首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The growth at restrictive temperature of tsO45, a group V (glycoprotein) conditional lethal mutant of vesicular stomatitis virus (VSV), was demonstrated to result in the production of large numbers of noninfectious viral particles. The infectivity of these tsO45 particles could be enhanced by procedures known to promote membrane fusion. Morphologically and biochemically these particles differed from wild-type VSV by their lack of viral glycoprotein. The other structural proteins of VSV were present and indistinguishable by size and relative proportion from those of virus grown at the permissive temperature. Examination of glycoprotein maturation at the restrictive temperature (39.5 degrees C) in tsO45-infected cells demonstrated the synthesis of normal viral glycoprotein but failed to demonstrate the presence of this glycoprotein in either the cell membrane or the envelope of free virions. The further absence of soluble viral glycoprotein from the supernatants of such cells strongly suggests that viral glycoprotein may not be necessary for the successful budding of VSV.  相似文献   

2.
The glycoprotein of vesicular stomatitis virus (VSV G) mediates fusion of the viral envelope with the host cell, with the conformational changes that mediate VSV G fusion activation occurring in a reversible, low pH-dependent manner. Based on its novel structure, VSV G has been classified as class III viral fusion protein, having a predicted bipartite fusion domain comprising residues Trp-72, Tyr-73, Tyr-116, and Ala-117 that interacts with the host cell membrane to initiate the fusion reaction. Here, we carried out a systematic mutagenesis study of the predicted VSV G fusion loops, to investigate the functional role of the fusion domain. Using assays of low pH-induced cell-cell fusion and infection studies of mutant VSV G incorporated into viral particles, we show a fundamental role for the bipartite fusion domain. We show that Trp-72 is a critical residue for VSV G-mediated membrane fusion. Trp-72 could only tolerate mutation to a phenylalanine residue, which allowed only limited fusion. Tyr-73 and Tyr-116 could be mutated to other aromatic residues without major effect but could not tolerate any other substitution. Ala-117 was a less critical residue, with only charged residues unable to allow fusion activation. These data represent a functional analysis of predicted bipartite fusion loops of VSV G, a founder member of the class III family of viral fusion proteins.  相似文献   

3.
Fusion of vesicular stomatitis virus (VSV) with Vero cells was measured after exposure of the virus to low pH under a variety of experimental conditions. The method of relief of fluorescence self-quenching of the probe octadecylrhodamine was used to monitor fusion. Incubation of the virus at pH 5.5 prior to binding to cells led to significant enhancement of fusion at the plasma membrane, whereas fusion via the endocytic pathway was inhibited. Fusion of pH 5.5-pretreated VSV showed a similar pH threshold for fusion as nontreated virus, and it was blocked by antibody to VSV G protein. Activation of VSV by pretreatment at low pH was only slightly dependent on temperature. In contrast, when VSV was first bound to target cells and subsequently exposed at 4 degrees C to the low pH, activation of the fusion process did not occur. The pH 5.5-mediated activation of VSV could be reversed by returning the pH to neutral in the absence of target membranes. The low pH pretreatment also led to aggregation of virus; large aggregates could be pelleted by low speed centrifugation and only the effects of the supernatant, which consist of single virions and/or microaggregates, were considered. The data were analyzed in the framework of an allosteric model according to which viral spike glycoproteins undergo a pH-dependent conformational transition to an active (fusion-competent) state. Based on that analysis we conclude that the conformational transition to the active state is rate-limiting for fusion and that the viral spike glycoproteins are fusion-competent only in their protonated form.  相似文献   

4.
The entry of enveloped animal viruses into their host cells always depends on membrane fusion triggered by conformational changes in viral envelope glycoproteins. Vesicular stomatitis virus (VSV) infection is mediated by virus spike glycoprotein G, which induces membrane fusion between the viral envelope and the endosomal membrane at the acidic environment of this compartment. In this work, we evaluated VSV interactions with membranes of different phospholipid compositions, at neutral and acidic pH, using atomic force microscopy (AFM) operating in the force spectroscopy mode, isothermal calorimetry (ITC) and molecular dynamics simulation. We found that the binding forces differed dramatically depending on the membrane phospholipid composition, revealing a high specificity of G protein binding to membranes containing phosphatidylserine (PS). In a previous work, we showed that the sequence corresponding amino acid 164 of VSV G protein was as efficient as the virus in catalyzing membrane fusion at pH 6.0. Here, we used this sequence to explore VSV–PS interaction using ITC. We found that peptide binding to membranes was exothermic, suggesting the participation of electrostatic interactions. Peptide–membrane interaction at pH 7.5 was shown to be specific to PS and dependent on the presence of His residues in the fusion peptide. The application of the simplified continuum Gouy–Chapman theory to our system predicted a pH of 5.0 at membrane surface, suggesting that the His residues should be protonated when located close to the membrane. Molecular dynamics simulations suggested that the peptide interacts with the lipid bilayer through its N-terminal residues, especially Val145 and His148. Fabiana A.Carneiro and Pedro A. Lapido-Loureiro contributed equally to this work An erratum to this article can be found at  相似文献   

5.
S D Fuller  R Bravo    K Simons 《The EMBO journal》1985,4(2):297-307
The expression of viral envelope proteins on the plasma membrane domains of the epithelial cell line, MDCK, is polar. Influenza virus infection of these cells leads to expression of the viral haemagglutinin and neuraminidase glycoproteins on the apical domain of the plasma membrane while vesicular stomatitis virus (VSV) infection yields basolateral expression of the sialic acid-bearing G protein. We have exploited the ability of the influenza neuraminidase to desialate the G protein of VSV to test for contact between these proteins during their intracellular transport to separate plasma membrane domains. We were able to select for VSV-G protein expression in doubly-infected cells because VSV protein production was accelerated in cells pre-infected with influenza virus. During double infection the envelope proteins of both viruses displayed the same polar localization as during single infection but the VSG-G protein was undersialated due to the action of the influenza neuraminidase. Incubation of singly-infected cells at 20 degrees C blocked the transport of VSV-G protein to the cell surface and resulted in increased sialation of the protein over that seen at 37 degrees C. This suggests that G protein is held in contact with the sialyl transferase at this temperature. 20 degrees C incubations of doubly-infected cells also produced the undersialated G protein characteristic of interaction with the neuraminidase. We conclude that most of the newly synthesised basolaterally-directed G protein is in physical contact with the majority of the neuraminidase through the terminal steps of Golgi processing.  相似文献   

6.
Entry of enveloped animal viruses into their host cells always depends on a step of membrane fusion triggered by conformational changes in viral envelope glycoproteins. Vesicular stomatitis virus (VSV) infection is mediated by virus spike glycoprotein G, which induces membrane fusion at the acidic environment of the endosomal compartment. VSV-induced membrane fusion occurs at a very narrow pH range, between 6.2 and 5.8, suggesting that His protonation is required for this process. To investigate the role of His in VSV fusion, we chemically modified these residues using diethylpyrocarbonate (DEPC). We found that DEPC treatment inhibited membrane fusion mediated by VSV in a concentration-dependent manner and that the complete inhibition of fusion was fully reversed by incubation of modified virus with hydroxylamine. Fluorescence measurements showed that VSV modification with DEPC abolished pH-induced conformational changes in G protein, suggesting that His protonation drives G protein interaction with the target membrane at acidic pH. Mass spectrometry analysis of tryptic fragments of modified G protein allowed the identification of the putative active His residues. Using synthetic peptides, we showed that the modification of His-148 and His-149 by DEPC, as well as the substitution of these residues by Ala, completely inhibited peptide-induced fusion, suggesting the direct participation of these His in VSV fusion.  相似文献   

7.
Gomes AM  Pinheiro AS  Bonafe CF  Silva JL 《Biochemistry》2003,42(18):5540-5546
Vesicular stomatitis virus (VSV) is composed of a ribonucleoprotein core surrounded by a lipid envelope presenting an integral glycoprotein (G). The homotrimeric VSV G protein exhibits a membrane fusion activity that can be elicited by low pH. The fusion event is crucial to entry into the cell and disassembly followed by viral replication. To understand the conformational changes involved in this process, the effects of high hydrostatic pressure and urea on VSV particles and isolated G protein were investigated. With pressures up to 3.0 kbar VSV particles were converted into the fusogenic conformation, as measured by a fusion assay and by the binding of bis-ANS. The magnitude of the changes was similar to that promoted by lowering the pH. To further understand the relationship between stability and conversion into the fusion-active states, the stability of the G protein was tested against urea and high pressure. High urea produced a large red shift in the tryptophan fluorescence of G protein whereas pressure promoted a smaller change. Pressure induced equal fluorescence changes in isolated G protein and virions, indicating that virus inactivation induced by pressure is due to changes in the G protein. Fluorescence microscopy showed that pressurized particles were capable of fusing with the cell membrane without causing infection. We propose that pressure elicits a conformational change in the G protein, which maintains the fusion properties but suppresses the entry of the virus by endocytosis. Binding of bis-ANS indicates the presence of hydrophobic cavities in the G protein. Pressure also caused an increase in light scattering of VSV G protein, reinforcing the hypothesis that high pressure elicits the fusogenic activity of VSV G protein. This "fusion-intermediate state" induced by pressure has minor changes in secondary structure and is likely the cause of nonproductive infections.  相似文献   

8.
Vesicular stomatitis virus (VSV), a prototype of the Rhabdoviridae family, contains a single surface glycoprotein (G) that is responsible for attachment to cells and mediates membrane fusion. Working with the Indiana serotype of VSV, we employed a reverse genetic approach to produce fully authentic recombinant viral particles bearing lethal mutations in the G gene. By altering the hydrophobicity of the two fusion loops within G, we produced a panel of mutants, W72A, Y73A, Y116A, and A117F, that were nonfusogenic. Propagation of viruses bearing those lethal mutations in G completely depended on complementation by expression of the glycoprotein from the heterologous New Jersey serotype of VSV. The nonfusogenic G proteins oligomerize and are transported normally to the cell surface but fail to mediate acid pH-triggered membrane fusion. The nonfusogenic G proteins also interfered with the ability of wild-type G to mediate fusion, either by formation of mixed trimers or by inhibition of trimer function during fusion. Passage of one recombinant virus, A117F, identified a second site suppressor of the fusion block, E76K. When analyzed in the absence of the A117F substitution, E76K rendered G more sensitive to acid pH-triggered fusion, suggesting that this compensatory mutation is destabilizing. Our work provides a set of authentic recombinant VSV particles bearing lethal mutations in G, confirms that the hydrophobic fusion loops of VSV G protein are critical for membrane fusion, and underscores the importance of the sequence elements surrounding the hydrophobic tips of the fusion loops in driving fusion. This study has implications for understanding dominant targets for inhibition of G-mediated fusion. Moreover, the recombinant viral particles generated here will likely be useful in dissecting the mechanism of G-catalyzed fusion as well as study steps of viral assembly.  相似文献   

9.
We describe a procedure that enriches for temperature-sensitive (ts) mutants of vesicular stomatitis virus (VSV), Indiana serotype, which are conditionally defective in the biosynthesis of the viral glycoprotein. The selection procedure depends on the rescue of pseudotypes of known ts VSV mutants in complementation group V (corresponding to the viral G protein) by growth at 39.5 degrees C in cells preinfected with the avian retrovirus Rous-associated virus 1 (RAV-1). Seventeen nonleaky ts mutants were isolated from mutagenized stocks of VSV. Eight induced no synthesis of VSV proteins at the nonpermissive temperature and hence were not studied further. Four mutants belonged to complementation group V and resembled other ts (V) mutations in their thermolability, production at 39.5 degrees C of noninfectious particles specifically deficient in VSV G protein, synthesis at 39.5 degrees C of normal levels of viral RNA and protein, and ability to be rescued at 39.5 degrees C by preinfection of cells by avian retroviruses. Five new ts mutants were, unexpectedly, in complementation group IV, the putative structural gene for the viral nucleocapsid (N) protein. At 39.5 degrees C these mutants also induced formation of noninfectious particles relatively deficient in G protein, and production of infectious virus at 39.5 degrees C was also enhanced by preinfection with RAV-1, although not to the same extent as in the case of the group V mutants. We believe that the primary effect of the ts mutation is a reduced synthesis of the nucleocapsid and thus an inhibition of synthesis of all viral proteins; apparently, the accumulation of G protein at the surface is not sufficient to envelope all the viral nucleocapsids, or the mutation in the nucleocapsid prevents proper assembly of G into virions. The selection procedure, based on pseudotype formation with glycoproteins encoded by an unrelated virus, has potential use for the isolation of new glycoprotein mutants of diverse groups of enveloped viruses.  相似文献   

10.
The glycoprotein (G) of vesicular stomatitis virus (VSV) is responsible for binding of virus to cells and for mediating virus entry following endocytosis by inducing fusion of the viral envelope with the endosomal membrane. The fusion peptide of G is internal (residues 116 to 137) and exhibits characteristics similar to those of other internal fusion peptides, but recent studies have implicated the region adjacent to the transmembrane domain as also being important for G-mediated membrane fusion. Sequence alignment of the membrane-proximal region of G from several different vesiculoviruses revealed that this domain is highly conserved, suggesting that it is important for G function. Mutational analysis was used to show that this region is not essential for G protein oligomerization, transport to the cell surface, or incorporation into virus particles but that it is essential for acid-induced membrane fusion activity and for virus infectivity. Deletion of the 13 membrane-proximal amino acids (N449 to W461) dramatically reduced cell-cell fusion activity and reduced virus infectivity approximately 100-fold, but mutation of conserved aromatic residues (W457, F458, and W461) either singly or together had only modest effects on cell-cell fusion activity; recombinant virus encoding these mutants replicated as efficiently as wild-type (WT) VSV. Insertion of heterologous sequences in the juxtamembrane region completely abolished membrane fusion activity and virus infectivity, as did deletion of residues F440 to N449. The insertion mutants showed some changes in pH-dependent conformational changes and in virus binding, which could partially explain the defects in membrane fusion activity, but all the other mutants were similar to WT G with respect to conformational changes and virus binding. These data support the hypothesis that the membrane-proximal domain contributes to G-mediated membrane fusion activity, yet the conserved aromatic residues are not essential for membrane fusion or virus infectivity.  相似文献   

11.
Enveloped viruses are excellent tools for the study of the biogenesis of epithelial polarity, because they bud asymmetrically from confluent monolayers of epithelial cells and because polarized budding is preceded by the accumulation of envelope proteins exclusively in the plasma membrane regions from which the viruses bud. In this work, three different experimental approaches showed that the carbohydrate moieties do not determine the final surface localization of either influenza (WSN strain) or vesicular stomatitis virus (VSV) envelope proteins in infected Madin-Darby Canine Kidney (MDCK) cells, as determined by immunofluorescence and immunoelectron microscopy, using ferritin as a marker. Infected concanavalin A- and ricin 1-resistant mutants of MDCK cells, with alterations in glycosylation, exhibited surface distributions of viral glycoproteins identical to those of the parental cell line, i.e., influenza envelope proteins were exclusively found in the apical surface, whereas VSV G protein was localized only in the basolateral region. MDCK cells treated with tunicamycin, which abolishes the glycosylation of viral glycoproteins, exhibited the same distribution of envelope proteins as control cells, after infection with VSF or influenza. A temperature-sensitive mutant of influenza WSN, ts3, which, when grown at the nonpermissive temperature of 39.5 degrees C, retains the sialic acid residues in the envelope glycoproteins, showed, at both 32 degrees C (permissive temperature) and 39.5 degrees C, budding polarity and viral glycoprotein distribution identical to those of the parental WSN strain, when grown in MDCK cells. These results demonstrate that carbohydrate moieties are not components of the addressing signals that determine the polarized distribution of viral envelope proteins, and possibly of the intrinsic cellular plasma membrane proteins, in the surface of epithelial cells.  相似文献   

12.
A Puri  S Grimaldi  R Blumenthal 《Biochemistry》1992,31(41):10108-10113
Fusion of vesicular stomatitis virus (VSV) with cells and liposomes before and after treatment with neuraminidase was studied using the R18 dequenching assay. Desialylation of VSV significantly enhanced the extent of fusion with Vero cells but affected neither the pH dependence nor the binding of VSV to Vero cells. The enhanced fusion of asialo-VSV was observed both at the plasma membrane as well as via the endocytic pathway. Both VSV and asialo-VSV fused with liposomes made of neutral phospholipid, but only asialo-VSV fused with liposomes containing a 1:1 mixture of neutral and negatively charged phospholipid. To examine factors which contribute to the extent of fusion, we analyzed the various activation and inactivation reactions that take place as a result of low-pH triggering of VSV prebound to the target membrane. Lag times for the onset of fusion were similar for VSV and asialo-VSV, indicating that desialylation did not affect the activation reactions. However, exposure of VSV bound to target membranes at pH 6.5 for 400 s led to considerable inactivation, whereas little inactivation was seen after desialylation of VSV. These results are analyzed in terms of a model which allows us to determine which components of the overall fusion process are dominated by viral envelope sialic acid.  相似文献   

13.
We are using fluorescent endogenous phospholipids in virus membranes to study the factors that promote fusion on interaction with receptor membranes. To this end, vesicular stomatitis virus (VSV) grown in baby hamster kidney (BHK-21) cells was biologically labeled with fluorescent lipids, primarily phosphatidylcholine and phosphatidylethanolamine, derived from pyrene fatty acids. The pyrene lipids present in the virions showed a fluorescence spectrum typical of pyrene with an intense monomer and a broad excimer. Interaction of pyrene lipid labeled VSV with serum lipoproteins led to a spontaneous fast transfer of the small amount of pyrene fatty acids present in the envelope (t1/2 less than or equal to 7 min), followed by a considerably slower transfer of pyrene phospholipids from the membrane of the virions (t1/2 greater than or equal to 12 h). Incubation of pyrene phospholipid labeled VSV with phosphatidylserine small unilamellar vesicles resulted in fusion at low pH (pH 5.0) as measured by the change in the excimer/monomer fluorescence intensity ratio. Fusion kinetics was rapid, reaching a plateau after 4 min at pH 5.0 and 37 degrees C. Only negligible fusion was noted at neutral pH or at 4 degrees C. Fully infectious virions labeled biologically with fluorescent lipids provide a useful tool for studying mechanisms of cell-virus interactions and neutralization of viral infectivity by specific monoclonal antibodies reactive with viral membrane glycoprotein.  相似文献   

14.
R W Doms  R Blumenthal    B Moss 《Journal of virology》1990,64(10):4884-4892
The membrane fusion activities of the isolated single-envelope intracellular form of vaccinia virus (INV) and the double-envelope extracellular (EEV) form were studied by using a lipid-mixing assay based on the dilution of a fluorescent probe. Fluorescently labeled INV and EEV from both the IHD-J and WR strains of vaccinia virus fused with HeLa cells at neutral pH, suggesting that fusion occurs with the plasma membrane during virus entry. EEV fused more efficiently and with faster kinetics than INV: approximately 50% of bound EEV particles fused over the course of 1 h, compared with only 25% of the INV particles. Fusion of INV and EEV was strongly temperature dependent, being decreased by 50% at 34 degrees C and by 90% at 28 degrees C. A monoclonal antibody to a 14-kilodalton envelope protein of INV that has been implicated in the fusion reaction (J. F. Rodriguez, E. Paez, and M. Esteban, J. Virol. 61:395-404, 1987) completely suppressed the initial rate of fusion of INV but had no effect on the fusion activity of EEV, suggesting that vaccinia virus encodes two or more membrane fusion proteins. Finally, cells infected with the WR strain of vaccinia virus formed syncytia when briefly incubated at pH 6.4 or below, indicating that an acid-activated viral fusion protein is expressed on the cell surface. However, WR INV and EEV did not display increased fusion activity at acid pH, suggesting that the acid-dependent fusion factor is not incorporated into virions or that its activity there is masked.  相似文献   

15.
We have introduced amino acid substitutions into two regions of the extracellular domain of the vesicular stomatitis virus (VSV) glycoprotein (G protein) and examined the effect of these mutations on protein transport, low-pH-induced stability of G protein oligomers, and membrane fusion activity. We suggested previously that the region between amino acids 118 and 139 may be important for the membrane fusion activity of G protein, on the basis of the characterization of a fusion-defective G protein mutant (M. A. Whitt, P. Zagouras, B. Crise, and J. K. Rose, J. Virol. 64:4907-4913, 1990). It has also been postulated by others that this region as well as the region between amino acids 181 and 212 may constitute putative internal fusion domains of VSV G protein. In this report, we show that three different amino acids substitutions between residues 118 and 139 (G-124-->E, P-127-->D, and A-133-->K) either altered or abolished low-pH-dependent membrane fusion activity. In contrast, substitutions between residues 192 and 212 resulted either in G proteins that had wild-type fusion activity or in mutant proteins in which the mutation prevented transport of G protein to the cell surface. Two of the substitutions between residues 118 and 139 (G-124-->E and P-127-->D) resulted in G proteins that were fusion defective at pH 5.7, although syncytia were observed after cells were treated with fusion buffer at pH 5.5, albeit at levels significantly less than that induced by wild-type G protein. Interestingly, when either G-124-->E or P-127-->D was incorporated into tsO45 virions, the resulting particles were not infectious, presumably because the viral envelope was not able to fuse with the proper intracellular membrane. These results support the hypothesis that the region between amino acids 118 and 139 is important for the membrane fusion activity of VSV G protein and may constitute an internal fusion domain.  相似文献   

16.
Madin-Darby canine kidney (MDCK) cells can sustain double infection with pairs of viruses of opposite budding polarity (simian virus 5 [SV5] and vesicular stomatitis virus [VSV] or influenza and VSV), and we observed that in such cells the envelope glycoproteins of the two viruses are synthesized simultaneously and assembled into virions at their characteristic sites. Influenza and SV5 budded exclusively from the apical plasma membrane of the cells, while VSV emerged only from the basolateral surfaces. Immunoelectron microscopic examination of doubly infected MDCK cells showed that the influenza hemagglutinin (HA) and the VSV G glycoproteins traverse the same Golgi apparatus and even the same Golgi cisternae. This indicates that the pathways of the two proteins towards the plasma membrane do not diverge before passage through the Golgi apparatus and therefore that critical sorting steps must take place during or after passage of the glycoproteins through this organelle. After its passage through the Golgi, the HA accumulated primarily at the apical membrane, where influenza virion assembly occurred. A small fraction of HA did, however, appear on the lateral surface and was incorporated into the envelope of budding VSV virions. Although predominantly found on the basolateral surface, significant amounts of G protein were observed on the apical plasma membrane well before disruption of the tight junctions was detectable. Nevertheless, assembly of VSV virions was restricted to the basolateral domain and in doubly infected cells the G protein was only infrequently incorporated into the envelope of budding influenza virions. These observations indicate that the site of VSV budding is not determined exclusively by the presence of G polypeptides. Therefore, it is likely that, at least for VSV, other cellular or viral components are responsible for the selection of the appropriate budding domain.  相似文献   

17.
The replication of vesicular stomatitis virus (VSV) is inhibited by tunicamycin (TM), an antibiotic that blocks the formation of N-acetylglucosaminelipid intermediates. We had shown previously that the viral glycoprotein (G) synthesized in cells treated with TM is not glycosylated and is not found on the outer surface of the cell plasma membrane. In this report, we shown that cells exposed to TM produce a low yield of infectious particles. The yield is increased when the temperature during infection is lowered from 37 to 30 degrees C. At 30 degrees C in the presence of TM, both wild-type VSV and the temperature-sensitive mutant ts045 produce particles that do not bind to concanavalin A Sepharose and contain only the nonglycosylated form of G. These particles have a specific infectivity (pfu/cpm) comparable to that of VSV containing glycosylated G.  相似文献   

18.
Enveloped virus particles carrying the human immunodeficiency virus (HIV) CD4 receptor may potentially be employed in a targeted antiviral approach. The mechanisms for efficient insertion and the requirements for the functionality of foreign glycoproteins within viral envelopes, however, have not been elucidated. Conditions for efficient insertion of foreign glycoproteins into the vesicular stomatitis virus (VSV) envelope were first established by inserting the wild-type envelope glycoprotein (G) of VSV expressed by a vaccinia virus recombinant. To determine whether the transmembrane and cytoplasmic portions of the VSV G protein were required for insertion of the HIV receptor, a chimeric CD4/G glycoprotein gene was constructed and a vaccinia virus recombinant which expresses the fused CD4/G gene was isolated. The chimeric CD4/G protein was functional as shown in a syncytium-forming assay in HeLa cells as demonstrated by coexpression with a vaccinia virus recombinant expressing the HIV envelope protein. The CD4/G protein was efficiently inserted into the envelope of VSV, and the virus particles retained their infectivity even after specific immunoprecipitation experiments with monoclonal anti-CD4 antibodies. Expression of the normal CD4 protein also led to insertion of the receptor into the envelope of VSV particles. The efficiency of CD4 insertion was similar to that of CD4/G, with approximately 60 molecules of CD4/G or CD4 per virus particle compared with 1,200 molecules of VSV G protein. Considering that (i) the amount of VSV G protein in the cell extract was fivefold higher than for either CD4 or CD4/G and (ii) VSV G protein is inserted as a trimer (CD4 is a monomer), the insertion of VSV G protein was not significantly preferred over CD4 or CD4/G, if at all. We conclude that the efficiency of CD4 or CD4/G insertion appears dependent on the concentration of the glycoprotein rather than on specific selection of these glycoproteins during viral assembly.  相似文献   

19.
O N Witte  D Baltimore 《Cell》1977,11(3):505-511
Pseudotypes of vesicular stomatitis virus (VSV) and Moloney murine leukemia virus (MuLV), defined by their resistance to neutralization by anti-VSV antiserum, are released preferentially at early times after infection of MuLV-producing cells with VSV. At later times, after synthesis of MuLV proteins has been inhibited by the VSV infection, neither MuLV virions nor the VSV (MuLV) pseudotypes are made. Infection of MuLV-producing cells with mutants of VSV having temperature-sensitive lesions in either G or M protein does not generate pseudotypes at nonpermissive temperature, indicating that both proteins are needed for pseudotypes to form. Although the pseudotypes resist neutralization by anti-VSV serum, they are inactivated by anti-VSV serum plus complement, and they can be precipitated by rabbit anti-VSV serum plus goat anti-rabbit IgG. These results, coupled with experiments using a temperature-sensitive mutant of VSV G protein grown at partly restrictive temperature, suggest that small numbers of VSV G protein are obligately incorporated into VSV(MuLV) pseudotypes. There appears to be a stringent requirement for recognition of the viral core by homologous envelope components as the nucleating step in the budding process. Only after such a nucleation can the envelope components of the second virus substitute into the membrane of the budding particle.  相似文献   

20.
Chandipura virus (CHAV), a member of the vesiculovirus genus, is an emerging human pathogen. As for other rhabdoviruses, CHAV entry into susceptible cells is mediated by its single envelope glycoprotein G which is both involved in receptor recognition and fusion of viral and cellular membranes. Here, we have characterized the fusion properties of CHAV-G. As for vesicular stomatitis virus (VSV, the prototype of the genus) G, fusion is triggered at low pH below 6.5. We have also analyzed the biochemical properties of a soluble form of CHAV-G ectodomain (CHAV-Gth, generated by thermolysin limited-proteolysis of recombinant VSV particles in which the G gene was replaced by that of CHAV). The overall behavior of CHAV-Gth is similar to that previously reported for VSV-Gth. Particularly, CHAV-Gth pre-fusion trimer is not stable in solution and low-pH-induced membrane association of CHAV-Gth is reversible. Furthermore, CHAV-Gth was crystallized in its low pH post-fusion conformation and its structure was determined at 3.6Å resolution. An overall comparison of this structure with the previously reported VSV-Gth post-fusion conformation, shows a high structural similarity as expected from the comparison of primary structure. Among the three domains of G, the pleckstrin homology domain (PHD) appears to be the most divergent and the largest differences are confined to the secondary structure of the major antigenic site of rhabdoviruses. Finally, local differences indicate that CHAV has evolved alternate structural solutions in hinge regions between PH and fusion domains but also distinct pH sensitive switches. Globally the comparison between the post fusion conformation of CHAV and VSV-G highlights several features essential for the protein’s function. It also reveals the remarkable plasticity of G in terms of local structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号