首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Specific resistance to malathion in a strain of Tribolium castaneum is due to a 44-fold increase in malathion carboxylesterase (MCE) activity relative to a susceptible strain, whereas non-specific esterase levels are slightly lower. Unlike the overproduced esterase of some mosquito and aphid species, MCE in Tribolium castaneum accounts for only a small fraction (0.033-0.045%) of the total extractable protein respectively in resistant and susceptible strains. The enzyme was purified to apparent homogeneity from these two strains and has a similar molecular weight of 62,000. However, preparative isoelectricfocusing indicated that resistant insects possess one MCE with pI of 7.3, while susceptible insects possess a MCE with a pI of 6.6. Purified MCE from both populations had different K(m) and V(m) values for hydrolysis of malathion as well as for alpha-naphthyl acetate. The kinetic analysis suggests that MCE of resistant insects hydrolyses malathion faster than the purified carboxylesterase from susceptible beetles and that this enzyme has greater affinity for malathion than for naphthyl esters. Malathion-specific resistance is due to the presence of a qualitatively different esterase in the resistant strain.  相似文献   

2.
Amplification of the esterase B1 gene of Culex quinquefasciatus Say results in high titers of an esterase enzyme that confers resistance to organophosphate insecticides. Esterase activity of individuals was measured in samples from an organophosphate resistant strain (Tem-R), a susceptible strain (S-Lb), and their reciprocal F1 progeny. Within-strain variation, as measured by coefficients of variation, was fairly consistent between sexes within strains and among strains (average, 12%). On average, individuals from the Tem-R strain had about 120 times the esterase activity of individuals from the S-Lab strain. The mean esterase activities of the F1 strains were significantly higher than the average of the Tem-R and S-Lab strain mean esterase activities, suggesting enhanced expression of the amplified esterase B1 genes in F1 individuals. Reciprocal F1 strains did not differ significantly in esterase activity or resistance, indicating that maternal effects do not influence either of these measures in these strains. The levels of esterase activity of the strains are discussed in relation to their resistance.  相似文献   

3.
解毒酯酶在小菜蛾幼虫抗药性中的作用   总被引:29,自引:4,他引:29  
  相似文献   

4.
Dermal and oral toxicities of azamethiphos were determined in two organophosphate-resistant and one susceptible strain of houseflies, Musca domestica L. The 594vb strain was 1,967-fold more resistant to azamethiphos when compared with the susceptible Chemical Specialties Manufacturers Association (CSMA) strain by dermal application. When the compound was administered orally to the 594vb strain, we observed only a 15-fold resistance. In contrast, the Yachiyo strain, which show 1,500-fold resistance to diazinon and which has known multiple mechanisms for organophosphate resistance, showed only 6-fold resistance to azamethiphos by topical application and 4-fold resistance by oral administration. Azamethiphos administered dermally and orally was equally toxic to the CSMA and Yachiyo strains. However, when azamethiphos was administered to the 594vb strain, the insecticide was 71 times more toxic orally than by the dermal route. This result indicated involvement of a cuticular penetration factor in the resistance mechanism. The effect on azamethiphos toxicity of piperonyl butoxide (PB), an inhibitor of the monooxygenases, and tributylphosphorotrithioate (DEF), an esterase inhibitor, was investigated in the three strains. Pretreatment of the flies with PB, DEF, or PB+DEF before topical application of azamethiphos resulted in a significant decrease in LD50s in all the strains. The degree of synergism, however, varied depending upon the strains and the synergists. Similar results were obtained when azamethiphos was administered orally following pretreatment of the flies with PB+DEF. We attribute the high level of azamethiphos resistance in the 594vb strain partly to increased degradation by oxidative and hydrolytic enzymes. The hydrolytic enzymes are more important, but other factors including reduced cuticular penetration and insensitive acetylcholinesterase may be involved.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Biochemical mechanisms of malathion resistance were investigated in a malathion-resistant strain of the parasitoid Habrobracon hebetor Say collected from a farm storage in Kansas. General esterase activities were significantly lower in the resistant strain compared with those in a susceptible strain. However, no significant differences were found in activities of malathion specific carboxylesterase (MCE), glutathione S-transferase and cytochrome P450 dependent O-demethylase activities, cytochrome P450 contents, and sensitivity of acetylcholinesterase to inhibition by malaoxon between the 2 strains. Because MCE was not elevated in the resistant strain, the weak malathion resistance in H. hebetor may result from a different mechanism compared with that hypothesized for some insect species in which reduced general esterase activity is accompanied by an elevated MCE. Decreased esterase activity in the resistant strain suggested that null alleles of some esterases were associated with the resistance. Indeed, E1 and E2, major esterases in the susceptible strain, were not present in the resistant strain on polyacrylamide gels that were stained for esterase activity using the model substrate 1-naphthyl acetate. In contrast, the activity of esterase E3 on the gels was much higher in the resistant strain as compared with that of the susceptible strain. These findings indicate that malathion resistance in H. hebetor is associated with both an increased activity of the esterase E3 and null alleles of the esterases E1 and E2.  相似文献   

6.
雅氏瓦螨对氟胺氰菊酯的抗性机理初探   总被引:1,自引:0,他引:1  
用有效成分为1000μg/L的氟胺氰菊酯药液对雅氏瓦螨Varroa jacobsoniOudemans敏感个体的腹部表皮进行穿透性测定,结果表明药液无法通过表皮起毒杀作用。通过添加酶抑制剂多功能氧化酶(PBO)和酯酶(DEF)的增效测定,结果显示PBO在抗性和敏感螨中分别增加毒效为3.27和1.80倍;而DEF为3.23和1.67倍。反映在抗性蜂螨的抗药性与多功能氧化酶的活性有密切相关,也与酯酶活性有关。对抗性螨和敏感螨的羧酸酯酶的活力测定,显示出在抗性螨中酶活指数高140%以上。同时对酯酶电泳进行扫描,也发现抗性螨与敏感螨的峰值存在差异。  相似文献   

7.
The toxicity of synergism of and resistance to insecticides in four strains of German cockroach, Blattella germanica (L.), were investigated. Toxicity of nine insecticides by topical application to the susceptible strain varied greater than 2,000-fold, with deltamethrin (LD50 = 0.004 micrograms per cockroach) and malathion (LD50 = 8.4 micrograms per cockroach) being the most and least toxic, respectively. Resistance to pyrethrins (9.5-fold) in the Kenly strain was unaffected by the synergists piperonyl butoxide (PBO) or S,S,S-tributylphosphorotrithioate (DEF), suggesting that the metabolism is not involved in this case. Malathion resistance in the Rutgers strain was suppressible with PBO, implicating oxidative metabolism as a resistance mechanism. The Ectiban-R strain was resistant to all the pyrethroids tested, and cypermethrin resistance was not suppressible with PBO or DEF. These findings support results of previous studies that indicated this train has a kdr-like mechanism. Bendiocarb resistance in both the Kenly and Rutgers strains was partially suppressed by either PBO or DEF, suggesting that oxidative and hydrolytic metabolism are involved in the resistance. Trends between the effects of the synergists on the susceptible versus resistant strains are discussed.  相似文献   

8.
9.
The acetylcholinesterase, carboxylesterase, and cytochrome P450 monooxygenase activities of three strains of Oryzaephilus srinamensis (L.) were examined to better understand biochemical mechanisms of resistance. The three strains were VOS49 and VOSCM, selected for resistance to malathion and chlorpyrifos-methyl, respectively, and VOS48, a standard susceptible strain. Cross-resistance to malathion and chlorpyrifos-methyl was confirmed in VOS49 and VOSCM. Acetylcholinesterase activity was not correlated to resistance among these strains. VOS49 and VOSCM showed elevated levels of carboxylesterase activity based on p-nitrophenylacetate, alpha-naphthyl acetate, or beta-naphthyl acetate substrates. PAGE zymograms showed major differences in caboxylesterase isozyme banding among strains. VOSCM had one strongly staining isozyme band. A band having the same Rf-value was very faint in VOS48. The VOS49 carboxylesterase banding pattern was different from both VOSCM and VOS48. Cytochrome P450 monooxygenase activity was based on cytochrome P450 content, aldrin epoxidase activity, and oxidation of organophosphate insecticides, all elevated in resistant strains. The monooxygenase activity varied with insecticide substrate and resistant strain, suggesting specific cytochromes P450 may exist for different insecticides. The monooxygenase activity of the VOS49 strain was much higher with malathion than chlorpyrifos-methyl as substrates, whereas VOSCM monooxygenase activity was higher with malathion than chlorpyrifos-methyl as substrates. Results are discussed in the context of resistance mechanisms to organophosphate insecticides in O. surinamensis.  相似文献   

10.
The Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), is considered one of the most economically damaging pests of citrus orchards in Spain. Insecticide treatments for the control of this pest are mainly based on aerial and ground treatments with malathion bait sprays. However, the frequency of insecticide treatments has been increased in some areas of the Comunidad Valenciana in the last years, because of problems with the control of C. capitata. We have found that field populations from citrus and other fruit crops from different geographical areas in Spain showed lower susceptibility to malathion (6- to 201-fold) compared with laboratory populations. More importantly, differences in susceptibility could be related to the frequency of the field treatments. A resistant strain (W), derived from a field population, and a susceptible laboratory strain (C) were maintained in the laboratory. The W strain showed cross-resistance to the organophosphate fenthion (10-fold) but not to spinosad. Enzymatic assays showed that acethylcholinesterase activity was less inhibited in vivo by malathion and in vitro by malaoxon (active form of malathion) in adult flies from the W-resistant strain. Experiments to evaluate the effects of synergists revealed that the esterase inhibitor S,S,S-tributyl phosphorotrithioate (DEF) partially suppressed malathion resistance. Thus, target site insensitivity and metabolic resistance mediated by esterases might be involved in the loss of susceptibility to malathion in C. capitata. Nonetheless, additional biochemical and molecular studies will be required to confirm this hypothesis.  相似文献   

11.
The resistant (R) strain of the planthopper Nilaparvata lugens (St?l) selected for bisultap resistance displayed 7.7-fold resistance to bisultap and also had cross-resistance to nereistoxin (monosultap, thiocyclam, and cartap), chlorpyrifos, dimethoate, and malathion but no cross-resistance to buprofezin, imidacloprid, and fipronil. To find out the biochemical mechanism of resistance to bisultap, biochemical assay was done. The results showed that cytochrome P450 monooxygenases (P450) activity in R strain was 2.71-fold that in susceptible strain (S strain), in which the changed activity for general esterase (EST) was 1.91 and for glutathione S-transferases only 1.32. Piperonyl butoxide (PBO) could significantly inhibit P450 activity (percentage of inhibition [PI]: 37.31%) in the R strain, with ESTs PI = 16.04% by triphenyl phosphate (TPP). The results also demonstrated that diethyl maleate had no synergism with bisultap. However, PBO displayed significant synergism in three different strains, and the synergism increased with resistance (S strain 1.42, Lab strain, 2.24 and R strain, 3.23). TPP also showed synergism for three strains, especially in R strain (synergistic ratio = 2.47). An in vitro biochemical study and in vivo synergistic study indicated that P450 might be play important role in the biochemical mechanism of bisultap resistance and that esterase might be the important factor of bisultap resistance. Acetylcholinesterase (AChE) insensitivity play important role in bisultap resistance. We suggest that buprofezin, imidacloprid, and fipronil could be used in resistance management programs for N. lugens via alternation and rotation with bisultap.  相似文献   

12.
金莹  冯国蕾 《昆虫学报》2001,44(2):182-186
测定敏感、抗溴氰菊酯(Del-R)、抗氯菊酯(2Cl-R)的家蝇品系对有机磷杀虫剂敌敌畏、辛硫磷及马拉硫磷的LD50,α-乙酸萘酯(α-NA)酯酶动力学,酯酶的活性和酯酶的抑制作用。Del-R和2Cl-R的家蝇品系对三种有机磷杀虫剂的抗性倍数为0.966~7.190倍,均为低抗水平。三个家蝇品系的羧酸酯酶活性水平与抑制中浓度存在正相关性,说明羧酸酯酶在抗拟除虫菊酯家蝇对有机磷杀虫剂的抗性中起一定的作用。  相似文献   

13.
Resistance to malathion has been reported in field populations of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), in areas of Spain where an intensive use of this insecticide was maintained for several years. The main goal of this study was to determine whether resistance to malathion confers cross-resistance to different types of insecticides. Susceptibility bioassays showed that the malathion-resistant W-4Km strain (176-fold more resistant to malathion than the susceptible C strain) has moderate levels of cross-resistance (three- to 16-fold) to other organophosphates (trichlorphon, diazinon, phosmet and methyl-chlorpyrifos), the carbamate carbaryl, the pyrethroid lambda-cyhalothrin, and the benzoylphenylurea derivative lufenuron, whereas cross-resistance to spinosad was below two-fold. The W-4Km strain was selected with lambda-cyhalothrin to establish the lambda-cyhalothrin-resistant W-1Klamda strain (35-fold resistant to lambda-cyhalothrin). The synergistic activity of the esterase inhibitor DEF with lambda-cyhalothrin and the increase in esterase activity in the W-1Klamda strain suggests that esterases may be involved in the development of resistance to this insecticide. Our results showed that resistance to malathion may confer some degree of cross-resistance to insecticides currently approved for the control of Mediterranean fruit fly in citrus crops (lambda-cyhalothrin, lufenuron, and methyl-chlorpyrifos). Especially relevant is the case of lambda-cyhalothrin, because we have shown that resistance to this insecticide can rapidly evolve to levels that may compromise its effectiveness in the field.  相似文献   

14.
15.
Taşkin V  Kence M 《Genetika》2004,40(11):1475-1482
Organophosphate insecticide (parathion/diazinon) resistance in housefly (Musca domestica L.) is associated with the change in carboxylesterase activity. The product of MdalphaE7 gene is probably playing a role in detoxification of xenebiotic esters. In our research, we have isolated, cloned and sequenced the MdalphaE7 gene from 5 different Turkish housefly strains. High doses of malathion (600 microg/fly) were applied in a laboratory environment for one year to Ceyhan1, Ceyhan2, Adana and Ankara strains while no insecticide treatment was performed in the laboratory to Kirazli strain. Trp251 --> Ser substitution was found in the product of MdalphaE7 gene in all malathion resistant and Kirazli stocks. In addition, we checked the malathion carboxylesterase (MCE), percent remaining activities in acetylcholinesterase (AChE), glutathion-S-transferase (GST), and general esterase activities in all 5 strains used in this study. In comparing with universal standard sensitive control WHO, a high level of MCE and GST activities were observed while lower level of general esterase activities was detected in the tested strains. In addition, a higher percent remaining activities in AChE than WHO susceptible strain were observed in all malathion resistant strains.  相似文献   

16.
《Journal of Asia》2014,17(4):865-869
Spodoptera litura, a polyphagus insect pest of economic importance, having the ability to develop resistance to various classes of insecticides was selected for the study. Leaf dip bioassay studies were done after ten generations of selection pressure reported the development of resistance up to 80 folds by S. litura against chlorantraniliprole compared to lab susceptible strain. Bioassay studies conducted using enzyme inhibitors such as triphenyl phosphate (TPP) followed by diethyl-maleate (DEM) and piperonyl butoxide (PBO) showed good amount of synergism with chlorantraniliprole and improved efficacy against resistant strain. Findings of bioassay studies were supported by in-vitro enzyme inhibition assays. Esterase activity in gut homogenate of resistant strain was significantly inhibited by TPP suggesting esterase mediated biochemical resistance development in S. litura against chlorantraniliprole.  相似文献   

17.
Resistance to the organophosphate insecticide, malathion, in a strain of Culex tarsalis mosquitoes is due to increased activity of a malathion carboxylesterase (MCE). To determine whether resistance was due to a qualitative or quantitative change in the MCE, the enzyme was purified from both malathion-resistant and -susceptible mosquitoes. Enzyme kinetic measurements revealed that the two strains have one MCE in common, but resistant mosquitoes also have a unique MCE which hydrolyses malathion 18 times faster. Interestingly, this MCE does not hydrolyse α-naphthyl acetate, a substrate commonly used to detect increased levels of esterases in other organophosphate-resistant insects. Unlike the over-produced esterase of some related mosquito species, each MCE in C. tarsalis accounts for only a small fraction (0.015%) of the total extractable protein in either strain. Therefore, resistance in these insects is due to the presence of a qualitatively different enzyme, and not to a quantitative increase of a non-specific esterase. This study therefore demonstrates that the underlying biochemical mechanisms of insecticide resistance in one insect cannot necessarily be predicted from those of another, even closely related species. © 1995 Wiley-Liss, Inc.  相似文献   

18.
Tarnished plant bugs, Lygus lineolaris (Palisot de Beauvois), from regions 1, 2, and 3 of the boll weevil, Anthonomous grandis Boheman, eradication program in Mississippi were collected from wild hosts and tested for malathion resistance during the spring and fall of 2000 and 2001. Plant bugs were also tested in region 1 in late-July and October of 1999, just before and after multiple applications of ultra-low-volume (ULV) malathion were used for reproduction-diapause control of boll weevils in August and September. Regions 1 (north Delta), 2 (south Delta), and 3 (hills) began boll weevil eradication in 1999, 1998, and 1997, respectively. A glass-vial bioassay was used to determine resistance in plant bugs to malathion by comparing LC50 values against an LC50 value obtained for susceptible plant bugs. Comparison of the LC50 value obtained for plant bugs at a location in the spring was also made with the LC50 value obtained in the fall at the same location. After multiple applications of malathion made for reproduction-diapause boll weevil control in region 1 in August and September, malathion resistance increased by 4.9-, 6.5-, and 20.8-fold in plant bug populations from the three test locations. Results from testing bugs from all three eradication regions were similar. Malathion resistance usually increased significantly from spring to fall and then declined significantly from fall to spring of the next year. Despite reduced use of malathion in all three eradication regions for boll weevils in 2001, resistance to malathion in plant bugs still increased significantly from spring to fall at all test locations in regions 1 and 2 (the Delta). Malathion resistance did not increase significantly in plant bug populations in region 3 (the hills) in 2001 from spring to fall at three of four test locations in this year. Possible causes for the higher malathion resistance found in plant bugs in the Delta are discussed. Overall test results showed that the use of malathion in boll weevil eradication in cotton probably contributed to increases in resistance to malathion in plant bug populations in the eradication areas. However, the expression of this resistance was usually rapidly lost by spring of the following year. Boll weevil eradication did not seem to produce a permanent increase in the expression of malathion resistance in tarnished plant bug populations found in the eradication regions.  相似文献   

19.
Zhu YC  Guo Z  He Y  Luttrell R 《PloS one》2012,7(5):e37586
The tarnished plant bug has become increasingly resistant to organophosphates in recent years. To better understand acephate resistance mechanisms, biological, biochemical, and molecular experiments were systematically conducted with susceptible (LLS) and acephate-selected (LLR) strains. Selection of a field population with acephate significantly increased resistance ratio to 5.9-fold, coupled with a significant increase of esterase activities by 2-fold. Microarray analysis of 6,688 genes revealed 329 up- and 333 down-regulated (≥2-fold) genes in LLR. Six esterase, three P450, and one glutathione S-transferase genes were significantly up-regulated, and no such genes were down-regulated in LLR. All vitellogenin and eggshell protein genes were significantly down-regulated in LLR. Thirteen protease genes were significantly down-regulated and only 3 were up-regulated in LLR. More than twice the number of catalysis genes and more than 3.6-fold of metabolic genes were up-regulated, respectively, as compared to those down-regulated with the same molecular and biological functions. The large portion of metabolic or catalysis genes with significant up-regulations indicated a substantial increase of metabolic detoxification in LLR. Significant increase of acephate resistance, increases of esterase activities and gene expressions, and variable esterase sequences between LLS and LLR consistently demonstrated a major esterase-mediated resistance in LLR, which was functionally provable by abolishing the resistance with esterase inhibitors. In addition, significant elevation of P450 gene expression and reduced susceptibility to imidacloprid in LLR indicated a concurrent resistance risk that may impact other classes of insecticides. This study demonstrated the first association of down-regulation of reproductive- and digestive-related genes with resistance to conventional insecticides, suggesting potential fitness costs associated with resistance development. This study shed new light on the understanding of the molecular basis of insecticide resistance, and the information is highly valuable for development of chemical control guidelines and tactics to minimize resistance and cross-resistance risks.  相似文献   

20.
刘永杰  沈晋良 《昆虫学报》2003,46(5):567-572
比较了甜菜夜蛾Spodoptera exigua 抗氯氟氰菊酯品系和敏感品系的繁殖和生长发育特征。结果表明:抗性品系幼虫发育历期延长、蛹重减轻、化蛹率和产卵量降低,抗性品系的适合度为0.61,抗性品系在繁殖和生长发育上存在明显的生存劣势。用两品系3龄幼虫分别测定胡椒基丁醚(PBO)、增效磷SV1)、脱叶磷(DEF)和顺丁烯二酸二乙酯(DEM)对氯氟氰菊酯的增效作用,抗性品系增效倍数与敏感品系增效倍数之比分别为14.1、14.8、2.3和2.3倍,胡椒基丁醚和增效磷对氯氟氰菊酯增效作用最明显,表明多功能氧化酶参与了甜菜夜蛾对氯氟氰菊酯的抗性。抗性品系3龄幼虫酯酶和谷胱甘肽S-转移酶的活性分别为敏感品系的1.05倍和0.91倍, 抗性品系5龄幼虫多功能氧化酶O-脱甲基活性为敏感品系的1.05倍,两品系间3种酶的活性差异不显著,表明甜菜夜蛾对氯氟氰菊酯的抗性与酯酶、谷胱甘肽S-转移酶及多功能氧化酶O-脱甲基酶活性无关。用剂量对数死亡机率值回归线分析法研究甜菜夜蛾对氯氟氰菊酯的抗性遗传规律,表明甜菜夜蛾对氯氟氰菊酯的抗性为常染色体遗传、多基因控制;正、反交后代的显性度分别为0.61和0.43,抗性遗传为不完全显性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号