首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thirty-two isolates were obtained from wheat rhizosphere by wheat germ agglutinin (WGA) labeled with fluorescein isothiocyanate (FITC). Most isolates were able to produce indole acetic acid (65.6%) and siderophores (59.3%), as well as exhibited phosphate solubilization (96.8%). Fourteen isolates displayed three plant growth-promoting traits. Among these strains, two phosphate-dissolving ones, WS29 and WS31, were evaluated for their beneficial effects on the early growth of wheat (Triticum aestivum Wan33). Strain WS29 and WS31 significantly promoted the development of lateral roots by 34.9% and 27.6%, as well as increased the root dry weight by 25.0% and 25.6%, respectively, compared to those of the control. Based on 16S rRNA gene sequence comparisons and phylogenetic positions, both isolates were determined to belong to the genus Bacillus. The proportion of isolates showing the properties of plant growth-promoting rhizobacteria (PGPR) was higher than in previous reports. The efficiency of the isolation of PGPR strains was also greatly increased by WGA labeled with FITC. The present study indicated that WGA could be used as an effective tool for isolating PGPR strains with high affinity to host plants from wheat roots. The proposed approach could facilitate research on biofertilizers or biocontrol agents.  相似文献   

2.
Wheat germ agglutinin (WGA) levels in roots of 2-day-old wheat seedlings increased up to three-fold when stressed by air-drying. Similar results were obtained when seedling roots were incubated either in 0.5 molar mannitol or 180 grams per liter polyethylene glycol 6000, with a peak level of WGA after 5 hours of stress. Longer periods of osmotic treatment resulted in a gradual decline of WGA in the roots. Since excised wheat roots incorporate more [35S]cysteine into WGA under stress conditions, the observed increase of lectin levels is due to de novo synthesis. Measurement of abscisic acid (ABA) levels in roots of control and stressed seedlings indicated a 10-fold increase upon air-drying. Similarly, a five- and seven-fold increase of ABA content of seedling roots was found after 2 hours of osmotic stress by polyethylene glycol 6000 and mannitol, respectively. Finally, the stress-induced increase of WGA in wheat roots could be inhibited by growing seedlings in the presence of fluridone, an inhibitor of ABA synthesis. These results indicate that roots of water-stressed wheat seedlings (a) contain more WGA as a result of an increased de novo synthesis of this lectin, and (b) exhibit higher ABA levels. The stress-induced increase of lectin accumulation seems to be under control of ABA.  相似文献   

3.
Azospirillum brasilense cells deprived of capsular exopolysaccharides completely lost their ability to bind wheat germ agglutinin (WGA) and much of their ability to attach to wheat seedling roots. The decapsulation of bacterial cells by washing them with a NaCl solution led to an increase in the relative hydrophobicity of the cell surface. The pretreatment of wheat seedling roots with N-acetyl-D-glucosamine (GlcNAc) or the GlcNAc-containing polysaccharide complexes stripped from Azospirillum cells reduced their attachment to the roots. Under the experimental conditions used (3-h incubation of wheat seedling roots with exponential-phase azospirilla), bacterial adsorption is mainly driven by the specific mechanisms attachment of the cells to the roots, whose operation is due to the capsular polysaccharide components and the WGA present on the wheat seedling roots.  相似文献   

4.
Immunocytochemical localization of wheat germ agglutinin in wheat   总被引:11,自引:0,他引:11       下载免费PDF全文
Immunocytological techniques were developed to localize the plant lectin, wheat germ agglutinin (WGA), in the tissues and cells of wheat plants. In a previous study we demonstrated with a radioimmunoassay that the lectin is present in wheat embryos and adult plants both in the roots and at the base of the stem. We have now found, using rhodamine, peroxidase, and ferritin-labeled secondary antibodies, that WGA is located in cells and tissues that establish direct contact with the soil during germination and growth of the plant In the embryo, WGA is found in the surface layer of the radicle, the first adventitious roots, the coleoptile, and the scutellum. Although found throughout the coleorhiza and epiblast, it is at its highest levels within the cells at the surface of these organs. In adult plants, WGA is located only in the caps and tips of adventitious roots. Reaction product for WGA was not visualized in embryonic or adult leaves or in other tissues of adult plants. At the subcellular level, WGA is located at the periphery of protein bodies, within electron-translucent regions of the cytoplasm, and at the cell wall-protoplast interface. Since WGA is found at potential infection sites and is known to have fungicidal properties, it may function in the defense against fungal pathogens.  相似文献   

5.
Wheat plants are known to develop the associative symbiosis with the rhizobacterium Azospirillum brasilense.We studied the interaction of a lectin, wheat germ agglutinin (WGA), which is also found in wheat roots, with A. brasilense, strain sp245. When added to the azospirillum culture to the final concentration of 10–8to 10–9M, WGA enhanced IAA production, dinitrogen fixation, and ammonium excretion by bacterial cells. WGA also promoted the synthesis of proteins, both new and those already present in bacterial cells. The hypothesis that WGA is a signal molecule rerouting the bacterial metabolism in the direction favorable for the growth and development of the host plant has been put forward. It is suggested that signal properties of WGA are the basis for one of the functions of this lectin and essential for the effective associative symbiosis.  相似文献   

6.
Summary The chitin-binding lectin wheat germ agglutinin (WGA) is found at the periphery of wheat embryos, and a similar lectin is present at the root tips of older plants (Mishkind et al. 1982). Although a ferritin-conjugated secondary antibody is adequate for localizing WGA in embryos, native electron-opaque particles make the electron microscope identification of added label equivocal in other wheat tissues. As reported here, however, unambiguous ultrastructural localization of WGA-like lectin in adult wheat roots can be obtained with rabbit anti-WGA followed by colloidal gold-labeled goat anti-rabbit (GAR) IgG. Colloidal gold (CG) was prepared by the reduction of gold chloride with citrate, ascorbate or phosphorous. GAR IgG, prepared from serum by antigen affinity chromatograhy, was adsorbed to the gold particles to produce a stabilized suspension of GAR-CG. Localization was performed on 8–12 M frozen sections of tissue fixed in 4% paraformaldehyde, 0.3% glutaraldehyde, and 0.75% acrolein in phosphate-buffered saline containing 1M sucrose. Localization with GAR-CG was first compared to that ascertained in embryos using other probes and was then extended to the roots of adult plants. An advantage of the GARCG method is that it permits the visualization of antigen at both the light and electron microscope levels in the same section. At the light level, the anti-WGA-GAR-CG complex appears as a red stain that is localized in specific tissues of embryos and in the caps and outer layers of adult roots. Sections in which lectin was detected at the light microscope level were embedded in plastic and sectioned for subcellular examination. Electron dense gold particles indicative of WGA are found at the periphery of protein bodies in wheat embryos and in vacuoles of the roots of adult plants. Sections incubated with control IgG lack reaction product.  相似文献   

7.
Wheat lectin (wheat germ agglutinin, WGA), a representative of a broad group of cereal lectins, is excreted by plant roots into the surrounding medium and interacts with both pathogenic microflora and growth-stimulating rhizobacteria. WGA was found to serve as a molecular signal for the rhizobacterium Azospirillum brasilense, which forms endophytic and associative symbioses with wheat plants. The bacterial response to the lectin was pleiotropic: WGA at concentrations from 10?10 to 10?6 M exerted a dose-dependent effect on a range of processes in the bacterium that are important for the establishment and functioning of symbiosis. Plants with different WGA content differed in their responses to severe nitrogen starvation and to seed treatment with Azospirillum.  相似文献   

8.
Radioimmuno-and enzyme-linked immunosorbent assays show that a substantial amount of wheat germ agglutinin(WGA)-like protein is present at the base of the shoot and in the roots of adult wheat (Triticum aestivum L.) plants. The protein can be purified by hapten-and antibody-mediated affinity procedures. It forms an arc of identity with the embryo lectin upon Ouchterlony double-diffusion and is an active lectin that agglutinates trypsinized erythrocytes in an N-acetylglucosamine-and chitin-inhibitable manner. Reduced and carboxyamidated protein comigrates with the 18-kdalton subunits of embryo lectin on sodium dodecyl sulfate-polyacrylamide gels. Invivo labeling of 9-d-old, hydroponically grown plants with 35S-labeled sulfate demonstrates that at least some of the WGA-like protein is synthesized de novo. Immunocytochemistry with rabbit anti-WGA and colloidal-gold-conjugated second antibody shows that cross-reactive protein is present at the tips of new adventitious roots. In reactive cells, the lectin is localized near the inner surface of the vacuole membrane. Wheat plants contain up to 100 ng of WGA-like protein after the first week of growth, but the level fluctuates thereafter. Since most of the lectin is present at the base of the shoot and much less is found in older roots, these fluctuations may be the consequence of changes in the initiation of new advantitious roots.Abbreviations ELISA enzyme-linked immunosorbent assay - GlcNAc N-acetylglucosamine - PBS phosphate-buffered saline - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis - WGA wheat germ agglutinin  相似文献   

9.
The effects of wheat germ agglutinin (WGA) and phytohemagglutinin (PHA) at the concentration of 1 mg/l on the rate of cell division in the root apical meristem of wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), rice (Oryza sativa L.), and common bean (Phaseolus vulgaris L.) seedlings were compared. WGA enhanced cell division in the roots of barley and rice approximately similarly as in wheat roots but did not affect division of meristematic cells in the roots of common bean seedlings. In contrast PGA enhanced mitotic activity in the root apical meristem of common bean seedlings but did not affect division in the wheat and barley roots. Seedling treatment with lectins shifted the hormonal balance in them toward accumulation of growth activators (IAA and cytokinins). The relationship between lectin and hormonal systems in the control of cell division is discussed.  相似文献   

10.
11.
It has previously been shown in our laboratory that wheat germ agglutinin (WGA) binds to Trichoderma viride and inhibits growth of this fungus. Here we report on the effect of WGA, soybean agglutinin (SBA) and peanut agglutinin (PNA) on Penicillia and Aspergilli. Binding of the lectins to the fungi was examined with the aid of their fluorescein isothiocyanate (FITC) conjugated derivatives. FITC-WGA bound to young hyphal walls of all species, in particular to the hyphal tips and septa, in agreement with the chitinous composition of the cell walls of the two genera. Hyphae of all species examined were labelled, though in different patterns, by FITC-SBA and FITC-PNA, suggesting the presence of galactose residues on their surfaces. Young conidiophores, metulae (of the Penicillia), vesicles (of the Aspergilli), sterigmata and young spores, were also labelled. The three lectins inhibited incorporation of [3H]acetate, N-acetyl-D-[3H]glucosamine and D-[14C]galactose into young hyphae of Aspergillus ochraceus, indicating interference with fungal growth. Inhibition of spore germination by the three lectins was also observed. Preincubation of the lectins with their specific saccharide inhibitors prevented binding and the inhibitory effects. We conclude that lectins are useful tools for the study of fungal cell surfaces, and may also serve as an important aid in fungal classification. The present findings also support the suggestion that one role of lectins in plants is protection against fungal pathogens.Abbreviations Con A concanavalin A - PNA peanut agglutinin - SBA soybean agglutinin - WGA wheat germ agglutinin - FITC fluorescein isothiocyanate - GlcNAc N-acetyl-D-glucosamine - GalNAc N-acetyl-D-galactosamine  相似文献   

12.
The wheat rhizosphere-inhabiting nonpathogenic Fusarium sambucinum isolate FS-94 protected tomato from Fusarium wilt (F. oxysporum f. sp. lycopersici) in laboratory experiments. Seed soaking or immersion of seedling roots in a FS-94 spore suspension prior to inoculation with the pathogen delayed the appearance of wilt symptoms and significantly reduced disease severity in plants of a susceptible tomato cultivar. Quantification of fungal ergosterol in infected tomato showed that protection against wilt agent was related to limitation of the pathogen growth in plants exposed to FS-94. Incubation of tomato seedlings in a FS-94 spore suspension for 48 or 72 h led to plant protection and increased the salicylic acid (SA) concentration in their roots, suggesting that this isolate was involved in a plant-mediated mode of action and induced resistance. Soaking tomato seeds in the spore suspension did not induce SA accumulation in seedling roots, but nevertheless resulted in a significant reduction in wilt severity when the seedlings were challenged with the pathogen. In response to pathogen attack, the SA content in susceptible seedlings grown from FS-94-treated seeds started to increase within 1 day and remained elevated for 72 h. This suggests that F. sambucinum isolate FS-94 primed a SA-dependent signaling system in tomato.  相似文献   

13.
Protective effect of exogenous wheat germ agglutinin (WGA) on wheat seedling (Triticum aestivum L.) during salinity stress was studied. In particular, we examined the state of pro- and antioxidant systems as well as the level of peroxide oxidation of lipids and electrolyte leakage under control conditions and when stressed with NaCl. Generation of superoxide anions and activity of both superoxide dismutase (SOD) and peroxidase increased during saline stress. Accumulation of O2 ·− resulted in peroxide oxidation of lipids and electrolyte leakage in response to stress. The injurious effect of salinity on root growth of seedlings was manifested by a decreased mitotic index (MI) in apical root meristem. This study show that WGA pretreatment decreased salt-induced superoxide anion generation, SOD and peroxidase activities, levels of lipid peroxidation and electrolytes leakage as well as correlating with a reduction in the inhibition of root apical meristem mitotic activity in salt-treated plants. This suggests that exogenous WGA reduced the detrimental effects of salinity-induced oxidative stress in wheat seedlings. Thus WGA effects on a balance of reactive oxygen species (ROS) and activities of antioxidant enzymes may provide an important contribution to a range of the defense reactions induced by this lectin in wheat plants.  相似文献   

14.
The development of rust after administering allopurinol, a specific inhibitor of xanthine oxidoreductase, via roots was studied at the histological level in leaves of susceptible‘Pinto 111’bean plants inoculated with Uromyces phaseoli and‘Thatcher',‘Mentana’and‘Leopardo’wheat plants challenged with Puccinia recondita. A marked reduction and delay in fungal growth was observed in allopurinol-treated plants starting between 24 h and 48 h post-inoculation, i.e. after differentiation of the first haustoria (onset of the biotrophic plant-parasite relationship). Infection hyphae often grew twisted and convoluted in treated hosts, sometimes producing small, irregularly shaped colonies. Differentiation of subepidermal stromata in fungal colonies was delayed and restricted by the treatment and uredospore yield severely reduced. Allopurinol administration also tended to increase the proportion of haustoria which became embedded in thick translucent sheaths during the late stages of infection. These results support the view that plant xanthine oxidoreductase activity is necessary for biotrophic development of rust fungi and suggest that the inhibition of this enzyme, which impairs the pathogen metabolism, may favour some natural host responses to attack such as haustorial sheath formation.  相似文献   

15.
In the roots of bread wheat (Triticum aestivum L.) seedlings, the effects of pretreatment with 28 nM wheat germ agglutinin (WGA) and successive action of 1 mM cadmium acetate on growth, phytohormone balance, lignin deposition, and also cadmium accumulation and distribution were studied. Priority data on cadmium-induced ABA-mediated reversible accumulation of WGA in the roots, which was accompanied by its excretion in the medium of seedling incubation, were obtained. Pretreatment with WGA exerted a clear protective effect on seedling growth in the presence of cadmium, which was based on a decrease in the amplitude of stress-induced shifts in the balance between IAA and ABA and preventing the reduction in the cytokinin level. Acceleration of lignification of the cell walls in the basal parts of roots of seedlings pretreated with WGA and subjected to stress is shown, and this limits cadmium entry into the plant.  相似文献   

16.
Two Pythium-infested soils were used to compare the wheat root and rhizosphere soil microbial communities from plants grown in the field or in greenhouse trials and their stability in the presence of biocontrol agents. Bacteria showed the highest diversity at early stages of wheat growth in both field and greenhouse trials, while fungal diversity increased later on, at 12 weeks of the crop cycle. The microbial communities were stable in roots and rhizosphere samples across both soil types used in this study. Such stability was also observed irrespective of the cultivation system (field or greenhouse) or addition of biocontrol coatings to wheat seeds to control Pythium disease (in this study soil infected with Pythium sp. clade F was tested). In greenhouse plant roots, Archaeorhizomyces, Debaryomyces, Delftia, and unclassified Pseudeurotiaceae were significantly reduced when compared to plant roots obtained from the field trials. Some operational taxonomic units (OTUs) represented genetic determinants clearly transmitted vertically by seed endophytes (specific OTUs were found in plant roots) and the plant microbiota was enriched over time by OTUs from the rhizosphere soil. This study provided key information regarding the microbial communities associated with wheat roots and rhizosphere soils at different stages of plant growth and the role that Paenibacillus and Streptomyces strains play as biocontrol agents in supporting plant growth in infested soils.  相似文献   

17.
The mitogenic activity of wheat germ agglutinin (WGA) has been studied in roots of 4-day-old wheat seedlings. WGA had a more pronounced stimulating effect on cell division than the known mitogens concanavalin A and phytohemagglutinin whereas gliadin had no effect. Treatment of wheat seedling roots with exogenous WGA led to the accumulation of indoleacetic acid and cytokinins, hormones that play an important role in the activation of plant cell growth. The data on the combined effect of 24-epibrassinolide and WGA on cell division and accumulation of phytohormones in seedling roots support a possible link between the endogenous WGA level and hormonal regulation of cell division in the root meristem of wheat plants.  相似文献   

18.
Chye ML  Zhao KJ  He ZM  Ramalingam S  Fung KL 《Planta》2005,220(5):717-730
Brassica juncea BjCHI1 is a unique chitinase with two chitin-binding domains. Here, we show that, unlike other chitinases, potato-expressed BjCHI1 shows hemagglutination ability. BjCHI1 expression in B. juncea seedlings is induced by Rhizoctonia solani infection, suggesting its protective role against this fungus. To verify this, transgenic potato (Solanum tuberosum L. cv. Desiree) plants expressing BjCHI1 generated by Agrobacterium-mediated transformation were challenged with R. solani. We also transformed potato with a cDNA encoding Hevea brasiliensis -1,3-glucanase, designated HbGLU, and a pBI121-derivative that contains cDNAs encoding both BjCHI1 and HbGLU. In vitro fungal bioassays using Trichoderma viride showed that extracts from transgenic potato lines co-expressing BjCHI1 and HbGLU inhibited fungal growth better than extracts from transgenic potato expressing either BjCHI1 or HbGLU, suggesting a synergistic effect. Consistently, in vivo fungal bioassays with soil-borne R. solani on young transgenic potato plants indicated that the co-expressing plants showed healthier root development than untransformed plants or those that expressed either BjCHI1 or HbGLU. Light microscopy and transmission electron microscopy revealed abundant intact R. solani hyphae and monilioid cells in untransformed roots and disintegrated fungus in the BjCHI1-expressing and the BjCHI1 and HbGLU co-expressing plants. Observations of collapsed epidermal cells in the co-expressing potato roots suggest that these proteins effectively degrade the fungal cell wall, producing elicitors that initiate other defense responses causing epidermal cell collapse that ultimately restricts further fungal penetration.  相似文献   

19.
Repeated treatment of overground parts of wheat with a solution of urea was reflected in an increased count of bacteria and a decreased count of fungi on the roots of plants grown in soil contaminated with the fungusFusarium spp., which is known to be noxious to plants. The occurrence of some fungal genera on the roots of plants growing in contaminated and uncontaminated soil after foliar application of urea was also changed. The roots of treated planted were found to contain more bacteria with a lytic effect and retarding the growth of the fungus used for the contamination. The favourable effect of foliar application of urea on wheat was reflected in an increased dry weight of plants even if growing in a soil contaminated withFusarium.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号