首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Genomic islands are foreign DNA blocks inserted in so-called regions of genomic plasticity (RGP). Depending on their gene content, they are classified as pathogenicity, symbiosis, metabolic, fitness or resistance islands, although a detailed functional analysis is often lacking. Here we focused on a 34-kb pathogenicity island of Pseudomonas aeruginosa PA14 (PA14GI-6), which is inserted at RGP5 and carries genes related to those for pyochelin/enantiopyochelin biosynthesis. These enantiomeric siderophores of P. aeruginosa and certain strains of Pseudomonas protegens are assembled by a thiotemplate mechanism from salicylate and two molecules of cysteine. The biochemical function of several proteins encoded by PA14GI-6 was investigated by a series of complementation analyses using mutants affected in potential homologs. We found that PA14_54940 codes for a bifunctional salicylate synthase/salicyl-AMP ligase (for generation and activation of salicylate), that PA14_54930 specifies a dihydroaeruginoic acid (Dha) synthetase (for coupling salicylate with a cysteine-derived thiazoline ring), that PA14_54910 produces a type II thioesterase (for quality control), and that PA14_54880 encodes a serine O-acetyltransferase (for increased cysteine availability). The structure of the PA14GI-6-specified metabolite was determined by mass spectrometry, thin-layer chromatography, and HPLC as (R)-Dha, an iron chelator with antibacterial, antifungal and antitumor activity. The conservation of this genomic island in many clinical and environmental P. aeruginosa isolates of different geographical origin suggests that the ability for Dha production may confer a selective advantage to its host.  相似文献   

2.
3.
The known genomic islands of Pseudomonas aeruginosa clone C strains are integrated into tRNA(Lys) (pKLC102) or tRNA(Gly) (PAGI-2 and PAGI-3) genes and differ from their core genomes by distinctive tetranucleotide usage patterns. pKLC102 and the related island PAPI-1 from P. aeruginosa PA14 were spontaneously mobilized from their host chromosomes at frequencies of 10% and 0.3%, making pKLC102 the most mobile genomic island known with a copy number of 30 episomal circular pKLC102 molecules per cell. The incidence of islands of the pKLC102/PAGI-2 type was investigated in 71 unrelated P. aeruginosa strains from diverse habitats and geographic origins. pKLC102- and PAGI-2-like islands were identified in 50 and 31 strains, respectively, and 15 and 10 subtypes were differentiated by hybridization on pKLC102 and PAGI-2 macroarrays. The diversity of PAGI-2-type islands was mainly caused by one large block of strain-specific genes, whereas the diversity of pKLC102-type islands was primarily generated by subtype-specific combination of gene cassettes. Chromosomal loss of PAGI-2 could be documented in sequential P. aeruginosa isolates from individuals with cystic fibrosis. PAGI-2 was present in most tested Cupriavidus metallidurans and Cupriavidus campinensis isolates from polluted environments, demonstrating the spread of PAGI-2 across habitats and species barriers. The pKLC102/PAGI-2 family is prevalent in numerous beta- and gammaproteobacteria and is characterized by high asymmetry of the cDNA strands. This evolutionarily ancient family of genomic islands retained its oligonucleotide signature during horizontal spread within and among taxa.  相似文献   

4.
The data on the sensitivity of P. aeruginosa clinical strains to pyocyaneum, a therapeutic and prophylactic bacteriophage preparation, and to individual groups of phages contained in this preparation are presented. Out of 549 P. aeruginosa strains, 16% have proved to be nonlysing cultures. The proportion of phage-sensitive strains prevailed in serogroups 01, 03, 06, 09, while phage-resistant strains prevailed in serogroups 04, 07, 011, as well as among O-nontyped cultures. The expediency of introducing P. aeruginosa strains of different serotypes into the collection of cultures used for the production of pyocyaneum has been shown.  相似文献   

5.
The population interactions of Pseudomonas aeruginosa virulent bacteriophages phi kF77 and phi mnF82 with host bacterial cells were studied in dynamics under the conditions of continuous cultivation in the chemostat regime with glucose limitation. Two different types of maintaining the bacterium and its specific bacteriophages in the population were detected. When P. aeruginosa was cultivated with phage phi mnF82, such a maintenance was realized due to the successive appearance of bacterial mutants resistant to the phage and of phage mutants overcoming this resistance. When P. aeruginosa was cultivated with phage phi kF77, these were maintained owing to the ability of P. aeruginosa to form unstable phage-resistant variants with the segregation of phage-sensitive cells.  相似文献   

6.
A genomic island consisting of 14 open reading frames, orfA to orfN was previously identified in Pseudomonas aeruginosa strain PAK and shown to be essential for glycosylation of flagellin. DNA microarray hybridization analysis of a number of P. aeruginosa strains from diverse origins showed that this island is polymorphic. PCR and sequence analysis confirmed that many P. aeruginosa strains carry an abbreviated version of the island (short island) in which orfD, -E and -H are polymorphic and orfI, -J, -K, -L, and -M are absent. To ascertain whether there was a relationship between the inheritance of the short island and specific flagellin sequence variants, complete or partial nucleotide sequences of flagellin genes from 24 a-type P. aeruginosa strains were determined. Two distinct flagellin subtypes, designated A1 and A2, were apparent. Strains with the complete 14-gene island (long island) were almost exclusively of the A1 type, whereas strains carrying the short island were associated with both A1- and A2-type flagellins. These findings indicate that P. aeruginosa possesses a relatively low number of distinct flagellin types and probably has the capacity to further diversify this antigenic surface protein by glycosylation.  相似文献   

7.
8.
Pseudomonas aeruginosa PAO1 reduced nitrous oxide to dinitrogen but did not grow anaerobically in nitrous oxide. Two transposon insertion Nos- mutants of Pseudomonas stutzeri exhibited the P. aeruginosa phenotype. Growth yield studies demonstrated that nitrous oxide produced in vivo was productively respired, but nitrous oxide supplied exogenously was not. The defect may be in electron transport or in nitrous oxide uptake.  相似文献   

9.
Mucin is a glycoprotein that is the primary component of the mucus overlaying the epithelial tissues. Because mucin functions as a first line of the innate immune system, Pseudomonas aeruginosa appears to require interaction with mucin to establish infection in the host. However, the interactions between P. aeruginosa and mucin have been poorly understood. In this study, using in vivo expression technology (IVET), we attempted to identify mucin-inducible promoters that are likely to be involved in the establishment of P. aeruginosa infection. The IVET analysis revealed that the genes encoding glycosidases, sulfatases, and peptidases that are thought to be required for the utilization of mucin as a nutrient are present in 13 genes downstream of the identified promoters. Our results indicated that, among them, sdsA1 encoding a secreted sulfatase plays a central role in the degradation of mucin. It was then demonstrated that disruption of sdsA1 leads to a decreased release of sulfate from mucin and sulfated sugars. Furthermore, the sdsA1 mutant showed a reduction in the ability of mucin gel penetration and an attenuation of virulence in leukopenic mice compared with the wild-type strain. Collectively, these results suggest that SdsA1 plays an important role as a virulence factor of P. aeruginosa.  相似文献   

10.
LecA (PA-IL) is a cytotoxic lectin and adhesin produced by Pseudomonas aeruginosa which binds hydrophobic galactosides with high specificity and affinity. By using a lecA-egfp translation fusion and immunoblot analysis of the biofilm extracellular matrix, we show that lecA is expressed in biofilm-grown cells. In static biofilm assays on both polystyrene and stainless steel, biofilm depth and surface coverage was reduced by mutation of lecA and enhanced in the LecA-overproducing strain PAO-P47. Biofilm surface coverage by the parent strain, PAO-P47 but not the lecA mutant on steel coupons was also inhibited by growth in the presence of either isopropyl-beta-D-thiogalactoside (IPTG) or p-nitrophenyl-alpha-D-galactoside (NPG). Furthermore, mature wild-type biofilms formed in the absence of these hydrophobic galactosides could be dispersed by the addition of IPTG. In contrast, addition of p-nitrophenyl-alpha-L-fucose (NPF) which has a high affinity for the P. aeruginosa LecB (PA-IIL) lectin had no effect on biofilm formation or dispersal. Planktonic growth of P. aeruginosa PAO1 was unaffected by the presence of IPTG, NPG or NPF, nor was the strain able to utilize these sugars as carbon sources, suggesting that the observed effects on biofilm formation were due to the competitive inhibition of LecA-ligand binding. Similar results were also obtained for biofilms grown under dynamic flow conditions on steel coupons, suggesting that LecA contributes to P. aeruginosa biofilm architecture under different environmental conditions.  相似文献   

11.
Pseudomonas aeruginosa PAO1 reduced nitrous oxide to dinitrogen but did not grow anaerobically in nitrous oxide. Two transposon insertion Nos- mutants of Pseudomonas stutzeri exhibited the P. aeruginosa phenotype. Growth yield studies demonstrated that nitrous oxide produced in vivo was productively respired, but nitrous oxide supplied exogenously was not. The defect may be in electron transport or in nitrous oxide uptake.  相似文献   

12.
13.
AmpC beta-lactamases from strains of Pseudomonas aeruginosa have previously been shown to be heterogeneous with respect to their isoelectric point (pI). In order to elucidate the origin of this heterogeneity enzymes were isolated from a clinical isolate of a multiresistant P. aeruginosa strain and biochemically characterized. The purification was accomplished in four chromatographic steps comprising dye-affinity, size-exclusion, hydrophobic interaction chromatography, and chromatofocusing; this resulted in five forms with pI values of 9.1, 8.7, 8.3, 8.2, and 7.6. When analysed by SDS/PAGE and agarose IEF each separated beta-lactamase appeared to be both size- and charge-homogeneous. The specific activities of the variants were very similar. MS of each isolated beta-lactamase form showed minor differences in molecular mass (range 40.0-40.8 kDa). MS of the beta-lactamase with a pI of 8.2 demonstrated the presence of two subforms. The N-terminal sequences of three of the beta-lactamases were identical to the published sequence [Lodge, J.M. , Minchin, S.D., Piddock, L.J.V. & Busby, J.W. (1990) Biochem. J. 272, 627-631], while two variants were truncated by two amino-acid residues, one of which was acidic. The previously published sequence contains an alanine as the ultimate residue, but two of the beta-lactamases showed a substitution of Ala371 for arginine, whereas in the remaining forms C-terminal truncations by one and three residues were found. Our results indicate that the P. aeruginosa strain does not harbour multiple copies of the ampC gene, but rather that the five beta-lactamase isoforms are products of a single structural gene. The combinations of the identified N- and/or C-terminal truncations explained the multiple pI values of the beta-lactamase isoforms.  相似文献   

14.
A role for one of many exocellular enzymes produced by Pseudomonas aeruginosa--phospholipase C (PLC)--as a prime candidate virulence factor in fleecerot dermatitis has been examined. The addition of Tween 80 in tryptose minimal medium effectively perturbed the membrane system of a field isolate of P. aeruginosa, resulting in increased production and release of a periplasmic enzyme marker, alkaline phosphatase (AP), and also of PLC. PLC activity levels in the culture supernatant were 10- to 15-fold higher in the presence of Tween than in its absence. Apart from AP, the culture medium contained little or no detectable proteolytic enzyme activity, thereby facilitating the partial purification of a haemolytic form of PLC by anion-exchange chromatography. This enzyme, when injected intradermally into the skin of sheep, elicited histopathological lesions virtually identical to those seen in naturally occurring fleecerot. In addition, serum from each of eight sheep afflicted with fleecerot contained high levels of circulating anti-PLC antibody activity when assayed by ELISA. Since these antibodies did not affect the enzymic function of PLC, it is likely that they do not bind to, or are incapable of conformational modification of, the active site.  相似文献   

15.
Recently, we found that staphylococcal enterotoxin A (SEA)-producing Staphylococcus aureus strains produced SEA in raw milk with microbial contaminants at high temperatures like 40 °C only. Moreover, the concentration of SEA produced in raw milk gradually decreased after the peak. The reason(s) for SEA degradation in raw milk was studied in this study. Degradation of SEA spiked in raw milk was observed at 40 °C, but not at 25 °C. A Pseudomonas aeruginosa isolate from raw milk degraded SEA spiked in broth at 40 °C. A sample partially purified with a chromatographic method from culture supernatant of the isolate degraded SEA. Two main proteolytic bands were observed in the sample by zymographic analysis with casein. These results suggested that the SEA in raw milk might be degraded by a protease(s) produced by the P. aeruginosa isolate. This finding might be the first report on SEA degradation by a proteolytic enzyme(s) derived from Pseudomonas bacteria to our knowledge.  相似文献   

16.
We used a porcine microarray containing 2,880 cDNAs to investigate the response of macrophages to infection by a virulent African swine fever virus (ASFV) isolate, Malawi LIL20/1. One hundred twenty-five targets were found to be significantly altered at either or both 4 h and 16 h postinfection compared with targets after mock infection. These targets were assigned into three groups according to their temporal expression profiles. Eighty-six targets showed increased expression levels at 4 h postinfection but returned to expression levels similar to those in mock-infected cells at 16 h postinfection. These encoded several proinflammatory cytokines and chemokines, surface proteins, and proteins involved in cell signaling and trafficking pathways. Thirty-four targets showed increased expression levels at 16 h postinfection compared to levels at 4 h postinfection and in mock-infected cells. One host gene showed increased expression levels at both 4 and 16 h postinfection compared to levels in mock-infected cells. The microarray results were validated for 12 selected genes by quantitative real-time PCR. Levels of protein expression and secretion were measured for two proinflammatory cytokines, interleukin 1beta and tumor necrosis factor alpha, during a time course of infection with either the virulent Malawi LIL20/1 isolate or the OUR T88/3 nonpathogenic isolate. The results revealed differences between these two ASFV isolates in the amounts of these cytokines secreted from infected cells.  相似文献   

17.
A clinical isolate of Pseudomonas aeruginosa was found capable of utilizing salicylate by the salicylate hydroxylase and beta-ketoadipate pathway.  相似文献   

18.
《Autophagy》2013,9(1):166-182
The nucleotide-binding domain, leucine-rich repeat containing family caspase recruitment domain containing 4 (NLRC4) inflammasome can be activated by pathogenic bacteria via products translocated through the microbial type III secretion apparatus (T3SS). Recent work has shown that activation of the NLRP3 inflammasome is downregulated by autophagy, but the influence of autophagy on NLRC4 activation is unclear. We set out to determine how autophagy might influence this process, using the bacterium Pseudomonas aeruginosa, which activates the NLRC4 inflammasome via its T3SS. Infection resulted in T3SS-dependent mitochondrial damage with increased production of reactive oxygen intermediates and release of mitochondrial DNA. Inhibiting mitochondrial reactive oxygen release or degrading intracellular mitochondrial DNA abrogated NLRC4 inflammasome activation. Moreover, macrophages lacking mitochondria failed to activate NLRC4 following infection. Removal of damaged mitochondria by autophagy significantly attenuated NLRC4 inflammasome activation. Mitochondrial DNA bound specifically to NLRC4 immunoprecipitates and transfection of mitochondrial DNA directly activated the NLRC4 inflammasome; oxidation of the DNA enhanced this effect. Manipulation of autophagy altered the degree of inflammasome activation and inflammation in an in vivo model of P. aeruginosa infection. Our results reveal a novel mechanism contributing to NLRC4 activation by P. aeruginosa via mitochondrial damage and release of mitochondrial DNA triggered by the bacterial T3SS that is downregulated by autophagy.  相似文献   

19.
The nucleotide-binding domain, leucine-rich repeat containing family caspase recruitment domain containing 4 (NLRC4) inflammasome can be activated by pathogenic bacteria via products translocated through the microbial type III secretion apparatus (T3SS). Recent work has shown that activation of the NLRP3 inflammasome is downregulated by autophagy, but the influence of autophagy on NLRC4 activation is unclear. We set out to determine how autophagy might influence this process, using the bacterium Pseudomonas aeruginosa, which activates the NLRC4 inflammasome via its T3SS. Infection resulted in T3SS-dependent mitochondrial damage with increased production of reactive oxygen intermediates and release of mitochondrial DNA. Inhibiting mitochondrial reactive oxygen release or degrading intracellular mitochondrial DNA abrogated NLRC4 inflammasome activation. Moreover, macrophages lacking mitochondria failed to activate NLRC4 following infection. Removal of damaged mitochondria by autophagy significantly attenuated NLRC4 inflammasome activation. Mitochondrial DNA bound specifically to NLRC4 immunoprecipitates and transfection of mitochondrial DNA directly activated the NLRC4 inflammasome; oxidation of the DNA enhanced this effect. Manipulation of autophagy altered the degree of inflammasome activation and inflammation in an in vivo model of P. aeruginosa infection. Our results reveal a novel mechanism contributing to NLRC4 activation by P. aeruginosa via mitochondrial damage and release of mitochondrial DNA triggered by the bacterial T3SS that is downregulated by autophagy.  相似文献   

20.
Pseudomonas aeruginosa is an ubiquitous environmental bacterium and an opportunistic human pathogen. Not only in most natural habitats but also within the human host, e.g. within the chronically infected cystic fibrosis lung, P. aeruginosa is associated with surfaces in structures known as biofilms. These functional communities represent a unique mode of bacterial growth where bacteria display particular phenotypes that are fundamentally different from planktonic cells. In this review the issue of the molecular mechanisms underlying the emergence of small colony variant (SCV) P. aeruginosa morphotypes that are especially capable of forming biofilms is addressed. It is assumed that the expression of the chaperone usher pathway (cup) genes encoding putative fimbrial adhesins is responsible for the phenotypic switch to an autoaggregative SCV phenotype. The elucidation of phenotypic switching in response to environmental stimuli will significantly increase our understanding of regulatory processes during bacterial adaptation and might be the basis for the initiation of the development of new antimicrobial treatment strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号