首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of the 1RS chromosome arm from rye on plant regeneration from microspore-derived embryos was studied using anther culture technology with genotypes carrying the 1BL-1RS translocated chromosomes, the normal wheat chromosome 1BL-1BS, and ditelosomic lines DT 1BS and DT 1BL. A significant difference was observed in microspore-derived green plants between chromosome structure concerned with 1RS and 1BS arms. An analysis of the inheritance of the 1B-1R translocation was performed on the basis of the frequency of male gametes 1BL-1RS in the microspore-derived green plants and that of the 1B-1R translocation inherited through the pollen or the egg cell from structurally heterozygous hybrids 1BL-1BS/1BL-1RS. Both the normal 1B and the translocated 1BL-1RS chromosomes were sexually transmitted through the pollen grains with the same frequency. The 1BL-1RS chromosome is only transmitted through 45% of the egg cells. On the contrary, two-thirds of the microspore-derived green plants regenerated from the anther culture experiments possess the translocated chromosome. The involvement of the rye chromosome arm 1RS from 'Aurora' on regeneration capacity of the microspore-derived embryos has been proposed through the effect of a "gametophytic gene."  相似文献   

2.
《Plant science》1987,51(1):77-81
Significant variation among Chinese Spring wheat (Triticum aestivum L.) and a set of seven addition lines in which chromosomes from rye (Secale cereale L.) were incorporated into the Chinese Spring background was observed for callus formation and plant regeneration from anther cultures and for plant regeneration from immature embryo cultures. Callus initiation from immature embryo cultures was uniformly high. Rye chromosome 4 contains factors which significantly increase both anther culture responses relative to Chinese Spring. Rye chromosomes 6 and 7 both contain positive factors for regeneration from immature embryo culture. While no correlation was found between anther culture and embryo culture responses, a positive correlation was observed between the two anther culture response variables.  相似文献   

3.
Using two varieties, their reciprocal hybrids, F8 lines and doubled haploids, results confirmed that three genetic components are involved in wheat anther culture ability, viz embryo induction frequency, regeneration ability and the frequency of albinism. In these experiments, no significant maternal effects were noticed. For embryo yields, transgressive lines were obtained from hybrids between distant genotypes. Regeneration of green plants depended upon two independent traits: regeneration ability and the frequency of albinos. F8 lines and two doubled haploids equaled the 50% regeneration rate of the hybrids, but they only regenerated green plants. Based upon cytological examination and gliadin patterns, it is suggested that genes favoring regeneration ability could be linked to the 1BL-1RS translocated chromosome from Aurora.Abbreviations DH doubled haploids - MS Murashige and Skoog - MPG multicellular pollen grains  相似文献   

4.
普通冬小麦品系99-2439在郑州连续4年对田间白粉菌(Blumeria graminis sp. tritici)表现高抗,但其抗性基因来源不清。通过染色体C-分带和1RS染色体特异性SCAR标记鉴定, 表明它是一个小麦-黑麦(Triticum aestivum - Secale cereale)1BL/1RS异易位系。通过对中国春×99-2439杂交F2代分离群 体抗性鉴定和1RS染色体臂检测结果分析, 证明该抗病基因不在1RS染色体臂上。用单孢小麦白粉菌分离株对其抗性遗传进行研究, 结果表明, 99-2439的白粉病抗性由一对小种专化、隐性抗病基因控制。由于携带Pm5a的Hope/8Cc对中国的21个小麦白粉菌分离菌株均高度感病, 而99-2439高抗混和白粉菌和5个单孢分离菌株, 所以, 99-2439所携带的抗白粉病基因不同于Pm5a。  相似文献   

5.
普通小麦99-2439中的白粉病抗性遗传   总被引:6,自引:0,他引:6  
普通冬小麦品系99-2439在郑州连续4年对田间白粉菌(Blumeria graminis sp.tritici)表现高抗,但其抗性基因来源不清.通过染色体C-分带和IRS染色体特异性SCAR标记鉴定,表明它是一个小麦-黑麦(Triticum aestivum-Secale cereale)lBL/1RS异易位系.通过对中国春×99-2439杂交F2代分离群体抗性鉴定和1RS染色体臂检测结果分析,证明该抗病基因不在1RS染色体臂上.用单孢小麦白粉菌分离株对其抗性遗传进行研究,结果表明,99-2439的白粉病抗性由一对小种专化、隐性抗病基因控制.由于携带Pm5a的Hope/8Cc对中国的21个小麦白粉菌分离菌株均高度感病,而99-2439高抗混和白粉菌和5个单孢分离菌株,所以,99-2439所携带的抗白粉病基因不同于Pm5a.  相似文献   

6.
The genetic map of chromosome 5B has been constructed by using microsatellite (SSR) analysis of 381 plants from the F2 population produced by cross of the Chinese Spring (CS) and Renan cultivars. Initially, 180 SSR markers for the common wheat 5B chromosome have been used for analysis of these cultivars. The 32 markers able to detect polymorphism between these cultivars have been located on the genetic map of chromosome 5B. Cytogenetic mapping has involved a set of CS 5B chromosome deletion lines. Totally, 51 SSR markers have been located in ten regions (deletion bins) of this chromosome by SSR analysis of these deletion lines. Five genes—TaCBFIIIc-B10, Vrn-B1, Chi-B1, Skr, and Ph1—have been integrated into the cytogenetic map of chromosome 5B using the markers either specific of or tightly linked to the genes in question. Comparison of the genetic and cytogenetic maps suggests that recombination is suppressed in the pericentromeric region of chromosome 5B, especially in the short arm segment. The 18 markers localized to deletion bins 5BL16-0.79-1.00 and 5BL18-0.66-0.79 have been used to analyze common wheat introgression lines L842, L5366-180, L73/00i, and L21-4, carrying fragments of alien genomes in the terminal region of 5B long arm. L5366-180 and L842 lines carry a fragment of the Triticum timopheevii 5GL chromosome, while L73/00i and L21-4 lines, a fragment of the Aegilops speltoides 5SL chromosome. As has been shown, the translocated fragments in these four lines are of different lengths, allowing bin 5BL18-0.66-0.79 to be divided into three shorter regions. The utility of wheat introgression lines carrying alien translocations for increasing the resolution of cytogenetic mapping is discussed.  相似文献   

7.
H Ozkan  M Feldman 《Génome》2001,44(6):1000-1006
The Ph1 gene has long been considered the main factor responsible for the diploid-like meiotic behavior of polyploid wheat. This dominant gene, located on the long arm of chromosome 5B (5BL), suppresses pairing of homoeologous chromosomes in polyploid wheat and in their hybrids with related species. Here we report on the discovery of genotypic variation among tetraploid wheats in the control of homoeologous pairing. Compared with the level of homoeologous pairing in hybrids between Aegilops peregrina and the bread wheat cultivar Chinese Spring (CS), significantly higher levels of homoeologous pairing were obtained in hybrids between Ae. peregrina and CS substitution lines in which chromosome 5B of CS was replaced by either 5B of Triticum turgidum ssp. dicoccoides line 09 (TTD09) or 5G of Triticum timopheevii ssp. timopheevii line 01 (TIMO1). Similarly, a higher level of homoeologous pairing was found in the hybrid between Ae. peregrina and a substitution line of CS in which chromosome arm 5BL of line TTD140 substituted for 5BL of CS. It appears that the observed effect on the level of pairing is exerted by chromosome arm 5BL of T turgidum ssp. dicoccoides, most probably by an allele of Ph1. Searching for variation in the control of homoeologous pairing among lines of wild tetraploid wheat, either T turgidum ssp. dicoccoides or T timopheevii ssp. armeniacum, showed that hybrids between Ae. peregrina and lines of these two wild wheats exhibited three different levels of homoeologous pairing: low, low intermediate, and high intermediate. The low-intermediate and high-intermediate genotypes may possess weak alleles of Ph1. The three different T turgidum ssp. dicoccoides pairing genotypes were collected from different geographical regions in Israel, indicating that this trait may have an adaptive value. The availability of allelic variation at the Ph1 locus may facilitate the mapping, tagging, and eventually the isolation of this important gene.  相似文献   

8.

Key message

High-resolution multiplex oligonucleotide FISH revealed the frequent occurrence of structural chromosomal rearrangements and polymorphisms in widely grown wheat cultivars and their founders.

Abstract

Over 2000 wheat cultivars including 19 founders were released and grown in China from 1949 to 2000. To understand the impact of breeding selection on chromosome structural variations, high-resolution karyotypes of Chinese Spring (CS) and 373 Chinese cultivars were developed and compared by FISH (fluorescence in situ hybridization) using an oligonucleotide multiplex probe based on repeat sequences. Among them, 148 (39.7%) accessions carried 14 structural rearrangements including three single translocations (designated as T), eight reciprocal translocations (RT), one pericentric inversion (perInv), and two combined variations having both the deletion and single translocations. Five rearrangements were traced to eight founders, including perInv 6B detected in 57 cultivars originating from Funo, Abbondanza, and Fan 6, T 1RS?1BL in 47 cultivars derived from the Lovrin series, RT 4AS?4AL-1DS/1DL?1DS-4AL in 31 varieties from Mazhamai and Bima 4, RT 1RS?7DL/7DS?1BL in three cultivars was from Aimengniu, and RT 5BS?5BL-5DL/5DS?5DL-5BL was only detected in Youzimai. In addition to structural rearrangements, 167 polymorphic chromosome blocks (defined as unique signal patterns of oligonucleotide repeat probes distributed within chromosomes) were identified, and 59 were present in one or more founders. Some specific types were present at high frequencies indicating selective blocks in Chinese wheat varieties. All cultivars and CS were clustered into four groups and 15 subgroups at chromosome level. Common block patterns occurred in the same subgroup. Origin, geographic distribution, probable adaptation to specific environments, and potential use of these chromosomal rearrangements and blocks are discussed.
  相似文献   

9.
The review considers the effect of the rye 1BL/1RS translocation in the common wheat genome on qualitative and quantitative traits: grain quality, resistance to diseases, productivity and adaptivity, parthenogenesis, regeneration in anther culture, frequency of chromosome aberrations and frequency of cross-pollination. Data on special features of transmission of the 1BL/1RS translocation through male and female gametes are presented.  相似文献   

10.
Summary The influence of the short arm of rye chromosome 1 (1RS) from Secale cereale var. Imperial on the growth and differentiation of callus cultures from wheat Triticum aestivum var. Chinese Spring immature embryos was analysed. This chromosome arm was found to stimulate both embryogenesis and the rate of growth of calli. Recombinant lines carrying segments of 1RS were used to delineate the regions of 1RS responsible for the tissue culture effects. The enhancement of embryogenesis and the stimulation of growth were shown to be associated with two distinct genetic regions of the chromosome arm; the former is located between the centromere and the Sec 1 locus, while the latter is situated in the immediate vicinity of the Sec 1 locus.  相似文献   

11.
 Low-temperature (LT) induced genes of the Wcs120 family in wheat (Triticum aestivum) were mapped to specific chromosome arms using Western and Southern blot analysis on the ditelocentric series in the cultivar Chinese Spring (CS). Identified genes were located on the long arms of the homoeologous group 6 chromosomes of all 3 genomes (A, B, and D) of hexaploid wheat. Related species carrying either the A, D, or AB genomes were also examined using Southern and Western analysis with the Wcs120 probe and the WCS120 antibody. All closely related species carrying one or more of the genomes of hexaploid wheat produced a 50 kDa protein that was identified by the antibody, and a Wcs120 homoeologue was detected by Southern analysis in all species. In the absence of chromosome arm 6DL in hexaploid CS wheat no 50 kDa protein was produced and the high-intensity Wcs120 band was missing, indicating 6DL as the location of Wcs120 but suggesting silencing of the Wcs120 homoeologue in the A genome. Levels of proteins that cross-reacted with the Wcs120 antibody and degrees of cold tolerance were also investigated in the Chinese Spring/Cheyenne (CS/CNN) chromosome substitution series. CNN chromosome 5A increased the cold tolerance of CS wheat. Densitometry scanning of Western blots to determine protein levels showed that the group 5 chromosome 5A had a regulatory effect on the expression of the Wcs120 gene family located on the group 6 chromosomes of all three hexaploid wheat genomes. Received: 10 July 1996 / Accepted: 30 September 1996  相似文献   

12.
Low-temperature (LT) induced genes of the Wcs120 family in wheat (Triticum aestivum) were mapped to specific chromosome arms using Western and Southern blot analysis on the ditelocentric series in the cultivar Chinese Spring (CS). Identified genes were located on the long arms of the homoeologous group 6 chromosomes of all 3 genomes (A, B, and D) of hexaploid wheat. Related species carrying either the A, D, or AB genomes were also examined using Southern and Western analysis with the Wcs120 probe and the WCS120 antibody. All closely related species carrying one or more of the genomes of hexaploid wheat produced a 50 kDa protein that was identified by the antibody, and a Wcs120 homoeologue was detected by Southern analysis in all species. In the absence of chromosome arm 6DL in hexaploid CS wheat no 50 kDa protein was produced and the high-intensity Wcs120 band was missing, indicating 6DL as the location of Wcs120 but suggesting silencing of the Wcs120 homoeologue in the A genome. Levels of proteins that cross-reacted with the Wcs120 antibody and degrees of cold tolerance were also investigated in the Chinese Spring/Cheyenne (CS/CNN) chromosome substitution series. CNN chromosome 5A increased the cold tolerance of CS wheat. Densitometry scanning of Western blots to determine protein levels showed that the group 5 chromosome 5A had a regulatory effect on the expression of the Wcs120 gene family located on the group 6 chromosomes of all three hexaploid wheat genomes.  相似文献   

13.
Summary Calli were initiated from immature embryos of nine lines of hexaploid wheat (Triticum aestivum L. em. Thell). These were the euploid lines Chinese Spring and Cappelle-Desprez, a line of Chinese Spring ditelocentric for the long arm of 4B, four substitution lines of Chinese Spring in which chromosome 4B has been replaced by its homologues from different wheat varieties and substituted into Chinese Spring and a substitution line of Besostaya I 4B into Cappelle-Desprez. The calli from these lines were found to differ in their growth rates and morphogenic and regenerative activities. The substitution of different 4B chromosomes into Chinese Spring significantly increased morphogenesis and shoot regeneration from callus. The potential for developing wheat lines with improved culture characteristics is discussed.  相似文献   

14.
Rye chromosomes of wheat-rye addition lines were successfully identified by means of an RFLP analysis with 30 probes. Our results are in agreement with previous cytological data concerning the identity of lines F (+1R), D (+2R), C (+3R), A (+4R), E (+5R) and B (+7R). Two categories of chromosomal rearrangements have been distinguished, namely: (1) deletions: the current line D possesses a chromosome 2R deleted on its short arm and the line G a chromosome 3R deleted on its long arm; we have also noticed a deletion on the long arm of wheat chromosome 1A in line F61; and (2) evolutionary reciprocal translocations in rye relative to wheat which have been previously mentioned in the literature. The anther culture response of the different lines was studied. A significant difference between FEC 28 and the addition lines was observed for embryo production and plant regeneration. It appears that genes located on S 10 chromosome arm 3RL and on FEC 28 chromosome arm 1AL increase embryo frequency whereas gene(s) located on S 10 chromosome 5R reduce(s) it. Plant regeneration results suggest that genes increasing regeneration ability and green-plant frequency are located on S 10 chromosome 4R. The long arm of chromosome 1A seems to be involved positively in green-plant regeneration whereas chromosomes 1R and 3R limit plant regeneration.  相似文献   

15.
Summary Chromosome 5B of bread wheat is known to carry two major genes giving rise to genetic disorders, Ne1 for hybrid necrosis and Vg for winter variegation. Additionally, in many european winter wheat varieties this chromosome is represented in a translocated form, with 5BL-7BL, 5BL-7BS chromosomes rather than the normal 5B and 7B forms of the standard variety Chinese Spring. Genetic analysis has been carried out to map these genes and the translocation break point, and to investigate their pleiotropic effects or those of linked quantitative trait loci (qtl) for economically important characters. This was facilitated by the development of single chromosome recombinant lines between a normal and translocated karyotype, and growing these in field experiments over two seasons. There was differential segregation in favour of the translocated karyotype in the population of recombinant lines. Linkage analysis revealed that the two morphological markers and the isozyme locus Ibf-B1 were located on the long arm of 5B with a gene order of: breakpoint — Ne1VgIbf-B1. Analysis of quantitative characters using these genes as landmarks showed pleiotropic effects of Ne1 or effects of tightly linked qtl on most of the quantitative characters related to grain yield. An additional qtl determining spikelet and grain number/ear appeared to be linked to the centromere. Effects on ear emergence time were associated with both Ne1 and Vg, and these interacted with environments. Similarly, effects on plant height were associated with Ne1 and Vg. In addition, there was a further unlocated locus (loci) for height acting independently of the markers.  相似文献   

16.
phlb基因诱导小麦ABD染色体组部分同源染色体配对的研究   总被引:1,自引:0,他引:1  
通过花药培养首次获得了“中国春”phlb突变体单倍体,同时也获得了“中国春”单倍体。对其细胞学观察表明,前者花粉母细胞减数分裂中期Ⅰ每个细胞染色体交叉为5.08个,后者为1.30个。证明了phlb基因在单倍体状态下具有强的诱导ABD染色体组部分同源染色体间的配对作用。  相似文献   

17.
利用APAGE、荧光原位杂交技术和RFLP标记,对导入黑麦(SecalecerealeL.)多小穗等性状创制的小麦新种质10_A进行了分子标记检测。APAGE分析发现,10_A与其他1RS/1BL易位系一样,含有1RS的醇溶蛋白标记位点Gld1B3。以黑麦基因组总DNA作探针,用中国春(Triticumaestivumcv.ChineseSpring)基因组DNA作封阻,与10_A根尖细胞有丝分裂染色体进行荧光原位杂交。结果表明,黑麦的1RS易位到10_A中。用25个RFLP探针进行Southern分析,进一步发现10_A的1BS特异限制性片段发生丢失,代之以黑麦1RS的特异限制性片段,而位于其他染色体上的特异限制性片段未发生缺失。据此认为,多小穗小麦新种质10_A属于1RS/1BL易位系。同时还讨论了10_A在小麦遗传改良中的利用情况。  相似文献   

18.
当柱穗山羊草(Aegilops cylindrica Host.)2C染色体单体添加到普通小麦品种中国春和以中国春为背景的派生系时,减数分裂时,不含2C染色体的配子会发生染色体结构变异。为了制备一套黑麦1R染色体缺失系以用于定位黑麦1R染色体上的控制重要农艺性状的基因,把一条2C染色体导人到小黑麦1R二体附加系(21″ 1R″)中,然后让这些个体(21″ 1R″ 2C′,2n=45)自交,以便产生1R染色体结构变异体。实验共检测了345粒F,种子,83粒种子带有结构变异的黑麦1R染色体(24.1%)。通过C分带和原位杂交检测,对来自于23株F2的46个F3植株所带有的异常1R染色体进行了归类:其中1RL端体为39.1%,1RL等臂染色体为2.2%,1RL易位系为32.6%。1RS端体为4.3%,1RS等臂染色体为4.3%,切点在长臂上的缺失体为2.2%。在6.5%的植株中同时含有2种类型的1R染色体结构变异。其余8.7%带有异常1R染色体的个体因为没有原位杂交结果而无法判断是属于哪种类型。已获得的1R结构变异株将有可能进一步发展成为一套可用于定位黑麦1R染色体上重要功能基因的遗传材料。另外,还探讨了综合应用细胞学和分子标记方法鉴定易位染色体中小麦染色体片段的尝试,并对所获结果进行了讨论。  相似文献   

19.
The study was conducted to investigate the effect of the 1BL.1RS wheat-rye-translocation on the androgenic response in spring bread wheat. Therefore, four bread wheat cultivars carrying the translocation, four Greek and three Canadian bread wheat cultivars without the translocation were used. An equal number of anthers from each cultivar, containing microspores in the mid (MU) to late uninucleate (LU) microspore developmental stage, were cultured after cold pre-treatment for seven days at 4°C. W14, 190-2 and the basic MS were used as induction, regeneration, and rooting media respectively. The best androgenic response was recorded in two cultivars carrying the translocation. Only two cultivars lacking the translocation responded to anther culture. It is concluded that the positive effect of the 1BL.1RS translocation on anther culture response of bread wheat cultivars cannot be attributed entirely to its presence because the genetic background of the cultivars carrying the translocation could be also important.  相似文献   

20.
Gametocidal (Gc) genes of Aegilops in the background of the wheat genome lead to breakage of wheat chromosomes. The Q gene of wheat was used as a marker to select 19 deletion lines for the long arm of chromosome 5A of common wheat, Triticum aestivum cv. Chinese Spring (CS). The extents of deleted segments were cytologically estimated by the C-banding technique. The DNAs of deletion lines were hybridized with 22 DNA probes recognizing sites on the long arm of the chromosome (5AL) to determine their physical order. Based on the breeding behavior of the deletion lines, the location of a novel gene (Pv, pollen viability) affecting the viability of the male gamete was deduced. The segment translocated from 4AL to 5AL in CS was cytologically estimated to represent 13% of the total length of 5AL. Although DNA markers were almost randomly distributed along the chromosome arm, DNA markers located around the centromere and C-banded regions were obtained only rarely. Some deletion lines were highly rearranged in chromosome structure due to the effect(s) of the Gc gene. Applications of Gc genes for manipulating wheat chromosomes are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号