首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Dry mixtures of sonicated vesicles of DPPC and trehalose which contained a maximum of 0.2 mol water/mol lipid were examined by differential scanning calorimetry, Fourier transform infrared spectroscopy and freeze-fracture electron microscopy. Samples of dry DPPC and trehalose prepared from aqueous solution had a minimum Tm of 24°C for the gel to liquid-crystalline transition provided that the vesicles were dried with trehalose while the lipid was in liquid-crystalline phase. This low transition is compared to a transition of 105–112°C for dry pure DPPC and of 42°C for hydrated pure DPPC. The present work is an extension of earlier work from this laboratory using both other lipids and other methods of preparation.  相似文献   

2.
J A Hamilton 《Biochemistry》1989,28(6):2514-2520
Interactions of carbonyl 13C-enriched triacylglycerols (TG) with phospholipid bilayers [egg phosphatidylcholine (PC), dipalmitoylphosphatidylcholine (DPPC), and an ether-linked phosphatidylcholine] were studied by 13C NMR spectroscopy. Up to 3 mol % triolein (TO) or tripalmitin (TP) was incorporated into DPPC vesicles by cosonication of the TG and DPPC at approximately 50 degrees C. NMR studies were carried out in a temperature range (30-50 degrees C) in which pure TO is a liquid whereas pure TP is a solid. In spectra of DPPC vesicles with TG at 40-50 degrees C, both TO and TP had narrow carbonyl resonances, indicative of rapid motions, and chemical shifts indicative of H bonding of the TG carbonyls with solvent (H2O) at the aqueous interfaces of the vesicle bilayer. Below the phase transition temperature of the DPPC/TG vesicles (approximately 36 degrees C), most phospholipid peaks broadened markedly. In DPPC vesicles with TP, the TP carbonyl peaks broadened beyond detection below the transition, whereas in vesicles with TO, the TO carbonyl peaks showed little change in line width or chemical shift and no change in the integrated intensity. Thus, in the gel phase, TP solidified with DPPC, whereas TO was fluid and remained oriented at the aqueous interfaces. Egg PC vesicles incorporated up to 2 mol % TP at 35 degrees C; the TP carbonyl peaks had line-width and chemical shift values similar to those for TP (or TO) in liquid-crystalline DPPC. TO incorporated into ether-linked PC had properties very similar to TO in ester-linked PC.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The vesicular stomatitis virus glycoprotein reconstituted into dipalmitoylphosphatidylcholine (DPPC) vesicles exerts a profound effect upon the DPPC gel to liquid-crystalline phase transition. The glycoprotein was reconstituted into DPPC vesicles by octyl glucoside dialysis. The gel to liquid-crystalline phase transition of these vesicles was monitored by differential scanning calorimetry. Vesicles formed in the absence of glycoprotein (600--2100-A diameter) underwent the phase transition at 41.0 degrees C and had an associated enthalpy change of 8.0 +/- 1.6 kcal/mol. Increasing the mole ratio of glycoprotein to DPPC in the vesicles to 0.15 mol % reduced both the transition temperature and the transition enthalpy change. The enthalpy change as a function of the mole percent glycoprotein could be fit to a straight line by a least-squares procedure. Extrapolation of the results to the glycoprotein concentration where the enthalpy change was zero indicated one glycoprotein molecule bound 270 +/- 150 molecules of DPPC.  相似文献   

4.
Dipalmitoylphosphatidylcholine (DPPC) bilayers hydrated in the presence of trehalose were equilibrated at various temperatures (4, 20, and 60 degrees C) corresponding to the crystalline Lc, gel L beta', and liquid-crystalline L alpha phases, respectively, and then desiccated at these temperatures or freeze-dried at -80 degrees C to ca. DPPC dihydrate. The thermotropic behavior of the resulting DPPC/trehalose mixtures was investigated by differential scanning calorimetry and found to be dependent not only on the trehalose concentration but also on the phase state of the hydrated bilayers prior to their drying. Trehalose was most effective when the desiccation was carried out from the L alpha phase at 60 degrees C. In this case, one trehalose molecule per two DPPC molecules was sufficient to depress the melting temperature from values typical of DPPC dihydrate to 45 degrees C. Trehalose's influence decreased when dried from the L beta' phase and was significantly less pronounced when dried from the Lc phase. These data show that trehalose's protective influence depends on the initial phase state of the lipid bilayer and reaches its maximum in the liquid-crystalline state. The possible role of this effect in anhydrobiosis is pointed out.  相似文献   

5.
The structure and thermal behavior of hydrated and lyophilized dipalmitoylphosphatidylcholine (DPPC) multilayers in the presence of trehalose were investigated by differential scanning calorimetry and X-ray diffraction methods. Trehalose enters the aqueous space between hydrated bilayers and increases the interbilayer separation (from 0.36 to 1.37 nm in the different DPPC phases at 1 M trehalose). It does not affect the lipid chain packing and also the slow isothermal conversion at 4 degrees C of the metastable L beta' phase into the equilibrium crystalline Lc phase. Addition of trehalose leads to a slight upward shift (about 1 degrees C at 1 M trehalose) of the three phase transitions (sub-, pre-, and main transition) in fully hydrated DPPC while their other properties (enthalpy, excess specific heat, and transition width) remain unchanged. The effect of trehalose on the thermal behavior of DPPC multilayers freeze-dried from an initially completely hydrated state is qualitatively similar to that of water. These data support the "water replacement" hypothesis about trehalose action. It is suggested that trehalose prevents the formation of direct interbilayer hydrogen bonds in states of low hydration.  相似文献   

6.
K S Bruzik  M D Tsai 《Biochemistry》1987,26(17):5364-5368
The phase-transition properties of sphingomyelins were investigated in detail with totally synthetic, chemically and stereochemically pure (2S,3R)-(N-stearoylsphingosyl)-1-phosphocholine (D-erythro-C18-SPM) (1) and the corresponding 2S,3S isomer (L-threo-C18-SPM) (2). Heating scans of an unsonicated dispersion of 1 right after hydration showed a main transition (I) at 44.7 degrees C (delta H = 6.8 kcal/mol). Upon incubation at 20-25 degrees C a second transition (II) appeared at 36.0 degrees C (delta H = 5.7 kcal/mol). The two gel phases were designated as G alpha and G beta phases, respectively. The G beta phase was also metastable and relaxed to a third gel phase (G gamma) upon incubation below 10 degrees C. Conversion of the G gamma phase to the liquid-crystalline phase occurred via two new endotherms at 33.4 degrees C (2.6 kcal/mol) (III) and 43.6 degrees C (8.0 kcal/mol) (IV) as well as a main transition at 44.7 degrees C (9.5 kcal/mol). Possible interpretations have been proposed to account for the observed phase transitions. The L-threo isomer 2 showed similar thermotropic behavior to dipalmitoylphosphatidylcholine (DPPC): a "main transition" at 44.2 degrees C (6.0 kcal/mol), a "pretransition" at 43.1 degrees C (1.8 kcal/mol), and upon incubation at 7 degrees C for 2 weeks, a very broad "subtransition" at ca. 35 degrees C. The results are substantially different from previous studies of sphingomyelins using mixtures of stereoisomers. Mixing of 1 with 2, 1 with DPPC, and 2 with DPPC removed the metastability of the gel phase and resulted in a single transition.  相似文献   

7.
S Ali  D Zakim 《Biophysical journal》1993,65(1):101-105
The thermotropic properties of multilamellar vesicles of dimyristoylphosphatidylcholine (DMPC), dipalmitoylphosphatidylcholine (DPPC), and distearoylphosphatidylcholine (DSPC), as a function of the concentration of bilirubin in the range of 0.1 to 1 mol%, were measured. The exact effects of bilirubin depended on the chain length of the polymethylene chains. But the general effects of bilirubin were the same in all systems. At the lowest concentrations tested (0.1 mol bilirubin/100 mol phospholipid (0.1 mol%)), bilirubin broadened and shifted to higher temperatures the main phase transitions of all bilayers. For DPPC and DSPC, but not DMPC, this concentration of bilirubin was associated with a new transition at 25 degrees C (DPPC) or 34 degrees C (DSPC). Bilirubin at 0.2 mol% was required for the detection of a similar transition (at 13.7 degrees C) in DMPC. Higher concentrations of bilirubin (> 0.2 mol%) suppressed completely the main phase transitions in all bilayers but increased the enthalpy of the new transition. Maximal values of delta H for these transitions were reached at 0.5, 0.25, and 0.2 mol% bilirubin in DMPC, DPPC, and DSPC, respectively. Values of delta H and delta S for these transitions were far larger than for the corresponding gel-to-liquid crystal transitions in pure lipid bilayers but were equal to those expected for a transition between crystalline and liquid crystalline phases.  相似文献   

8.
W A Petri  R Pal  Y Barenholz  R R Wagner 《Biochemistry》1981,20(10):2796-2800
The vesicular stomatitis virus glycoprotein (G) was reconstituted into dipalmitoylphosphatidylcholine (DPPC) vesicles by detergent dialysis. The DPPC gel to liquid-crystalline phase transition of the DPPC-G protein vesicles was monitored by the fluorescence anisotrophy of trans-paranaric acid, 16-(9-anthroyloxy)palmitoylglucocerebroside, 1,6-diphenyl-1,3,5-hexatriene, and 4-heptadecyl-7-hydroxycoumarin. The DPPC transition temperature measured by all four fluorescent probes was lowered in the presence of the G protein and the DPPC gel state was disordered by the G protein as evidenced by a decreased fluorescence anisotropy for all four probes below the phase-transition temperature. A possible ordering of the DPPC liquid-crystalline state by the G protein was indicated by an increased anisotropy of trans-paranaric acid and 16-(9-anthroyloxy)palmitoylglucocerebroside in the liquid-crystalline state of DPPC-G protein vesicles. The G protein in addition affected the ionization of the 4-heptadecyl-7-hydroxycoumarin in lipid vesicles, increasing the apparent pK of the probe from 9.05 to 9.45.  相似文献   

9.
J T Kim  J Mattai  G G Shipley 《Biochemistry》1987,26(21):6599-6603
Mixed phospholipid systems of ether-linked 1,2-dihexadecylphosphatidylcholine (DHPC) and ester-linked 1,2-dipalmitoylphosphatidylcholine (DPPC) have been studied by differential scanning calorimetry and X-ray diffraction. At maximum hydration (60 wt % water), DHPC shows three reversible transitions: a main (chain melting) transition, TM = 44.2 degrees C; a pretransition, TP = 36.2 degrees C; and a subtransition, TS = 5.5 degrees C. DPPC shows two reversible transitions: TM = 41.3 degrees C and TP = 36.5 degrees C. TM decreases linearly from 44.2 to 41.3 degrees C as DPPC is incorporated into DHPC bilayers; TP exhibits eutectic behavior, decreasing sharply to reach 23.3 degrees C at 40.4 mol % DPPC and then increasing over the range 40-100 mol % DPPC; TS remains constant at 4-5 degrees C and is not observed at greater than 20 mol % DPPC. At 50 degrees C, X-ray diffraction shows a liquid-crystalline bilayer L alpha phase at all DHPC:DPPC mole ratios. At 22 degrees C, DHPC shows an interdigitated bilayer gel L beta phase (bilayer periodicity d = 47.0 A) into which approximately 30 mol % DPPC can be incorporated. Above 30 mol % DPPC, a noninterdigitated gel L beta' phase (d = 64-66 A) is observed. Thus, at T greater than TM, DHPC and DPPC are miscible in all proportions in an L alpha bilayer phase. In contrast, a composition-dependent gel----gel transition between interdigitated and noninterdigitated bilayers is observed at T less than TP, and this leads to eutectic behavior of the DHPC/DPPC system.  相似文献   

10.
M Masserini  E Freire 《Biochemistry》1987,26(1):237-242
The transfer of ganglioside GM1 from micelles to membranes and between different membrane populations has been examined by using a pyrene fatty acid derivative of the ganglioside. The transfer of gangliosides from micelles to membranes depends on the physical state as well as the molecular composition of the acceptor vesicles. At 30 degrees C, the transfer of micellar gangliosides to dipalmitoylphosphatidylcholine (DPPC) large unilameller vesicles (Tm = 41.3 degrees C) is characterized by a rate constant of 0.01 min-1; at 48 degrees C, however, the rate constant is 0.11 min-1. Below the phase transition temperature, the activation energy is 25 kcal/mol whereas above the phase transition it is 17 kcal/mol. Similar experiments performed with synaptic plasma membranes yielded a rate constant of 0.05 min-1 at 37 degrees C. The rate of transfer of ganglioside molecules, asymmetrically located on the outer layer of donor vesicles, to acceptor vesicles lacking ganglioside depends on the physical state of both the donor and acceptor vesicles. For the transfer of ganglioside from DPPC (donor) vesicles to dimyristoylphosphatidylcholine (DMPC) (acceptor) vesicles, the rates were essentially zero at 15 degrees C in which both vesicle populations were in the gel phase, 0.008 min-1 at 30 degrees C in which DPPC is in the gel phase and DMPC is in the fluid phase, and 0.031 min-1 at 48 degrees C in which both vesicle populations are in the fluid phase. The transfer of ganglioside from DPPC vesicles to synaptic plasma membranes was also dependent on the physical state of the donor vesicles and showed an inflection point at the phase transition temperature of DPPC.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
We studied the interaction between the 35 kDa apolipoprotein of canine pulmonary surfactant (SP 35) and five saturated phosphatidylcholines: distearoyl (DSPC), diheptadecanoyl (DHPC), dipalmitoyl (DPPC), dimyristoyl (DMPC), and dilauroyl (DLPC); and two monoenoic unsaturated phosphatidylcholines: dioleoyl (DOPC) and dielaidyl (DEPC), using temperatures at which all of the phospholipids except DOPC were in both the gel and liquid-crystalline states. The experiments were carried out in a buffer without Ca2+. The amount of apolipoprotein which was bound by both small unilamellar and multilayered vesicles of these lipids decreased as the temperature was increased. Moreover, near the temperatures of the phase transitions of all lipids except DLPC, there was an abrupt and marked reduction in binding of protein, in that over a 3-4 degree change in temperature there was an abrupt decrease in bound apolipoprotein. A similar change in binding occurred using DLPC, although the relatively large changes in bound protein occurred at about 10 and 20 degrees C, temperatures which are above the phase transition temperature of this lipid. Experiments using DOPC were limited to temperatures above the phase transition, and apolipoprotein binding was low. Experiments monitoring the intrinsic fluorescence of the protein, and the fluorescence of bis-1-anilino-8-naphthalene sulfonic acid bound to the protein, revealed a possible conformational change at about 40 degrees C. Measurement of intrinsic fluorescence provided the same result whether or not the protein was associated with lipid. DSC of the apolipoprotein indicated that this change was not associated with a measurable thermogenic process. We found that the interaction with DPPC was reversible at 42 degrees C, and we measured the thermodynamic parameters of the interaction at this temperature. These were: delta G0 = -8.0 kcal/mol apolipoprotein; delta H0 = -88 kcal/mol; delta S0 = -254 cal/Cdeg per mol. We conclude that the interaction between SP 35 and saturated phosphatidylcholines is temperature sensitive, and this probably reflects differences in the ability of gel and liquid-crystalline phospholipids to bind this protein. Both the delta H0 and delta S0 of the interaction are negative, and may reflect an immobilization of phospholipid around the apolipoprotein to form a boundary layer. This hypothesis is consistent with the findings obtained by DSC, in which the enthalpy of the phase transition of DMPC in lipid-apolipoprotein recombinants was found to be about 60% of that expected for a pure and unperturbed multilamellar dispersion.  相似文献   

12.
We have investigated the effect of two monosaccharides, glucose and fructose, and two disaccharides, sucrose and trehalose, on the thermotropic phase transition of unilamellar extruded vesicles of DPPC. All the sugars investigated raise the main transition temperature (Tm) of some fraction of the lipid, but there are differences between the effect of glucose and the other three sugars. At low concentrations of glucose, Tm is lowered. At high concentrations of glucose there are two transitions, one with a low Tm and one with a high Tm. The data suggest that at low concentrations, all of the glucose present may bind to the bilayer and increase headgroup spacing by physical intercalation or increased hydration. The appearance of a Tm above that of pure hydrated DPPC suggests the possibility of the dehydration of some other population of phospholipid molecules. The other three sugars increase Tm, but at high concentrations of trehalose, sucrose, and fructose a second peak occurs at a low Tm. The other sugars appear to dehydrate the bilayer at low concentrations, but may show some binding or increased hydration of some portion of the lipid at very high concentrations. The sugar effects on unilamellar vesicles are strikingly different from the effects of these sugars on multilamellar vesicles.  相似文献   

13.
The effect of the carbohydrates trehalose, glucose, and hydroxyethyl starch (HES) on the motional properties of the phosphate headgroup of freeze-dried dipalmitoylphosphatidylcholine (DPPC) liposomes was studied by means of 31P NMR, Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC). The results show that trehalose, which is a strong glass former (Tg = 115 degreesC), elevates the onset of the lipid headgroup rotations and preserves some rotational mobility of the phosphate headgroups after cooling from the liquid-crystalline state. Glucose (Tg = 30 degreesC), a very effective depressant of the phase transition temperature of freeze-dried DPPC, markedly elevates the initiation of the temperature of headgroup rotations. On the other hand, the monosaccharide does not preserve the headgroup disordering when cooled from the liquid-crystalline state. These effects are consistent with formation of hydrogen bonds between the OH groups of the sugar and the polar headgroups of DPPC. They show, however, that hydrogen bonding is not sufficient for preservation of the dynamic properties of freeze-dried DPPC. HES, although a very good glass former (Tg > 110 degreesC), does not depress the phase transition temperature and affects only slightly the rotational properties of freeze-dried DPPC. This lack of effect of HES is associated with the absence of direct interactions with the lipid phosphates, as evidenced by the FTIR results. These data show that vitrification of the additive is not sufficient to affect the dynamic properties of dried DPPC.  相似文献   

14.
Amphotericin B transfer between single-walled vesicles of dipalmitoylphosphatidylcholine (DPPC) and of egg phosphatidylcholine, both containing 10 mol% cholesterol, has been studied concurrently by circular dichroism spectroscopy and permeability measurements. At 22°C amphotericin B is rapidly transferred from DPPC to DPPC vesicles as well as from egg phosphatidylcholine to egg phosphatidylcholine vesicles. On the other hand, although amphotericin B is rapidly transferred from egg phosphatidylcholine to DPPC vesicles, it is not transferred from DPPC to egg phosphatidylcholine vesicles. At 48°C, above the transition temperature of DPPC, transfer occurs rapidly both ways. These results are interpreted in terms of difference of association constant of amphotericin B with vesicle membranes in the gel and liquid-crystalline state.  相似文献   

15.
C W Lee  J S Waugh  R G Griffin 《Biochemistry》1986,25(13):3737-3742
31P and 2H solid-state NMR studies of dry trehalose (TRE) and 1,2-dipalmitoyl-sn-phosphatidylcholine (DPPC) mixtures are reported. 31P spectra are consistent with a rigid head group above and below the calorimetric phase transition for both dry DPPC and a dry 2:1 TRE/DPPC mixture. In addition, 2H spectra of DPPC labeled at the 7-position of the sn-2 chain (2[7,7-2H2]DPPC) show exchange-narrowed line shapes with a width of 120 kHz over the temperature range 25-75 degrees C. These line shapes can be simulated with a model involving two-site jumps of the deuteron. In contrast, the 2H NMR spectrum of a dry 2:1 TRE/2[7,7-2H2]DPPC mixture above the phase transition (Tc = 46 degrees C) is narrowed by a factor of approximately 4 to a width of 29 kHz. Simulation of this spectrum requires a model involving four-site jumps of the deuteron and is indicative of highly disordered lipid acyl chains similar to those found in the L alpha-phases of hydrated lipids. Thus, TRE/DPPC mixtures above their transition temperatures exist in a new type of liquid crystalline like phase, which we term a lambda-phase. The observation of the dynamic properties of this new phase indicates the mechanism by which anhydrobiotic organisms maintain the integrity of their membranes upon dehydration.  相似文献   

16.
Interaction of carbohydrates with dry dipalmitoylphosphatidylcholine   总被引:3,自引:0,他引:3  
Interactions of six carbohydrates (trehalose, sucrose, glucose, raffinose, inositol, and glycerol) with dry dipalmitoylphosphatidylcholine (DPPC) were studied using differential scanning calorimetry (DSC) and infrared spectroscopy (ir) in order to elucidate the mechanism by which some of these carbohydrates preserve structural and functional integrity of dry membranes. Results with DSC showed that trehalose depressed the main transition temperature (Tmid) of dry DPPC below that of fully hydrated DPPC, and raised the enthalpy of that transition more than did addition of water. Results obtained with ir spectroscopy suggested a potential mechanism for this interaction. In the presence of most of the carbohydrates the ir spectrum for DPPC showed changes similar to those seen when water was added to dry DPPC, and the asymmetric P = O stretching band was diminished in intensity. The degree to which the carbohydrates tested affected the integrated intensity of this band and the Tmid was correlated with the ability of those carbohydrates to preserve dry membranes. Also, bands assigned to -OH deformations in the trehalose and other carbohydrates were depressed in the presence of DPPC. Based on these observations, it is suggested that the mechanism of interaction between the carbohydrate and lipid involves hydrogen bonding between -OH groups on the carbohydrate and the phosphate head group of the phospholipid. The only exceptions to this pattern are glycerol, which depresses Tmid of dry DPPC, and myo-inositol, which has no effect on Tmid or the ir spectrum of DPPC; neither carbohydrate can preserve dry membranes. It is suggested, based on ir spectroscopy and previous results with monolayer preparations, that glycerol interacts with phospholipids by a mechanism different from that shown by the other carbohydrates.  相似文献   

17.
Differential scanning calorimetry and x-ray diffraction have been utilized to investigate the interaction of N-stearoylsphingomyelin (C18:0-SM) with cholesterol and dipalmitoylphosphatidylcholine (DPPC). Fully hydrated C18:0-SM forms bilayers that undergo a chain-melting (gel -->liquid-crystalline) transition at 45 degrees C, delta H = 6.7 kcal/mol. Addition of cholesterol results in a progressive decrease in the enthalpy of the transition at 45 degrees C and the appearance of a broad transition centered at 46.3 degrees C; this latter transition progressively broadens and is not detectable at cholesterol contents of >40 mol%. X-ray diffraction and electron density profiles indicate that bilayers of C18:0-SM/cholesterol (50 mol%) are essentially identical at 22 degrees C and 58 degrees C in terms of bilayer periodicity (d = 63-64 A), bilayer thickness (d rho-p = 46-47 A), and lateral molecular packing (wide-angle reflection, 1/4.8 A-(1)). These data show that cholesterol inserts into C18:0-SM bilayers, progressively removing the chain-melting transition and altering the bilayer structural characteristics. In contrast, DPPC has relatively minor effects on the structure and thermotropic properties of C18:0-SM. DPPC and C18:0-SM exhibit complete miscibility in both the gel and liquid-crystalline bilayer phases, but the pre-transition exhibited by DPPC is eliminated at >30 mol% C18:0-SM. The bilayer periodicity in both the gel and liquid-crystalline phases decreases significantly at high DPPC contents, probably reflecting differences in hydration and/or chain tilt (gel phase) of C18:0-SM and DPPC.  相似文献   

18.
We report here the reversible association of a designed peptide embedded in a lipid membrane through a stimulus-sensitive trigger that changes the physical state of the bilayer matrix. A peptide designed with the classical 4-3 heptad repeat of coiled coils, equipped with leucine residues at all canonical interface positions, TH1, was rendered membrane soluble by replacement of all exterior residues with randomly selected hydrophobic amino acids. Insertion of TH1 into large unilamellar phosphatidylcholine vesicles was followed by monitoring tryptophan fluorescence. Peptide insertion was observed when the lipids were in the liquid-crystalline state [1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)] but not when they were in the crystalline phase [1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)]. Formation of a trimeric alpha-helical bundle in lipid bilayers was followed by fluorescence resonance energy transfer. Global fit analysis revealed a monomer--trimer equilibrium with a dissociation constant of around 10(-5) [corrected] MF(2). A lipid mixture composed of DPPC and POPC exhibiting a phase transition at 34 degrees C between a crystalline/liquid-crystalline coexistence region and a completely miscible liquid-crystalline phase was used to control the formation of the trimeric peptide bundle. TH1 is phase excluded in crystalline DPPC domains below 34 degrees C, leading to a larger number of trimers. However, when the DPPC domains are dispersed at temperatures above 34 degrees C, the number of trimers is reduced.  相似文献   

19.
Properties of large unilamellar vesicles (LUV), composed of phosphatidylcholine and prepared by reverse-phase evaporation and subsequent extrusion through Unipore polycarbonate membranes, have been investigated and compared with those of small unilamellar vesicles (SUV) and of multilamellar vesicles (MLV). The unilamellar nature of the LUV is shown by 1H-NMR using Pr3+ as a shift reagent. The gel to liquid-crystalline phase transition of LUV composed of dipalmitoylphosphatidylcholine (DPPC) monitored by differential scanning calorimetry, fluorescence polarization of diphenylhexatriene and 90 degrees light scattering, occurs at a slight lower temperature (40.8 degrees C) than that of MLV (42 degrees C) and is broadened by about 50%. The phase transition of SUV is shifted to considerably lower temperatures (mid-point, 38 degrees C) and extends over a wide temperature range. In LUV a well-defined pretransition is not observed. The permeability of LUV (DPPC) monitored by leakage of carboxyfluorescein, increases sharply at the phase transition temperature, and the extent of release is greater than that from MLV. Leakage from SUV occurs in a wide temperature range. Freeze-fracture electron microscopy of LUV (DPPC) reveals vesicles of 0.1-0.2 micron diameter with mostly smooth fracture faces. At temperatures below the phase transition, the larger vesicles in the population have angled faces, as do extruded MLV. A banded pattern, seen in MLV at temperatures between the pretransition and the main transition, is not observed in the smaller LUV, although the larger vesicles reveal a dimpled appearance.  相似文献   

20.
The effect of amphiphilic toxin melittin (Mel) on the thermotropic behavior of dipalmitoylphosphatidylcholine (DPPC) has been studied by Raman spectroscopy. The spectra show that for complexes that were incubated above 40 degrees C, melittin does not penetrate DPPC bilayers in the gel state as an intrinsic protein since the conformation of the lipid acyl chains is just slightly perturbed by the toxin. Instead, at the DPPC/Mel molar ratios investigated (Ri = 5 and 15), Raman results suggest the formation of discoidal particles as complexes of apolipoproteins with phosphatidylcholines. These lipid/protein assemblies are characterized by a high conformational order, low intermolecular chain-chain interactions due to the size of the particles, and a low cooperativity of the gel to liquid-crystalline transition. The latter is biphasic for samples studied. It is believed that aggregation of these particles into larger ones occurs when the bilayers become less stable at higher temperature and that melittin is partially embedded into the hydrophobic core of the larger lipid/protein units. The freezing of the dispersion at approximately 0 degrees C also causes a reversible aggregation of the particles that leads to the formation of domains in which the interchain interactions are very similar to that of the pure lipid. The small particles of DPPC/Mel are also metastable, and with time, they form larger aggregates from which melittin is expulsed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号