首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
2.
Among three esters of p-hydroxybenzoate, n-butyl p-hydroxybenzoate was selected as the best antimicrobial substance. Molasses medium sterilized by this ester was used as a substrate for ethanol production. n-Butyl p-hydroxybenzoate (0.15% w/v) completely inhibited the growth of free yeast cell inoculum, Ca-alginate immobilized yeast inoculum and bacterial contaminants. Immobilization of the yeast cell inoculum in Ca-alginate with castor oil (6% v/v) offered a yeast cell protection against the inhibitory effect of n-butyl p-hydroxybenzoate. The presence of castor oil in this immobilization system did not affect the metabolic activity of the yeast in beads compared to the cells immobilized without castor oil. The yeast cell beads in this system completely utilized up to 25% molasses sugar with an ethanol yield of 10.58%, equal to 83% of its theoretical value. The beads were stable and could be used successfully for seven cycles of batch fermentation. The optimum fermentation temperature using this system was 35°C. Received 21 January 1997/ Accepted in revised form 05 May 1997  相似文献   

3.
Biosynthesis of invertase by Saccharomyces cerevisiae 01K32 was inversely proportional to the concentration of sugarcane blackstrap molasses included in the medium. In a fermenter, an intracellular invertase activity of 440 U/g dry cells was obtained.  相似文献   

4.
The production of enriched fructose syrups and ethanol from beet molasses using Saccharomyces cerevisiae ATCC 36858 was studied. In batch experiments with a total sugar concentration between 94.9 and 312.4 g/L, the fructose yield was above 93% of the theoretical value. The ethanol yield and volumetric productivity in the beet molasses media with sugar concentration below 276.2 g/L were in the range of 59-76% of theoretical value and between 0.48 and 2.97 g of ethanol/(L x h), respectively. The fructose fraction in the carbohydrates content of the produced syrups was more than 95% when the total initial sugar concentration in the medium was below 242.0 g/L. Some oligosaccharides and glycerol were also produced in all tested media. Raffinose and the produced oligosaccharides were completely consumed by the end of the fermentation process when the total initial sugar concentration was below 190.1 g/L. The glycerol concentration was below 16.1 g/L. The results could be useful for a potential industrial production of ethanol and high-fructose syrup from sugar beet molasses.  相似文献   

5.
Summary It is well known that molasses stillage is difficult to dry because of its high hygroscopicity. This investigation was made to try to affect the drying capability of beet molasses stillage by the addition of gelling agents. Increase in crude protein and essential amino acid content of beet molasses was obtained by growing Brevibacterium flavum and Candida utilis. The results obtained showed that drying performance is probably due to an optimum combination of the chemico-physical properties of the raw material.  相似文献   

6.
A flocculent killer yeast, Saccharomyces cerevisiae strain H-1, which was selected for ethanol fermentation of beet molasses, has a tendency to lose its viability in distillery waste water (DWW) of beet molasses mash after ethanol fermentation. Through acclimations of strain H-1 in DWW, strain W-9, resistant to DWW, was isolated. Strain M-9, resistant to 2-deoxyglucose was further isolated through acclimations of strain W-9 in medium containing 150 ppm 2-deoxyglucose. A fermentation test of beet molasses indicated that the ethanol productivity and sugar consumption were improved by strain M-9 compared to the parental strain H-1 and strain W-9. The concentration of ethanol produced by strain M-9 was 107.2 g/l, and the concentration of residual sugars, which were mainly composed of sucrose and fructose, were lower than those produced by the parental strain H-1 and strain W-9 at the end of fermentation of beet molasses.  相似文献   

7.
Summary Foam control is an important part of every fermentation technology. Chemical anti-foam agents (AFA) are surface active substances, which decrease the surface elasticity of liquids and prevent metastable foam formation. Most AFA must be mixed or dissolved in a suitable carrier substance if their antifoaming properties are to be fully utilized. The carrier seems to act as a reservoir from which the AFA is liberated.The toxicity of different AFA upon Aspergillus niger was tested in Petri dishes. Their effect on the decrease of the respiration ability of the test organism A. niger was tested in a Warburg apparatus. Various AFA were tested as pure substances, as emulsions in seed oil and as mixtures of different AFA in cylindrical vessels with sinter glass discs under similar conditions as in the fermentor. Using mentioned methods the most suitable AFA were tested in citric acid fermentation on beet molasses.Partly presented at the poster session of the meeting: Fungal Biotechnology, Glasgow, September 1978  相似文献   

8.
Summary Nonvolatile toxins accumulated during alcohol fermentation reduce the yeast growth rate, but not the maximum cell concentration. Specific growth rates decline exponentially according to the increase in toxins. The accumulation of salts and proteins seem to be responsible for the inhibition.To whom all correspondence should be addressed.  相似文献   

9.
The biotin activity of beet and lactose molasses against the test strain Saccharomyces cerevisiae 225 by auxanographic method was evaluated. The level of lactose molasses biotin activity is almost twice as high as that obtained in the case of beet molasses. The results of bioautography with test strains Saccharomyces cerevisiae 225 and Lactobacillus arabinosus 17-5 indicate the qualitative composition of biotin derivatives (vitamers) in both molasses. Depending on the various technological steps e.g. sterilization or clarification one may find differences in the content and qualitative composition of biotin vitamers.  相似文献   

10.
Summary Stillage recycle in beet molasses alcoholic fermentation can be lower the production costs by a decrease of energy requirements for waste water treatment but it becomes necessary to optimise, separately, the sugar and non sugar contents of the wort. It is shown that the increase of the wort osmolality, linked to stillage recycle disturbs yeast metabolism above 1,5 osmol. The observed inhibition which is dependent on both sugar and non sugar concentrations leads to an apparent link between yeast behaviour and the dry matter percent of the worts.  相似文献   

11.
Pretreatment of beet molasses to increase pullulan production   总被引:2,自引:0,他引:2  
Pretreatment of beet molasses with cation exchange resin, sulphuric acid, tricalcium phosphate, potassium ferrocyanide, and ethylenediaminetetraacetic acid and disodium salt (EDTA) to increase the production of pullulan was investigated. Among the above techniques used for the removal of heavy metals, sulphuric acid treatment gave better results regarding polysaccharide concentration, polysaccharide yield, and sugar utilization. Aureobasidium pullulans grown on beet molasses produced a mixture of pullulan and other polysaccharides. The pullulan content of the crude polysaccharide was 30–35%. The addition of nutrients improved the production of polysaccharide. A maximum polysaccharide concentration (32·0±1·0 g litre−1) was achieved in molasses solution (70 g litre 1 initial sugar concentration, pH 6·5–7·5) treated with sulphuric acid and supplemented with K2HPO4 0·5%, -glutamic acid 1%, olive oil 2·5% and Tween 80 0·5%. In this case, the highest values of biomass dry weight (33·8±1·0 g litre−1), polysaccharide yield (63·5±2·5%), and sugar utilization (97·5±1·5%) were obtained at pH 6·5, 3·5, and 4·5–7·5, respectively.  相似文献   

12.
Summary Alcohol production rate decreases as the concentration of bacterial contaminants increases. In complex medium, such as beet molasses, an alternative mechanism can be used by homofermentative lactic bacteria (Lactobacillus casei). Lactic acid and associated products, especially acetic acid, are liberated into the medium. The inhibition induced by these metabolites was reinforced by the presence of viable lactobacilli. Offprint requests to: P. Villa  相似文献   

13.
Growth of Saccharomyces cerevisiae on non-fermentable medium was more sensitive to inhibition by vanadate than growth of fermentable medium. The frequency of petite mutants increased in cultures grown for 18 hours in fermentable medium containing vanadate. However, oxygen uptake markedly increased in yeast cultures grown in the presence of vanadate, a similar effect being produced by phosphate. It was also found that oligomycin toxicity was relieved by vanadate. These results suggest that vanadate may interact with the mitochondria of S. cerevisiae.  相似文献   

14.
This work concerns mathematical modeling of the rate of microbial growth on inhibitory levels of nutrients as affected by pH, concentration of the nutrients, temperature, cultivation method, and method of data analysis. Candida utilis (ATCC 9226) was grown with sodium acetate as growth-limiting carbon and energy source in mineral salts medium in shake flask and continuous cultures to study inhibition by excess acetate. Differential shake flask cultures were grown at low yeast concentrations at temperatures (T) of 25 and 30°C, pH's between 5.5 and 7.0, and acetate concentrations (S) between 0.25 and 3.0% (w/v). Growth data were exponential with correlation coefficients greater than 0.995 in 49 of 56 experiments; the lowest correlation coefficient was 0.986. Specific growth rates (μ) determined by graphical methods showed only fair correlation with those determined by regression analysis. Both sets of specific growth rate data were grouped at constant T and pH and fitted to the three parameter equation, The improvement in use of the fitted equation instead of the mean value was significant with greater than 70% confidence in all (14 groups) and 90% confidence in only half of the data groups; the correlation does not improve with the increasing acetate inhibition at lower pH. Both defects in the model and insufficient data at each pH are responsible. A modified six parameters with hydrogen ion concentration(H+) as follows: Specific growth rates calculated with the six parameter equation matched observed values in all groups of isothermal data better than the means with greater than 99% confidence. The six parameter model adequately represents effects of acetate and hydrogen ion concentrations under constant or slowly changing environmental conditions and balanced growth; although better models probably exist. Thus steady-stste and transient continuous culture experiments agreed with many published growth yields, but specific growth rates could only be predicted qualitatively from the model fit to the shake flask data. The data and present models could be incorporated into published models for transient growth at low nutrient concentrations to correlate and perhaps predict microbial growth kinetics over a much wider range of growth conditions than now possible.  相似文献   

15.
16.
Summary The effect of yeast extract on the growth ofSchizosaccharomyces pombe was investigated using a complex-synthetic medium. Batch cultures at low-glucose concentration show that a too low concentration of yeast extract may limit the biomass formation. On this medium kinetics and yields were found to be similar to those obtained on a synthetic-defined medium under both aerobic and anaerobic conditions.  相似文献   

17.
The effect of cysteine on yeasts with different requirements for exogenous pantothenic acid was studied during their cultivation in the synthetic nutrient medium. Cysteine added at a concentration of 4X10(-4) M and 6X10(-4) M inhibited the growth of Saccharomyces cerevisiae of the Krasnodarsk race and Candida utilis BKM y-74 to a great extent and that of Saccharomycodes ludwigii BKM y-1176 to a lesser extent. The inhibitory effect of cystein was reversed by pantothenic acid, beta-alanine, aspartate and aspartic acid. It is assumed that cysteine inhibits metabolic utilization of pantothenic acid.  相似文献   

18.
19.
Protection against cadmium toxicity in yeast by alcohol dehydrogenase.   总被引:1,自引:0,他引:1  
A cDNA expression library from Schizosaccharomyces pombe was transformed into Saccharomyces cerevisiae to screen for genes capable of conferring cadmium resistance to S. cerevisiae cells. The cDNA library was cloned into the S. cerevisiae expression vector pDB20 which is designed to express cDNAs via the constitutively-expressed promoter of the gene for alcohol dehydrogenase I (ADH1). Terminator and polyadenylation signals are also provided by the ADH1 gene. Cadmium resistant colonies were shown to arise by a recombination event leading to the exchange of the S. pombe DNA with the chromosomal ADH1 gene and a consequent dramatic increase in the ADH1 gene expression due to the high copy number of the plasmid. The overexpression of ADH1 effectively buffered the cells for cadmium ions by formation of Cd-ADH.  相似文献   

20.
Sphingolipids having a long-chain sphingoid base backbone are primarily located in the yeast’s plasma membrane. They are found in various types of foods, and although they are not essential food ingredients, they play an important role as bioactive molecules in preventing certain human diseases. Today, due to its high nutritional value, brewer’s yeast is increasingly being used in the food and pharmaceutical industry. The aim of this study was to evaluate the potential of S. uvarum, a by-product of the brewing industry, as an economically feasible source of sphingolipids. For that purpose, the growth phase dependence on sphingolipid production in S. uvarum as well as the effect of zeolite addition to the growth medium was investigated. The experiments were designed to explore the dependence of growth phase on sphingolipids metabolism, by comparing initial (starter) culture of brewer’s yeast (laboratory propagated, designated as zero yeast generation, serving here as control), and surplus brewer’s yeast (a residue produced after 5 successive beer fermentations), by-product of beer fermentation, with and without the addition of zeolite. HPLC analysis of individual molecular species of sphingoid bases obtained by acid hydrolysis of complex sphingolipids from S. uvarum yeast produced the following results: about 65% of total sphingoid bases represents C18 phytosphingosine, about 32% represents unknown long-chain base, and about 1.5–2% represents C18 DL-erythro-sphinganine. In the case of C18 phytosphingosine, production was about 11.5-fold higher during exponential phase compared with the other growth phases. For C18 DL-erythro-sphinganine, production was highest during the lag and acceleration phase of growth. In most cases, zeolite addition (1%) to the growth medium resulted in an increase up to 2.5-fold in the sphingoid bases level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号