首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
beta-Bungarotoxin (beta-Btx) is cytotoxic for GABA-ergic and cholinergic neurons in chick retina explant cultures. Binding experiments with 125I-beta-Btx identified a high affinity binding site in membranes of chick brain. This binding is specific and its pharmacology indicates that it mediates the above-mentioned cytotoxicity. Photoaffinity crosslinking of 125I-beta-Btx to chick brain membranes showed that the beta-Btx binding protein contains a polypeptide of MW 95 000. The beta-Btx binding protein was solubilized with Triton X-100 and some of its biochemical and physical properties were characterized.  相似文献   

6.
Antisera were raised against the presynaptic neurotoxin beta-bungarotoxin and against its phospholipase-inactive derivative, modified by reaction with p-bromophenacyl bromide. The cross-reactivity of the antisera to other phospholipase A2 enzymes and polypeptide neurotoxins was examined. The antisera inhibited both the neurotoxic effects of beta-bungarotoxin at the frog motor endplate and the enzymatic activity of the toxin on model phospholipid membranes, although it is unlikely that the catalytic active centre is the locus of any major determinant.  相似文献   

7.
8.
9.
The chromatographic separation and biochemical characterization of a beta-bungarotoxin is described. This toxin is isolated as the most basic eluting protein of Bungarus multicinctus venom when separated by column chromatography on CM-Sephadex C-25. The protein migrated as a single band on pH 4.3 and sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. The molecular weight of this toxin was estimated to be 10 000 +/- 1000 by analytical sedimentation analysis. This value was consistent with the electrophoretic mobility of the toxin in SDS-polyacrylamide gels. The amino acid composition of this 11 000-dalton beta-bungarotoxin was similar to that of the 22 000-dalton beta-bungarotoxin previously reported (Lee et al. (1972) J. Chromatogr. 72, 71--82; Kelly, R.B. and Brown, III, F.R. (1974) J. Neurobiol. 5, 135--150; Kondo et al. (1978) J. Biochem. Tokyo 83, 91--99), suggesting that the 11 000-dalton toxin may be one of the polypeptide chains of the larger toxin. The 11 000-dalton beta-bungarotoxin was toxic to mice when injected intravenously. Animals that received lethal doses exhibited hyperexcitability followed by ataxia, convulsions, and death. The minimum lethal dose was 0.12 microgram/g body weight. This beta-bungarotoxin exhibited Ca2+-dependent phospholipase A activity comparable to that of the 22 000-dalton beta-bungarotoxin. The enzyme exhibited phospholipid substrate specificity in the rank order of phosphatidyl-choline, phosphatidylserine, phosphatidylethanolamine, and phosphatidyl-inositol. The enzyme activity was destroyed by boiling for 3 min at pH 8.6. In addition, an enzymatically inactive quantity of the 11 000-dalton toxin, equivalent to five times the minimum lethal dose of enzymatically active toxin, was not lethal when injected into mice. To test whether phospholipase A activity is responsible for lethality, bee venom phospholipase A2 was injected into mice at similar and greater concentrations with no toxic effect. Thus, while phospholipase A activity may be required for the lethal effect of the 11 000-dalton beta-bungarotoxin, the specificity of action of the toxin is not determined by its enzyme activity.  相似文献   

10.
11.
12.
β-Bungarotoxin preferentially hydrolyzes choline phospholipids (dilauroyl, dimyristoyl, dipalmitoyl) at their respective gel to liquid crystalline phase transition temperatures. Cholesterol markedly reduces the rate of phospholipid hydrolysis; at 0.33 mol percent cholesterol:phospholipid, the toxin's phospholipase activity is completely inhibited.  相似文献   

13.
A beta-bungarotoxin was isolated from the venom of Bungarus multicinctus by column chromatography on Sephadex G-50 and SP-Sephadex. The toxin produced presynaptic effects on neuromuscular transmission with characteristics similar to those described by others. In a sympathetic ganglion, the toxin increased spontaneous acetylcholine (ACh) release and decreased ACh release evoked by preganglionic nerve stimulation. The toxin did not block the response of isolated ileum to cholinergic nerve stimulation, did not block the release of noradrenaline from the adrenergic nerve terminals of a nictitating membrane preparation, and did not alter the responses of smooth and cardiac muscle preparations to noradrenaline. It is suggested that the specificity of beta-bungarotoxin for certain nerve terminals is related either to selective binding of the toxin or to the selective presence of a necessary substrate for its action. An attempt to show selective binding of 125I-toxin to cholinergic nerve terminals in skeletal muscle was not successful.  相似文献   

14.
15.
16.
17.
18.
Although it has been long accepted that innervation by a tastenerve is essential for maintenance of taste buds, it is notclear what role, if any, innervation plays in the morphogenesis oftaste papillae and taste bud development. The following studywas undertaken to determine what effects lack of sensory innervationhave on the development of taste papillae and the formationof taste buds in the mouse. Timed-pregnant female mice (n =3) at gestational day 12 (gd12) were anesthetized and a 1 µlsolution (1 µg/µl) of ß-bungarotoxin (ß-BTX),a neurotoxin that disrupts sensory and motor neuron development,was injected into the amniotic cavity of two embryos per dam.Two shams were injected with PBS. Fetuses were harvested atgd18, 1 day before birth, and four ß-BTX-injected embryos,two shams and two controls were fixed in buffered paraformaldehyde.Serial sections were examined for the presence and morphologyof taste papillae and taste buds. No nerve profiles were observedin ß-BTX-injected tongues. Although circumvallate papillaewere present on ß-BTX tongues, only five fungiform papillaecould be identified. Taste buds were present on a large percentageof fungiform papillae profiles (24% and on circumvallate papillaein sham and control fetuses; in contrast, no taste buds wereassociated with taste papillae in ß-BTX fetuses. Theseresults implicate a significant role for innervation in tastepapillae and taste bud morphogenesis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号