首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
The structural X-ray map of a pig pancreatic α-amylase crystal soaked (and flash-frozen) with a maltopentaose substrate showed a pattern of electron density corresponding to the binding of oligosaccharides at the active site and at three surface binding sites. The electron density region observed at the active site, filling subsites ?3 through ?1, was interpreted in terms of the process of enzyme-catalyzed hydrolysis undergone by maltopentaose. Because the expected conformational changes in the “flexible loop” that constitutes the surface edge of the active site were not observed, the movement of the loop may depend on aglycone site being filled. The crystal structure was refined at 2.01 å resolution to an R factor of 17.0% (R free factor of 19.8%). The final model consists of 3910 protein atoms, one calcium ion, two chloride ions, 103 oligosaccharide atoms, 761 atoms of water molecules, and 23 ethylene glycol atoms.  相似文献   

2.
The structure of pig pancreatic alpha-amylase in complex with carbohydrate inhibitor and proteinaceous inhibitors is known but the successive events occurring at the catalytic center still remain to be elucidated. The X-ray structure analysis of a crystal of pig pancreatic alpha-amylase (PPA, EC 3.2.1.1.) soaked with an enzyme-resistant substrate analogue, methyl 4,4'-dithio-alpha-maltotrioside, showed electron density corresponding to the binding of substrate analogue molecules at the active site and at the "second binding site." The electron density observed at the active site was interpreted in terms of overlapping networks of oligosaccharides, which show binding of substrate analogue molecules at subsites prior to and subsequent to the cleavage site. A weaker patch of density observed at subsite -1 (using a nomenclature where the site of hydrolysis is taken to be between subsites -1 and +1) was modeled with water molecules. Conformational changes take place upon substrate analogue binding and the "flexible loop" that constitutes the surface edge of the active site is observed in a specific conformation. This confirms that this loop plays an important role in the recognition and binding of the ligand. The crystal structure was refined at 2.03 A resolution, to an R-factor of 16.0 (Rfree, 18.5).  相似文献   

3.
The crystal structures of porcine pancreatic α-amylase isozyme II (PPA II) in its free form and complexed with the trestatin A derived pseudo-octasaccharide V-1532 have been determined using Patterson search techniques at resolutions of 2.3 and 2.2 Å, respectively. Seven rings of the competitive inhibitor V-1532 could be detected in the active site region as well as two maltose units in secondary binding sites on the surface.V-1532 occupies the five central sugar binding subsites similar to the PPA/acarbose structure. A sixth ring exists at the reducing end, connecting two symmetry related PPA molecules. The seventh moiety, a 6-hydroxymethylconduritol ring, is located at the non-reducing end. The electron density for this ring is relatively weak, indicating considerable disorder.This study shows that PPA is able to accommodate more than five rings in the active site region, but that additional rings would increase the binding affinity only slightly, which is in accordance with kinetic experiments.A comparison of the structures of free PPA, PPA/V-1532 and PPA/Tendamistat shows the characteristic conformational changes that accompany inhibitor binding and distinguish pseudo-oligosaccharide inhibitors from proteinaceous inhibitors. Although both classes of inhibitors block the sugar binding subsites in the active site region, the extreme specificity and binding affinity of the proteinaceous inhibitors is probably due to an intricate interaction pattern involving areas further away from the catalytic center.  相似文献   

4.
The structural X-ray map of a pig pancreatic -amylase crystal soaked (and flash-frozen) with a maltopentaose substrate showed a pattern of electron density corresponding to the binding of oligosaccharides at the active site and at three surface binding sites. The electron density region observed at the active site, filling subsites –3 through –1, was interpreted in terms of the process of enzyme-catalyzed hydrolysis undergone by maltopentaose. Because the expected conformational changes in the flexible loop that constitutes the surface edge of the active site were not observed, the movement of the loop may depend on aglycone site being filled. The crystal structure was refined at 2.01 å resolution to an R factor of 17.0% (R free factor of 19.8%). The final model consists of 3910 protein atoms, one calcium ion, two chloride ions, 103 oligosaccharide atoms, 761 atoms of water molecules, and 23 ethylene glycol atoms.  相似文献   

5.
Porcine pancreatic alpha-amylase (PPA) is inhibited by the red kidney bean (Phaseolus vulgaris) inhibitor alpha-AI1 [Eur. J. Biochem. 265 (1999) 20]. Inhibition kinetics were carried out using DP 4900-amylose and maltopentaose as substrate. As shown by graphical and statistical analysis of the kinetic data, the inhibitory mode is of the mixed noncompetitive type whatever the substrate thus involving the EI, EI2, ESI and ESI2 complexes. This contrast with the E2I complex obtained in the crystal and with biophysical studies. Such difference very likely depends on the [I]/[E] ratio. At low ratio, the E2I complex is favoured; at high ratio the EI, ESI and EI2 complexes are formed. The inhibition model also differs from those previously proposed for acarbose [Eur. J. Biochem. 241 (1996) 787 and Eur. J. Biochem. 252 (1998) 100]. In particular, with alpha-AI1, the inhibition takes place only when PPA and alpha-AI are preincubated together before adding the substrate. This indicates that the abortive PPA-alphaAI1 complex is formed during the preincubation period. One additional carbohydrate binding site is also demonstrated yielding the ESI complex. Also, a second protein binding site is found in EI2 and ESI2 abortive complexes. Conformational changes undergone by PPA upon alpha-AI1 binding are shown by higher sensitivity to subtilisin attack. From X-ray analysis of the alpha-AI1-PPA complex (E2I), the major interaction occurs with two hairpin loops L1 (residues 29-46) and L2 (residues 171-189) of alpha-AI1 protruding into the V-shaped active site of PPA. The hydrolysis of alpha-AI1 that accounts for the inhibitory activity is reported.  相似文献   

6.
The X-ray structure analysis of a crystal of pig pancreatic alpha-amylase soaked with a rho-nitrophenyl-alpha-D-maltoside (pNPG2) substrate showed a pattern of electron density corresponding to the binding of a rho-nitrophenol unit at subsite -2 of the active site. Binding of the product to subsite -2 after hydrolysis of the pNPG2 molecules, may explain the low catalytic efficiency of the hydrolysis of pNPG2 by PPA. Except a small movement of the segment from residues 304-305 the typical conformational changes of the "flexible loop" (303-309), that constitutes the surface edge of the substrate binding cleft, were not observed in the present complex structure. This result supports the hypothesis that significant movement of the loop may depend on aglycone site being filled (Payan and Qian, J. Protein Chen. 22: 275, 2003). Structural analyses have shown that pancreatic alpha-amylases undergo an induced conformational change of the catalytic residue Asp300 upon substrate binding; in the present complex the catalytic residue is observed in its unliganded orientation. The results suggest that the induced reorientation is likely due to the presence of a sugar unit at subsite -1 and not linked to the closure of the flexible surface loop. The crystal structure was refined at 2.4 A resolution to an R factor of 17.55% (Rfree factor of 23.32%).  相似文献   

7.
We have determined the crystal structure of the methyl glycoside of Man alpha1-2 Man in complex with the carbohydrate binding legume lectin concanavalin A (Con A). Man alpha1-2 Man alpha-OMe binds more tightly to concanavalin A than do its alpha1-3 and alpha1-6 linked counterparts. There has been much speculation as to why this is so, including a suggestion of the presence of multiple binding sites for the alpha1-2 linked disaccharide. Crystals of the Man alpha1-2 Man alpha-OMe-Con A complex form in the space group P2(1)2(1)2(1) with cell dimensions a = 119.7 A, b = 119.7 A, c = 68.9 A and diffract to 2. 75A. The final model has good geometry and an R factor of 19.6% (Rfree= 22.8%). One tetramer is present in the asymmetric unit. In three of the four subunits, electron density for the disaccharide is visible. In the fourth only a monosaccharide is seen. In one subunit the reducing terminal sugar is recognized by the monosaccharide site; the nonreducing terminal sugar occupies a new site and the major solution conformation of the inter-sugar glycosidic linkage conformation is adopted. In contrast, in another subunit the non reducing terminal sugar sits in the so called monosaccharide binding site; the reducing terminal sugar adopts a different conformation about its inter-sugar glycosidic linkage in order for the methyl group to access a hydrophobic pocket. In the third subunit, electron density for both binding modes is observed. We demonstrate that an extended carbohydrate binding site is capable of binding the disaccharide in two distinct ways. These results provide an insight in to the balance of forces controlling protein carbohydrate interactions.  相似文献   

8.
The crystal structure of the complex of thermitase with eglin-c in crystal form II, obtained in the presence of 5 mM-CaCl2, has been determined at 1.98 A resolution. The structure was solved by a molecular replacement method, then molecular dynamics crystallographic refinement was started using the thermitase-eglin-c structure as determined for crystal form I. A ten degrees rigid body misplacement of the core of eglin-c was corrected by the molecular dynamics crystallographic refinement without any need for manual rebuilding on a graphics system. A final crystallographic R-factor of 16.5% was obtained for crystal form II. The comparison of the complexes of thermitase with eglin-c in the two crystal forms shows that the eglin-c cores are differently oriented with respect to the protease. The inhibiting loop of eglin binds in a similar way to thermitase as to subtilisin Carlsberg. A tryptophanyl residue at the S4 site explains the preference of thermitase for aromatic residues of the substrate at the P4 site. The difference in the P1 binding pocket, asparagine in thermitase instead of glycine in subtilisin Carlsberg, does not change the binding of eglin-c. The preference for an arginyl residue at the P1 site of thermitase can be explained by the hydrogen bonding with Asn170 in thermitase. Three ion-binding sites of thermitase have been identified. The strong and weak calcium-binding sites resemble the equivalent sites of subtilisin Carlsberg and subtilisin BPN', though there are important amino acid differences at the calcium-binding sites. The medium-strength calcium-binding site of thermitase is observed in the subtilisin family for the first time. The calcium is bound to residues from the loop 57 to 66. A difference in chelation is observed at this site between the two crystal forms of thermitase, which differ in calcium concentration. Additional electron density is observed near Asp60 in crystal form II, which has more calcium bound than form I. This density is possibly due to a water molecule ligating the calcium ion or the result of Asp60 assuming two significantly different conformations.  相似文献   

9.
The effects of alpha-, beta- and gamma-cyclodextrins on the amylose and maltopentaose hydrolysis catalysed by porcine pancreatic alpha-amylase (PPA) were investigated. The results of the statistical analysis performed on the kinetic data using the general initial velocity equation of a one-substrate reaction in the presence of one inhibitor indicate that the type of inhibition involved depends on the substrate used: the inhibition of amylose hydrolysis by alpha-, beta- and gamma-cyclodextrin is of the competitive type, while the inhibition of maltopentaose hydrolysis is of the mixed noncompetitive type. Consistently, the Lineweaver-Burk plots intersect on the vertical axis when amylose is used as the substrate, while in the case of maltopentaose, the intersection occurs at a point located in the second quadrant. The inhibition of the hydrolysis therefore involves only one abortive complex, PPA-cyclodextrin, when amylose is used as the substrate, while two abortive complexes, PPA-cyclodextrin and PPA-maltopentaose-cyclodextrin, are involved with maltopentaose. The mixed noncompetitive inhibition thus shows the existence of one accessory binding site. In any case, only one molecule of inhibitor binds to PPA. In line with these findings, the difference spectra of PPA produced by alpha-, beta- and gamma-cyclodextrin indicate that binding occurs at a tryptophan and a tyrosine residue. The corresponding dissociation constants and the inhibition constants obtained using the kinetic approach are in the same range (1.2-7 mM). The results obtained here on the inhibition of maltopentaose hydrolysis by cyclodextrin are similar to those previously obtained with acarbose as the inhibitor [Alkazaz, M., Desseaux, V., Marchis-Mouren, G., Prodanov, E. & Santimone, M. (1998) Eur. J. Biochem. 252, 100-107], but differ from those obtained with amylose as the substrate and acarbose as inhibitor [Alkazaz, M., Desseaux, V., Marchis-Mouren, G., Payan, F., Forest, E. & Santimone, M. (1996) Eur. J. Biochem. 241, 787-796]. It is concluded that the hydrolysis of both long and short chain substrates requires at least one secondary binding site, including a tryptophan residue.  相似文献   

10.
The mannose receptor of macrophages and liver endothelium mediates clearance of pathogenic organisms and potentially harmful glycoconjugates. The extracellular portion of the receptor includes eight C-type carbohydrate recognition domains (CRDs), of which one, CRD-4, shows detectable binding to monosaccharide ligands. We have determined the crystal structure of CRD-4. Although the basic C-type lectin fold is preserved, a loop extends away from the core of the domain to form a domain-swapped dimer in the crystal. Of the two Ca(2+) sites, only the principal site known to mediate carbohydrate binding in other C-type lectins is occupied. This site is altered in a way that makes sugar binding impossible in the mode observed in other C-type lectins. The structure is likely to represent an endosomal form of the domain formed when Ca(2+) is lost from the auxiliary calcium site. The structure suggests a mechanism for endosomal ligand release in which the auxiliary calcium site serves as a pH sensor. Acid pH-induced removal of this Ca(2+) results in conformational rearrangements of the receptor, rendering it unable to bind carbohydrate ligands.  相似文献   

11.
P J Loll  E E Lattman 《Proteins》1989,5(3):183-201
The structure of a complex of staphylococcal nuclease with Ca2+ and deoxythymidine 3',5'-bisphosphate (pdTp) has been refined by stereochemically restrained least-squares minimization to a crystallographic R value of 0.161 at 1.65 A resolution. The estimated root-mean-square (rms) error in the coordinates is 0.16 A. The final model comprises 1082 protein atoms, one calcium ion, the pdTp molecule, and 82 solvent water molecules; it displays an rms deviation from ideality of 0.017 A for bond distances and 1.8 degrees for bond angles. The mean distance between corresponding alpha carbons in the refined and unrefined structures is 0.6 A; we observe small but significant differences between the refined and unrefined models in the turn between residues 27 and 30, the loop between residues 44 and 50, the first helix, and the extended strand between residues 112 and 117 which forms part of the active site binding pocket. The details of the calcium liganding and solvent structure in the active site are clearly shown in the final electron density map. The structure of the catalytic site is consistent with the mechanism that has been proposed for this enzyme. However, we note that two lysines from a symmetry-related molecule in the crystal lattice may play an important role in determining the geometry of inhibitor binding, and that only one of the two required calcium ions is observed in the crystal structure; thus, caution is advised in extrapolating from the structure of the complex of enzyme and inhibitor to that of enzyme and substrate.  相似文献   

12.
The X-ray structure analysis of a cross-linked crystal of concanavalin A soaked with the tripeptide molecule as the probe molecule showed electron density corresponding to full occupation in the binding pocket. The site lies on the surface of concanavalin A and is surrounded by three symmetry-related molecules. The crystal structure of the tripeptide complex was refined at 2.4-Å resolution to an R-factor of 17.5%, (Rfree factor of 23.7%), with an RMS deviation in bond distances of 0.01 Å. The model includes all 237 residue of concanavalin A, 1 manganese ion, 1 calcium ion, 161 water molecules, 1 glutaraldehyde molecule, and 1 tripeptide molecule. This X-ray structure analysis also provides an approach to mapping the binding surface of crystalline protein with a probe molecule that is dissolved in a mixture of organic solvent with water or in neat organic solvent but is hardly dissolved in aqueous solution.  相似文献   

13.
The lectin from the mushroom Psathyrella velutina recognises specifically N-acetylglucosamine and N-acetylneuraminic acid containing glycans. The crystal structure of the 401 amino acid residue lectin shows that it adopts a very regular seven-bladed beta-propeller fold with the N-terminal region tucked into the central cavity around the pseudo 7-fold axis. In the complex with N-acetylglucosamine, six monosaccharides are bound in pockets located between two consecutive propeller blades. Due to the repeats shown by the sequence the binding sites are very similar. Five hydrogen bonds between the protein and the sugar hydroxyl and N-acetyl groups stabilize the complex, together with the hydrophobic interactions with a conserved tyrosine and histidine. The complex with N-acetylneuraminic acid shows molecular mimicry with the same hydrogen bond network, but with different orientations of the carbohydrate ring in the binding site. The beta-hairpin loops connecting the two inner beta-strands of each blade are metal binding sites and two to three calcium ions were located in the structure. The multispecificity and high multivalency of this mushroom lectin, combined with its similarity to the extracellular domain of an important class of cell adhesion molecules, integrins, are another example of the outstanding success of beta-propeller structures as molecular binding machines in nature.  相似文献   

14.
The crystal structure of Bacillus subtilis alpha-amylase, in complex with the pseudotetrasaccharide inhibitor acarbose, revealed an hexasaccharide in the active site as a result of transglycosylation. After comparison with the known structure of the catalytic-site mutant complexed with the native substrate maltopentaose, it is suggested that the present structure represents a mimic intermediate in the initial stage of the catalytic process.  相似文献   

15.
BACKGROUND: Phytases hydrolyze phytic acid (myo-inositol-hexakisphosphate) to less-phosphorylated myo-inositol derivatives and inorganic phosphate. Phytases are used in animal feed to reduce phosphate pollution in the environment. Recently, a thermostable, calcium-dependent Bacillus phytase was identified that represents the first example of the beta propeller fold exhibiting phosphatase activity. We sought to delineate the catalytic mechanism and property of this enzyme. RESULTS: The crystal structure of the enzyme in complex with inorganic phosphate reveals that two phosphates and four calcium ions are tightly bound at the active site. Mutation of the residues involved in the calcium chelation results in severe defects in the enzyme's activity. One phosphate ion, chelating all of the four calcium ions, is close to a water molecule bridging two of the bound calcium ions. Fluoride ion, which is expected to replace this water molecule, is an uncompetitive inhibitor of the enzyme. The enzyme is able to hydrolyze any of the six phosphate groups of phytate. CONCLUSIONS: The enzyme reaction is likely to proceed through a direct attack of the metal-bridging water molecule on the phosphorous atom of a substrate and the subsequent stabilization of the pentavalent transition state by the bound calcium ions. The enzyme has two phosphate binding sites, the "cleavage site", which is responsible for the hydrolysis of a substrate, and the "affinity site", which increases the binding affinity for substrates containing adjacent phosphate groups. The existence of the two nonequivalent phosphate binding sites explains the puzzling formation of the alternately dephosphorylated myo-inositol triphosphates from phytate and the hydrolysis of myo-inositol monophosphates.  相似文献   

16.
Proteins from organisms living in extreme conditions are of particular interest because of their potential for being templates for redesign of enzymes both in biotechnological and other industries. The crystal structure of a proteinase K-like enzyme from a psychrotroph Serratia species has been solved to 1.8 A. The structure has been compared with the structures of proteinase K from Tritirachium album Limber and Vibrio sp. PA44 in order to reveal structural explanations for differences in biophysical properties. The Serratia peptidase shares around 40 and 64% identity with the Tritirachium and Vibrio peptidases, respectively. The fold of the three enzymes is essentially identical, with minor exceptions in surface loops. One calcium binding site is found in the Serratia peptidase, in contrast to the Tritirachium and Vibrio peptidases which have two and three, respectively. A disulfide bridge close to the S2 site in the Serratia and Vibrio peptidases, an extensive hydrogen bond network in a tight loop close to the substrate binding site in the Serratia peptidase and different amino acid sequences in the S4 sites are expected to cause different substrate specificity in the three enzymes. The more negative surface potential of the Serratia peptidase, along with a disulfide bridge close to the S2 binding site of a substrate, is also expected to contribute to the overall lower binding affinity observed for the Serratia peptidase. Clear electron density for a tripeptide, probably a proteolysis product, was found in the S' sites of the substrate binding cleft.  相似文献   

17.
Oligosaccharide binding to barley alpha-amylase 1   总被引:1,自引:0,他引:1  
Enzymatic subsite mapping earlier predicted 10 binding subsites in the active site substrate binding cleft of barley alpha-amylase isozymes. The three-dimensional structures of the oligosaccharide complexes with barley alpha-amylase isozyme 1 (AMY1) described here give for the first time a thorough insight into the substrate binding by describing residues defining 9 subsites, namely -7 through +2. These structures support that the pseudotetrasaccharide inhibitor acarbose is hydrolyzed by the active enzymes. Moreover, sugar binding was observed to the starch granule-binding site previously determined in barley alpha-amylase isozyme 2 (AMY2), and the sugar binding modes are compared between the two isozymes. The "sugar tongs" surface binding site discovered in the AMY1-thio-DP4 complex is confirmed in the present work. A site that putatively serves as an entrance for the substrate to the active site was proposed at the glycone part of the binding cleft, and the crystal structures of the catalytic nucleophile mutant (AMY1D180A) complexed with acarbose and maltoheptaose, respectively, suggest an additional role for the nucleophile in the stabilization of the Michaelis complex. Furthermore, probable roles are outlined for the surface binding sites. Our data support a model in which the two surface sites in AMY1 can interact with amylose chains in their naturally folded form. Because of the specificities of these two sites, they may locate/orient the enzyme in order to facilitate access to the active site for polysaccharide chains. Moreover, the sugar tongs surface site could also perform the unraveling of amylose chains, with the aid of Tyr-380 acting as "molecular tweezers."  相似文献   

18.
Mammalian amylases harbor a flexible, glycine-rich loop 304GHGAGGA(310), which becomes ordered upon oligosaccharide binding and moves in toward the substrate. In order to probe the role of this loop in catalysis, a deletion mutant lacking residues 306-310 (Delta306) was generated. Kinetic studies showed that Delta306 exhibited: (1) a reduction (>200-fold) in the specific activity using starch as a substrate; (2) a reduction in k(cat) for maltopentaose and maltoheptaose as substrates; and (3) a twofold increase in K(m) (maltopentaose as substrate) compared to the wild-type (rHSAmy). More cleavage sites were observed for the mutant than for rHSAmy, suggesting that the mutant exhibits additional productive binding modes. Further insight into its role is obtained from the crystal structures of the two enzymes soaked with acarbose, a transition-state analog. Both enzymes modify acarbose upon binding through hydrolysis, condensation or transglycosylation reactions. Electron density corresponding to six and seven fully occupied subsites in the active site of rHSAmy and Delta306, respectively, were observed. Comparison of the crystal structures showed that: (1) the hydrophobic cover provided by the mobile loop for the subsites at the reducing end of the rHSAmy complex is notably absent in the mutant; (2) minimal changes in the protein-ligand interactions around subsites S1 and S1', where the cleavage would occur; (3) a well-positioned water molecule in the mutant provides a hydrogen bond interaction similar to that provided by the His305 in rHSAmy complex; (4) the active site-bound oligosaccharides exhibit minimal conformational differences between the two enzymes. Collectively, while the kinetic data suggest that the mobile loop may be involved in assisting the catalysis during the transition state, crystallographic data suggest that the loop may play a role in the release of the product(s) from the active site.  相似文献   

19.
G Buisson  E Due  R Haser    F Payan 《The EMBO journal》1987,6(13):3909-3916
The crystal structure of porcine pancreatic alpha-amylase (PPA) has been solved at 2.9 A resolution by X-ray crystallographic methods. The enzyme contains three domains. The larger, in the N-terminal part, consists of 330 amino acid residues. This central domain has the typical parallel-stranded alpha-beta barrel structure (alpha beta)8, already found in a number of other enzymes like triose phosphate isomerase and pyruvate kinase. The C-terminal domain forms a distinct globular unit where the chain folds into an eight-stranded antiparallel beta-barrel. The third domain lies between a beta-strand and a alpha-helix of the central domain, in a position similar to those found for domain B in triose phosphate isomerase and pyruvate kinase. It is essentially composed of antiparallel beta-sheets. The active site is located in a cleft within the N-terminal central domain, at the carboxy-end of the beta-strands of the (alpha beta)8 barrel. Binding of various substrate analogues to the enzyme suggests that the amino acid residues involved in the catalytic reaction are a pair of aspartic acids. A number of other residues surround the substrate and seem to participate in its binding via hydrogen bonds and hydrophobic interactions. The 'essential' calcium ion has been located near the active site region and between two domains, each of them providing two calcium ligands. On the basis of sequence comparisons this calcium binding site is suggested to be a common structural feature of all alpha-amylases. It represents a new type of calcium-protein interaction pattern.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
N-Acetyllactosamine is the most prevalent disaccharide moiety in the glycans on the surface of mammalian cells and often found as repeat units in the linear and branched polylactosamines, known as i- and I-antigen, respectively. The β1-4-galactosyltransferase-I (β4Gal-T1) enzyme is responsible for the synthesis of the N-acetyllactosamine moiety. To understand its oligosaccharide acceptor specificity, we have previously investigated the binding of tri- and pentasaccharides of N-glycan with a GlcNAc at their nonreducing end and found that the extended sugar moiety in these acceptor substrates binds to the crevice present at the acceptor substrate binding site of the β4Gal-T1 molecule. Here we report seven crystal structures of β4Gal-T1 in complex with an oligosaccharide acceptor with a nonreducing end GlcNAc that has a β1-6-glycosidic link and that are analogous to either N-glycan or i/I-antigen. In the crystal structure of the complex of β4Gal-T1 with I-antigen analog pentasaccharide, the β1-6-branched GlcNAc moiety is bound to the sugar acceptor binding site of the β4Gal-T1 molecule in a way similar to the crystal structures described previously; however, the extended linear tetrasaccharide moiety does not interact with the previously found extended sugar binding site on the β4Gal-T1 molecule. Instead, it interacts with the different hydrophobic surface of the protein molecule formed by the residues Tyr-276, Trp-310, and Phe-356. Results from the present and previous studies suggest that β4Gal-T1 molecule has two different oligosaccharide binding regions for the binding of the extended oligosaccharide moiety of the acceptor substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号