首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kajikawa Y  Schroeder CE 《Neuron》2011,72(5):847-858
Local field potentials (LFPs) are of growing importance in neurophysiological investigations. LFPs supplement action potential recordings by indexing activity relevant to EEG, magnetoencephalographic, and hemodynamic (fMRI) signals. Recent reports suggest that LFPs reflect activity within very small domains of several hundred micrometers. We examined this conclusion by comparing LFP, current source density (CSD), and multiunit activity (MUA) signals in macaque auditory cortex. Estimated by frequency tuning bandwidths, these signals' "listening areas" differ systematically with an order of MUA?< CSD?< LFP. Computational analyses confirm that observed LFPs receive local contributions. Direct measurements indicate passive spread of LFPs to sites more than a centimeter from their origins. These findings appear to be independent of the frequency content of the LFP. Our results challenge the idea that LFP recordings typically integrate over extremely circumscribed local domains. Rather, LFPs appear as a mixture of local potentials with "volume conducted" potentials from distant sites.  相似文献   

2.
3.
4.
Chimeric restriction enzymes: what is next?   总被引:8,自引:0,他引:8  
Chimeric restriction enzymes are a novel class of engineered nucleases in which the non-specific DNA cleavage domain of Fokl (a type IIS restriction endonuclease) is fused to other DNA-binding motifs. The latter include the three common eukaryotic DNA-binding motifs, namely the helix-turn-helix motif, the zinc finger motif and the basic helix-loop-helix protein containing a leucine zipper motif. Such chimeric nucleases have been shown to make specific cuts in vitro very close to the expected recognition sequences. The most important chimeric nucleases are those based on zinc finger DNA-binding proteins because of their modular structure. Recently, one such chimeric nuclease, Zif-QQR-F(N) was shown to find and cleave its target in vivo. This was tested by microinjection of DNA substrates and the enzyme into frog oocytes (Carroll et al., 1999). The injected enzyme made site-specific double-strand breaks in the targets even after assembly of the DNA into chromatin. In addition, this cleavage activated the target molecules for efficient homologous recombination. Since the recognition specificity of zinc fingers can be manipulated experimentally, chimeric nucleases could be engineered so as to target a specific site within a genome. The availability of such engineered chimeric restriction enzymes should make it feasible to do genome engineering, also commonly referred to as gene therapy.  相似文献   

5.
The work reported here is the beginning of an attempt to determine whether data on skeletal aging changes derived from the Terry collection (Smithsonian Institution) can safely be applied to present-day clinical and forensic problems. Measurements made on radiographs of the proximal third of the right femur below the greater trochanter were compared in three groups of American white females: Terry collection “regulars,” Terry collection willed, and GW (George Washington University Medical Center) willed. Mean birth year for the Terry regulars was 1883, whereas the mean birth year for Terry and GW willed was 1910. Terry willed femora are longer than those of Terry regulars, but not more robust. The two groups show opposing secular trends in femoral length, and in this respect the Terry regulars appear closer to the general U.S. population. In two indices of relative medullary cavity size (which reflect changes in cortical thickness as well as internal and external diameters) all three groups agree in showing age-related increase of medullary diameters, greater increase in the anterior–posterior dimension, and greatest amount of increase at diaphyseal levels. The major difference between groups is in timing, with medullary cavity expansion becoming evident at least a decade earlier and leading to greater eventual loss of cortical thickness in the willed groups.  相似文献   

6.
Skeletal muscle hypertrophy and increases in muscular function have been observed following low intensity/load exercise with blood flow restriction (BFR). The mechanisms behind these effects are largely unknown, but have been hypothesized to include a metabolic accumulation induced increase in muscle activation, elevations in growth hormone, and improvements in muscle protein balance. However, many of the aforementioned mechanisms are not present with BFR in the absence of exercise. In these situations, signaling through the β2 adrenoceptor has been hypothesized to possibly contribute to the positive muscle adaptions, possibly in concert with muscle cell swelling. Signaling through the β2 adrenoceptor has been shown to stimulate both muscle protein synthesis and an inhibition of protein degradation through increasing cyclic adenosine monophosphate (cAMP) or signaling via the Gβγ subunit, especially in situations where the basal rates of protein synthesis are already reduced. Every study that has investigated the catecholamine response to BFR in the absence of exercise or in combination with exercise has shown a significant increase above resting conditions. However, from the available evidence, it is unlikely that the norepinephrine response from BFR, particularly with exercise, is playing a prominent role with muscle adaptation in skeletal muscle that is not immobilized by a cast or joint injury.  相似文献   

7.
8.
The analysis of variation in DNA restriction maps and DNA sequence in natural populations of Drosophila melanogaster and related species has revealed a remarkable richness of diversity. This review describes some of the results of population genetic studies of this variation that are beginning to reveal how interactions between natural selection, genetic drift, mutation rate, recombination rate and population size have contributed to the observed patterns.  相似文献   

9.
The carbon dioxide concentrating system in C4 photosynthesis allows high net photosynthetic rates (P N) at low internal carbon dioxide concentrations (C i), permitting higher P N relative to stomatal conductance (g s) than in C3 plants. This relation would be reflected in the ratio of C i to external ambient (C a) carbon dioxide concentration, which is often given as 0.3 or 0.4 for C4 plants. For a C a of 360 μmol mol−1 that would mean a C i about 110–140 μmol mol−1. Our field observations made near midday on three weedy C4 species, Amaranthus retroflexus, Echinochloa crus-galli, and Setaria faberi, and the C4 crop Sorghum bicolor indicated mean values of C i of 183–212 μ mol mol−1 at C a = 360 μmol mol−1. Measurements in two other C4 crop species grown with three levels of N fertilizer indicated that while midday values of C i at high photon flux were higher at limiting N, even at high nitrogen C i averaged 212 and 196 μmol mol−1 for Amaranthus hypochondriacus and Zea mays, respectively. In these two crops midday C i decreased with increasing leaf to air water vapor pressure difference. Averaged over all measurement days, the mean C i across all C4 species was 198 μmol mol−1, for a C i/C a ratio of 0.55. Prior measurements on four herbaceous C3 species using the same instrument indicated an average C i/C a ratio of 0.69. Hence midday C i values in C 4 species under field conditions may often be considerably higher and more similar to those of C3 species than expected from measurements made on plants in controlled environments. Reducing g s in C4 crops at low water vapor pressure differences could potentially improve their water use efficiency without decreasing P N.  相似文献   

10.
An experimental test constraining the intrinsic time scale of a primary physical mechanism that detects extremely-low-frequency (ELF) magnetic fields in biological systems is proposed. The suggested test postulates that a transductive mechanism operating on time scales much shorter than the period of an applied magnetic field cannot obtain any information about the exposure conditions other than the absolute magnitude of the field. By generating field exposures that differ in their vector properties but are equivalent in their time-varying absolute amplitude, it is possible to differentiate between two broad classes of mechanisms: 1) those with intrinsic time scales comparable with or longer than those of the external influence, and 2) those that are much faster than the period of the applied field. The hypothesis assumes an experimental model proven to respond to magnetic fields and sensitive to a change of about a factor of two in one of the field parameters (AC, DC amplitude or frequency). The case of general linearly polarized fields is discussed, and an analytical solution for the case of perpendicular AC/DC fields is given. Bioelectromagnetics 18:244–249, 1997 © 1997 Wiley-Liss, Inc.  相似文献   

11.
Summary Chloroplast DNA from 44 lines of 16 wild and 7 cultivatedSolanum species were compared by restriction endonuclease analysis. Seven chloroplast genome types were identified among them by 5 restriction enzymes: Type A (S. tuberosum ssp.andigena andS. maglia); Type S (S. goniocalyx, S. phureja, S. stenotomum, S. ×chaucha and a line of ssp.andigena); Type C (S. acaule, S. bukasovii, S. canasense, S. multidissectum andS. ×juzepczukii); Type T (S. tuberosum ssp.tuberosum); Type W (other wild species); Type W (S. chacoense f.gibberulosum) and Type W (S. tarijense). From this cytoplasmic identification, it was concluded thatS. goniocalyx, S. phureja, S. ×chaucha and ssp.andigena were derived fromS. stenotomum or its primitive type, which may have originally evolved itself fromS. canasense. The chloroplast genome of the European potato, however, was introduced from the Chilean potato, which might have been primarily constructed with the nuclear genome from ssp.andigena and with cytoplasm from other species. The cytoplasmic donor of the Chilean potato could not be determined.Contribution from the Laboratory of Genetics, Faculty of Agriculture, Kyoto University, Japan, No. 479. This work was done at Kyoto University when the author was a graduate student at Kobe University  相似文献   

12.
Primary cilium—is it an osteocyte's strain‐sensing flowmeter?   总被引:2,自引:0,他引:2  
With few exceptions, the non-cycling cells in a vast range of animals including humans have a non-motile primary cilium that extends from the mother centriole of the pair of centrioles in their centrosomes located between their Golgi apparatuses and nuclei. It has very recently been shown that the primary cilium of a dog or a mouse embryonic kidney cell is a fluid flowmeter studded with heterodimeric complexes of mechanoreceptors linked to Ca(2+)-permeable cation channels that when the cilium is bent can send Ca(2+) signals into the cell and beyond to neighboring cells through gap junctions. More than 30 years ago, osteocytes were reported also to have primary cilia, but this was promptly ignored or forgotten. Osteocytes are the bones' strain sensors, which measure skeletal activity from the effects of currents of extracellular fluid caused by their bones being bent and squeezed during various activities such as walking and running. Since bending a kidney cell's primary cilium can send a Ca(2+) wave surging through itself and its neighbors, the bending of an osteocyte's primary cilium by sloshing extracellular fluid is likely to do the same thing and thus be involved in measuring and responding to bone strain.  相似文献   

13.
The kinetochore is a large protein complex that ensures accurate chromosome segregation during mitosis by connecting the centromere and spindle microtubules. One of the kinetochore sub-complexes, the constitutive centromere-associated network (CCAN), associates with the centromere and recruits another sub-complex, the KMN (KNL1, Mis12, and Ndc80 complexes) network (KMN), which binds to spindle microtubules. The CCAN-KMN interaction is mediated by two parallel pathways (CENP-C- and CENP-T-pathways) in the kinetochore, which bridge the centromere and microtubules. Here, we discuss dynamic protein-interaction changes in the two pathways that couple the centromere with spindle microtubules during mitotic progression.  相似文献   

14.
Nölting B  Agard DA 《Proteins》2008,73(3):754-764
We investigate the structures of the major folding transition states of nine proteins by correlation of published Phi-values with inter-residue contact maps. Combined with previous studies on six proteins, the analysis suggests that at least 10 of the 15 small globular proteins fold via a nucleation-condensation mechanism with a concurrent build-up of secondary and tertiary structure contacts, but a structural consolidation that is clearly nonuniformly distributed over the molecule and most intense in a single structural region suggesting the occurrence of a single folding nucleus. However, on average helix- and sheet-forming residues show somewhat larger Phi-values in the major transition state, suggesting that secondary structure formation is one important driving force in the nucleation-condensation in many proteins and that secondary-structure forming residues tend to be more prominent in folding nuclei. We synthesize the combined information on these 10 of 15 proteins into a unified nucleation-condensation mechanism which also accounts for effects described by the framework, hydrophobic collapse, zipper, and funnel models.  相似文献   

15.
Wenseleers T 《Molecular ecology》2007,16(15):3063-3065
Inclusive fitness theory, put forward by English biologist William Hamilton in 1964, is considered by many as the most important addition to the theory of natural selection since Darwin. One prediction of the theory is that animals should often show a tendency to nepotistically favour close relatives. Goodisman et al. (2007 ) test this theory for the first time using molecular methods in a vespine wasp, the eastern yellowjacket, Vespula maculifrons. Somewhat surprisingly, nepotism was found to be absent. This begs the question why nepotism is predicted by theory, yet in a growing list of species is shown to be absent. Is inclusive fitness theory in trouble? As we show, it is not: costs and constraints explain the general absence of queen rearing nepotism, and nepotism in insect societies in fact is well supported in the context of male rearing and manipulation of colony sex ratios.  相似文献   

16.
During two seasons, ABA concentrations were monitored in roots, leaves and xylem sap of field-grown maize. The water status of soil and plant was also measured. Plants were grown on plots with compacted or non-compacted soil, which were irrigated or remained unwatered. ABA concentration in the xylem sap before dawn and in the roots increases 25-fold and five-fold, respectively, as the soil dried, with a close correlation with the soil water status, but with no clear effect of the soil structure. In contrast to the results of several laboratory experiments, no appreciable increase in xylem [ABA] and reduction in stomatal conductance were observed with dehydration of the part of the root system located in soil upper layers. These responses only occurred when the water reserve of the whole soil profile was close to depletion and the transpiration declined. Xylem [ABA] measured during the day was appreciably higher in the compacted treatment than in non-compacted treatment, unlike that measured before dawn. Since a mechanical message is unlikely to undergo such day-night alterations, we suggest that this was due to a faster decrease in root water potential and water flux in the compacted treatment, linked to the root spatial arrangement. These results raise the possibility that ABA concentration in the xylem sap could be controlled by two coexisting mechanisms: (1) the rate of ABA synthesis in the roots linked to the soil or root water status, as shown in laboratory experiments; (2) the dilution of ABA in the water flow from roots, which could be an overriding mechanism in field conditions. This second mechanism would allow the plant to sense the water flux through the root system.  相似文献   

17.
18.
A simple quantitative genetic model is proposed to explain the observed genetic correlation structure of a bruchid beetleCallosobruchus chinensis in terms of two underlying variables: the resource acquisition and the resource allocation. Heritabilities and genetic correlations among age-specific, fecundities are regarded as consequences of genetic variations of the two variables. Genetic correlations are predominantly positive in both predictions and observations. Nonetheless, comparison between observed and predicted values in heritabilities, genetic correlations, and genetic principal components suggested significant genetic variances both of the resource allocation and the resource acquisition. The prediction of the model is discussed in relation, to experimental tests of trade-off in life history evolution.  相似文献   

19.
The concept of an optimum yield at intermediate levels of fishing (the so called maximum sustainable yield or MSY) has been with us since the 1930s and is now enshrined in legislation as a key objective of fisheries management. The concept seems intuitively reasonable and is readily applicable to a single stock treated in isolation and assuming a constant environment. However, translating this concept into a mixed and multispecies fishery, where there are complex trade-offs between fleets and stocks and in general no simple optimum solution, has been problematic. Here I introduce a framework for thinking about multispecies MSY in terms of an integrated risk of stock depletion and expected long-term yield. Within this framework I consider the performance of a set of simple harvest control rules based upon a single-limit fishing mortality rate (F) which is common to all stocks and a target biomass which is a set fraction of a stock's virgin biomass. Using a multispecies management strategy evaluation, I compare expected outcomes for a set of these harvest control rules with alternative scenarios, in which each stock has its own F based on the assessment process. I find that the simple framework can produce outcomes that are similar to those from the more sophisticated estimates of F. I therefore conclude that achieving multispecies MSY may depend more upon setting reasonable biomass targets and faithfully applying a harvest control rule approach rather than determining the best possible Fs for each stock.  相似文献   

20.
The economic and environmental viability of dedicated terrestrial energy crops is in doubt. The production of large scale biomass (macroalgae) for biofuels in the marine environment was first tested in the late 1960’s. The culture attempts failed due to the engineering challenges of farming offshore. However the energy conversion via anaerobic digestion was successful as the biochemical composition of macroalgae makes it an ideal feedstock. The technology for the mass production of macroalgae has developed principally in China and Asia over the last 50 years to such a degree that it is now the single largest product of aquaculture. There has also been significant technology transfer and macroalgal cultivation is now well tried and tested in Europe and America. The inherent advantage of production of biofuel feedstock in the marine environment is that it does not compete with food production for land or fresh water. Here we revisit the idea of the large scale cultivation of macroalgae at sea for subsequent anaerobic digestion to produce biogas as a source of renewable energy, using a European case study as an example.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号