7 to 7.6 times that in the male-fertile roots. A high proportion (60 to 70%) of the male-sterile root carbohydrate was starch. Apparently, root starch was not metabolized by the male-sterile plants. Late in plant development per cent nitrogen was higher in the male-sterile soybean tissues. However, no difference was found in the ability of the nodulated root systems from either genotype to fix nitrogen.  相似文献   

16.
The growth rate and water content of urea-fed seedlings of Pinus silvestris L. were compared with those of nitrate-and ammonium-fed seedlings grown in continuously renewed nutrient solutions, in which the hydrolysis of urea to ammonia and carbon dioxide was minimized. The growth rate of seedlings grown in an ammonium nutrient solution, in an urea nutrient solution and in a nitrate nutrient solution was about 90 per cent, 75 per cent and 60 per cent, respectively, of that of seedlings grown in a mixture of ammonium and nitrate. Seedlings with urea as the sole nitrogen source developed very severe chlorosis of the needles, the old roots were dark-coloured, the whole root system was very fragile, and the lateral roots of the third order were missing. Urea-grown seedlings had the highest nitrogen contents, closely followed by the ammonium and the ammonium + nitrate seedlings. The lowest nitrogen level was in nitrate seedlings. The low growth rate and the chlorosis of urea-fed seedlings were suggested to be the result of a hydrolysis of urea inside the root, causing an increase in pH and an accumulation of ammonia in the root.  相似文献   

17.
We determined the carbon allocation patterns and construction costs of Alocasia macrorrhiza plants grown at different photon flux densities (PFD) as well as the whole-plant carbon gain of these plants at different daily PFDs. Growth at high PFD resulted in thicker leaves with a higher leaf mass per unit area, and increased biomass allocation to petioles and roots, as compared to growth at low PFD. Increased allocation to petioles may have been necessary to support the heavier leaves, whereas increased allocation to roots may have been necessary to supply sufficient water for the higher transpiration rates in high PFD. Root biomass was highly correlated with the daily, whole-plant transpiration rate. Tissue construction costs per unit dry mass were unchanged by acclimation, but, since the mass per unit areas of leaves, roots and petioles all increased, construction costs per unit leaf area were much higher for plants grown at high PFD. On a per unit leaf area basis, daily whole-plant carbon gain measured at high daily PFD was higher in high- than in low-PFD-grown plants. However, on a per unit leaf mass basis, low-PFD-grown plants had a daily carbon gain at least as high as that of high-PFD-grown plants at high daily PFD. At low daily PFD, low-PFD-grown plants maintained an advantage over high-PFD-grown plants in terms of carbon gain because of their larger leaf area ratios. Thus, in terms of carbon gain, low-PFD-grown plants performed better than sun plants at low PFD and as well as high-PFD-grown plants at high PFD, despite their lower photosynthetic capacities per unit area. For high-PFD-grown plants, the higher construction costs per unit leaf area resulted in lower leaf area ratios, which counteracted the advantage of higher photosynthetic rates per unit leaf area.  相似文献   

18.
Water extracts of fresh leaves, buds, and leaf litter of Populus balsamifera (balsam poplar) were tested at different dilutions for allelopathic effects on nodulation, nitrogenase activity and growth of nodulated green alder (Alnus crispa) seedlings, and on growth of unnodulated green alder seedlings. All extracts inhibited height growth, root elongation and dry weight increment of nodulated and unnodulated green alder seedlings to some degree during a 2-month experiment. Foliar nitrogen content of both nodulated and unnodulated seedlings was significantly lower in extract treated plants than in controls. Growth inhibition was about 25% less in nodulated than in unnodulated seedlings. The number of nodules per plant in seedlings treated with any balsam poplar extract was only 51% that of control plants. Acetylene reduction by seedlings treated with bud and leaf litter extracts indicated a decrease of 62% compared to controls. Growth inhibition was not mediated by pH or osmotic effects of the extracts. The possible ecological significance is discussed.  相似文献   

19.
The partitioning and utilization of carbon (C) and nitrogen(N) in nodulated roots and nodules of chickpea (Cicer arietinumL.) was studied at two moisture levels at 10-d intervals 40–140d after sowing (DAS). More C was used in respiration and lessin growth of nodulated roots and nodules under water stresscompared to controls during all growth stages except at theearly vegetative stage. Similarly, less nitrogen was investedin dry matter of both nodules and nodulated roots under stress,except during the vegetative stage where more nitrogen was used.Calculated over the entire growth period, as much as 14 and20% of the total nitrogen and 3 and 4% of the total carbon fixedby the plant was lost to the rooting medium under controlledand stressed conditions, respectively. The efficiency of nitrogen fixation with respect to net C utilizationwas maximal during seed filling under both control and stressconditions However, the efficiency of nitrogen fixation wasalways greater under drier conditions. Carbon, chickpea (Cicer arietinum L.), nitrogen, nitrogen fixation, partitioning  相似文献   

20.
Using a cost-benefit model, the leaf nitrogen concentrationand root : shoot ratio that maximize whole-plant relative growthrate are determined as a function of the above-ground environment(integrated daily photon flux density and the concentrationof carbon dioxide at the site of fixation within the leaf).The major advantage of this approach is that it determines theadaptive significance of leaf physiology by considering thefunctional integration of leaves and roots. The predicted responseto increasing daily photon flux densities is an increase inoptimal leaf N concentration (Nopt) and a concomitant increasein root: shoot ratio. Increased carbon dioxide concentrations,on the other hand, reduce Nopt and only slightly change root:shoot ratio. The observed increase in leaf nitrogen concentrationfound in plants growing at high altitudes (low CO2 partial pressure)is also predicted. Since these responses to light and CO2 maximizethe whole-plant relative growth rate, the observed adjustmentsthat plants make to light and carbon dioxide concentration appearto be adaptive. We show that the relationship between photosynthesis and leafnitrogen concentration is complex and depends on the light andCO2 levels at which photosynthesis is measured. The shape ofthis function is important in determining Nopt and the oppositeresponse of leaf nitrogen to light and carbon dioxide is shownto be the result of the different effects of light and CO2 onthe photosynthesis-leaf nitrogen curve. Plant growth, photosynthesis, leaf nitrogen, biomass allocation, optimization, carbon dioxide light  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号