首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 693 毫秒
1.
The vast majority of oxygenic photosynthetic organisms use monovinyl chlorophyll for their photosynthetic reactions. For the biosynthesis of this type of chlorophyll, the reduction of the 8-vinyl group that is located on the B-ring of the macrocycle is essential. Previously, we identified the gene encoding 8-vinyl reductase responsible for this reaction in higher plants and termed it DVR. Among the sequenced genomes of cyanobacteria, only several Synechococcus species contain DVR homologues. Therefore, it has been hypothesized that many other cyanobacteria producing monovinyl chlorophyll should contain a vinyl reductase that is unrelated to the higher plant DVR. To identify the cyanobacterial gene that is responsible for monovinyl chlorophyll synthesis, we developed a bioinformatics tool, correlation coefficient calculation tool, which calculates the correlation coefficient between the distributions of a certain phenotype and genes among a group of organisms. The program indicated that the distribution of a gene encoding a putative dehydrogenase protein is best correlated with the distribution of the DVR-less cyanobacteria. We subsequently knocked out the corresponding gene (Slr1923) in Synechocystis sp. PCC6803 and characterized the mutant. The knock-out mutant lost its ability to synthesize monovinyl chlorophyll and accumulated 3,8-divinyl chlorophyll instead. We concluded that Slr1923 encodes the vinyl reductase or a subunit essential for monovinyl chlorophyll synthesis. The function and evolution of 8-vinyl reductase genes are discussed.  相似文献   

2.
R Parham  C A Rebeiz 《Biochemistry》1992,31(36):8460-8464
Some properties of [4-vinyl] chlorophyllide a reductase are described. This enzyme converts divinyl chlorophyllide a to monovinyl chlorophyllide a. The latter is the immediate precursor of monovinyl chlorophyll a, the main chlorophyll in green plants. [4-Vinyl] chlorophyllide a reductase plays an important role in daylight during the conversion of divinyl protochlorophyllide a to monovinyl chlorophyll a. [4-Vinyl] chlorophyllide a reductase was detected in isolated plastid membranes. Its activity is strictly dependent on the availability of NADPH. Other reductants such as NADH and GSH were ineffective. The enzyme appears to be specific for divinyl chlorophyllide a, and it does not reduce divinyl protochlorophyllide a to monovinyl protochlorophyllide a. The conversion of divinyl protochlorophyllide a to monovinyl protochlorophyllide a has been demonstrated in barley and cucumber etiochloroplasts and appears to be catalyzed by a [4-vinyl] protochlorophyllide a reductase [Tripathy, B.C., & Rebeiz, C.A. (1988) Plant Physiol. 87, 89-94]. On the basis of reductant requirements and substrate specificity, it is possible that two different 4-vinyl reductases may be involved in the reduction of divinyl protochlorophyllide a and divinyl chlorophyllide a to their respective 4-ethyl analogues.  相似文献   

3.
Chl b is a major photosynthetic pigment of peripheral antenna complexes in chlorophytes and prochlorophytes. Chl b is synthesized by chlorophyllide a oxygenase (CAO), an enzyme that has been identified from higher plants, moss, green algae and two groups of prochlorophytes, Prochlorothrix and Prochloron. Based on these results, we previously proposed the hypothesis that all of the Chl b synthesis genes have a common origin. However, the CAO gene is not found in whole genome sequences of Prochlorococcus although a gene which is distantly related to CAO was reported. If Prochlorococcus employs a different enzyme, a Chl synthesis gene should have evolved several times on the different phylogenetic lineages of Prochlorococcus and other Chl b-containing organisms. To examine these hypotheses, we identified a Prochlorococcus Chl b synthesis gene by using a combination of bioinformatics and molecular genetics techniques. We first identified Prochlorococcus-specific genes by comparing the whole genome sequences of Prochlorococcus marinus MED4, MIT9313 and SS120 with Synechococcus sp. WH8102. Synechococcus is closely related to Prochlorococcus phylogenetically, but it does not contain a Chl b synthesis gene. By examining the sequences of Prochlorococcus-specific genes, we found a candidate for the Chl b synthesis gene and introduced it into Synechocystis sp. PCC6803. The transformant cells accumulated Chl b, indicating that the gene product catalyzes Chl b synthesis. In this study, we discuss the evolution of CAO based upon the molecular phylogenetic studies we performed.  相似文献   

4.
We characterized the pcb2 (pale-green and chlorophyll b reduced 2) mutant. We found through electron microscopic observation that chloroplasts of pcb2 mesophyll cells lacked distinctive grana stacks. High-performance liquid chromatography (HPLC) analysis showed that the pcb2 mutant accumulated divinyl chlorophylls, and the relative amount of divinyl chlorophyll b was remarkably less than that of divinyl chlorophyll a. The responsible gene was mapped in an area of 190 kb length at the upper arm of the 5th chromosome, and comparison of DNA sequences revealed a single nucleotide substitution causing a nonsense mutation in At5g18660. Complementation analysis confirmed that the wild-type of this gene suppressed the phenotypes of the mutation. Antisense transformants of the gene also accumulated divinyl chlorophylls. The genes homologous to At5g18660 are conserved in a broad range of species in the plant kingdom, and have similarity to reductases. Our results suggest that the PCB2 product is divinyl protochlorophyllide 8-vinyl reductase.  相似文献   

5.
The interconversion of chlorophyll a and chlorophyll b, referred to as the chlorophyll cycle, plays a crucial role in the processes of greening, acclimation to light intensity, and senescence. The chlorophyll cycle consists of three reactions: the conversions of chlorophyll a to chlorophyll b by chlorophyllide a oxygenase, chlorophyll b to 7-hydroxymethyl chlorophyll a by chlorophyll b reductase, and 7-hydroxymethyl chlorophyll a to chlorophyll a by 7-hydroxymethyl chlorophyll a reductase. We identified 7-hydroxymethyl chlorophyll a reductase, which is the last remaining unidentified enzyme of the chlorophyll cycle, from Arabidopsis thaliana by genetic and biochemical methods. Recombinant 7-hydroxymethyl chlorophyll a reductase converted 7-hydroxymethyl chlorophyll a to chlorophyll a using ferredoxin. Both sequence and biochemical analyses showed that 7-hydroxymethyl chlorophyll a reductase contains flavin adenine dinucleotide and an iron-sulfur center. In addition, a phylogenetic analysis elucidated the evolution of 7-hydroxymethyl chlorophyll a reductase from divinyl chlorophyllide vinyl reductase. A mutant lacking 7-hydroxymethyl chlorophyll a reductase was found to accumulate 7-hydroxymethyl chlorophyll a and pheophorbide a. Furthermore, this accumulation of pheophorbide a in the mutant was rescued by the inactivation of the chlorophyll b reductase gene. The downregulation of pheophorbide a oxygenase activity is discussed in relation to 7-hydroxymethyl chlorophyll a accumulation.  相似文献   

6.
A marine cyanobacterium, Prochlorococcus, is a unique oxygenic photosynthetic organism, which accumulates divinyl chlorophylls instead of the monovinyl chlorophylls. To investigate the molecular environment of pigments after pigment replacement but before optimization of the protein moiety in photosynthetic organisms, we compared the fluorescence properties of the divinyl Chl a-containing cyanobacteria, Prochlorococcus marinus (CCMP 1986, CCMP 2773 and CCMP 1375), by a Synechocystis sp. PCC 6803 (Synechocystis) mutant in which monovinyl Chl a was replaced with divinyl Chl a. P. marinus showed a single fluorescence band for photosystem (PS) II at 687nm at 77K; this was accompanied with change in pigment, because the Synechocystis mutant showed the identical shift. No fluorescence bands corresponding to the PS II 696-nm component and PS I longer-wavelength component were detected in P. marinus, although the presence of the former was suggested using time-resolved fluorescence spectra. Delayed fluorescence (DF) was detected at approximately 688nm with a lifetime of approximately 29ns. In striking contrast, the Synechocystis mutant showed three fluorescence bands at 687, 696, and 727nm, but suppressed DF. These differences in fluorescence behaviors might not only reflect differences in the molecular structure of pigments but also differences in molecular environments of pigments, including pigment-pigment and/or pigment-protein interactions, in the antenna and electron transfer systems.  相似文献   

7.
The marine cyanobacterium Prochlorococcus marinus accumulates divinyl chlorophylls instead of monovinyl chlorophylls to harvest light energy. As well as this difference in its chromophore composition, some amino acid residues in its photosystem II D1 protein were different from the conserved amino acid residues in other photosynthetic organisms. We examined PSII complexes isolated from mutants of Synechocystis sp. PCC 6803, in which chromophore and D1 protein were altered (Hisashi Ito and Ayumi Tanaka, 2011) to clarify the effects of chromophores/D1 protein composition on the excitation energy distribution. We prepared the mutants accumulating divinyl chlorophyll (DV mutant). The amino acid residues of V205 and G282 in the D1 protein were substituted with M205 and C282 in the DV mutant to mimic Prochlorococcus D1 protein (DV-V205M/G282C mutant). Isolated PSII complexes were analyzed by time-resolved fluorescence spectroscopy. Energy transfer in CP47 was interrupted in PSII containing divinyl chlorophylls. The V205M/G282C mutation did not recover the energy transfer pathway in CP47, instead, the mutation allowed the excitation energy transfer from CP43 to CP47, which neighbors in the PSII dimer. Mutual orientation of the subcomplexes of PSII might be affected by the substitution. The changes of the energy transfer pathways would reduce energy transfer from antennae to the PSII reaction center, and allow Prochlorococcus to acquire light tolerance.  相似文献   

8.
The green sulfur bacterium Chlorobium tepidum synthesizes three types of (bacterio)chlorophyll ((B)Chl): BChl a(P), Chl a(PD), and BChl c(F). During the synthesis of all three molecules, a C-8 vinyl substituent is reduced to an ethyl group, and in the case of BChl c(F), the C-8(2) carbon of this ethyl group is subsequently methylated once or twice by the radical S-adenosylmethionine enzyme BchQ. The C. tepidum genome contains homologs of two genes, bchJ (CT2014) and CT1063, that are highly homologous to genes, bchJ and AT5G18660, and that have been reported to encode C-8 vinyl reductases in Rhodobacter capsulatus and Arabidopsis thaliana, respectively. To determine which gene product actually encodes a C-8 vinyl reductase activity, the bchJ and CT1063 genes were insertionally inactivated in C. tepidum. All three Chls synthesized by the CT1063 mutant of C. tepidum have a C-8 vinyl group. Using NADPH but not NADH as reductant, recombinant BciA reduces the C-8 vinyl group of 3,8-divinyl-protochlorophyllide in vitro. These data demonstrate that CT1063, renamed bciA, encodes a C-8 divinyl reductase in C. tepidum. The bchJ mutant produces detectable amounts of Chl a(PD), BChl a(P), and BChl c(F), all of which have reduced C-8 substituents, but the mutant cells secrete large amounts of 3,8-divinyl-protochlorophyllide a into the growth medium and have a greatly reduced BChl c(F) content. The results suggest that BchJ may play an important role in substrate channeling and/or regulation of Chl biosynthesis but show that it is not a vinyl reductase. Because only some Chl-synthesizing organisms possess homologs of bciA, at least two types of C-8 vinyl reductases must occur.  相似文献   

9.
3,8-Divinyl (proto)chlorophyll(ide) a 8-vinyl reductase (DVR) catalyzes the reduction of 8-vinyl group on the tetrapyrrole to an ethyl group, which is indispensable for monovinyl chlorophyll (Chl) synthesis. So far, three 8-vinyl reductase genes (DVR, bciA, and slr1923) have been characterized from Arabidopsis (Arabidopsis thaliana), Chlorobium tepidum, and Synechocystis sp. PCC6803. However, no 8-vinyl reductase gene has yet been identified in monocotyledonous plants. In this study, we isolated a spontaneous mutant, 824ys, in rice (Oryza sativa). The mutant exhibited a yellow-green leaf phenotype, reduced Chl level, arrested chloroplast development, and retarded growth rate. The phenotype of the 824ys mutant was caused by a recessive mutation in a nuclear gene on the short arm of rice chromosome 3. Map-based cloning of this mutant resulted in the identification of a gene (Os03g22780) showing sequence similarity with the Arabidopsis DVR gene (AT5G18660). In the 824ys mutant, nine nucleotides were deleted at residues 952 to 960 in the open reading frame, resulting in a deletion of three amino acid residues in the encoded product. High-performance liquid chromatography analysis of Chls indicated the mutant accumulates only divinyl Chl a and b. A recombinant protein encoded by Os03g22780 was expressed in Escherichia coli and found to catalyze the conversion of divinyl chlorophyll(ide) a to monovinyl chlorophyll(ide) a. Therefore, it has been confirmed that Os03g22780, renamed as OsDVR, encodes a functional DVR in rice. Based upon these results, we succeeded to identify an 8-vinyl reductase gene in monocotyledonous plants and, more importantly, confirmed the DVR activity to convert divinyl Chl a to monovinyl Chl a.Chlorophyll (Chl) is the main component of the photosynthetic pigments. Chl molecules universally exist in photosynthetic organisms and perform essential processes of harvesting light energy in the antenna systems and by driving electron transfer in the reaction centers (Fromme et al., 2003). In higher plants, there are two Chl species, Chl a and Chl b. The photosynthetic reaction centers contain only Chl a, and the peripheral light-harvesting antenna complexes contain Chl a and Chl b (Grossman et al., 1995). Chl a is synthesized from glutamyl-tRNA, and Chl b is synthesized from Chl a at the last step of Chl biosynthesis (Beale, 1999). So far, genes for all 15 steps in the Chl biosynthetic pathway have been identified in higher plants, at least in angiosperms represented by Arabidopsis (Arabidopsis thaliana; Beale, 2005; Nagata et al., 2005). Analysis of the complete genome of Arabidopsis showed that it has 15 enzymes encoded by 27 genes for Chl biosynthesis from glutamyl-tRNA to Chl b (Nagata et al., 2005). However, only six genes encoding three enzymes involved in Chl biosynthesis have been identified in rice (Oryza sativa). Magnesium chelatase comprises three subunits (ChlH, ChlD, and ChlI) and catalyzes the insertion of Mg2+ into protoporphyrin IX, the last common intermediate precursor in both Chl and heme biosyntheses. Jung et al. (2003) characterized OsCHLH gene for the OsChlH subunit of magnesium chelatase, and Zhang et al. (2006) cloned Chl1 and Chl9 genes encoding the OsChlD and OsChlI subunits of magnesium chelatase. Chl synthase catalyzes esterification of chlorophyllide (Chlide), resulting in the formation of Chl a. Wu et al. (2007) identified the YGL1 gene encoding the Chl synthase. Chl b is synthesized from Chl a by Chl a oxygenase; Lee et al. (2005) identified OsCAO1 and OsCAO2 genes for Chl a oxygenase.According to the number of vinyl side chains, Chls of oxygenic photosynthetic organisms are classified into two groups: 3,8-divinyl Chl (DV-Chl) and 3-vinyl Chl (monovinyl Chl [MV-Chl]). Almost all of the oxygenic photosynthetic organisms contain MV-Chls, regardless of the variation in their indigenous environments (Porra, 1997). The exceptions are species of Prochlorococcus marinus, marine picophytoplanktons that contain DV-Chls as their photosynthetic pigments (Chisholm et al., 1992).Chl biosynthetic heterogeneity is assumed to originate mainly in parallel DV- and MV-Chl biosynthetic routes interconnected by 8-vinyl reductases that convert DV-tetrapyrroles to MV-tetrapyrroles by conversion of the vinyl group at position 8 of ring B to the ethyl group (Parham and Rebeiz, 1995; Rebeiz et al., 2003). Most of Chls carry an ethyl group or, less frequently, a vinyl group. For example, Chl a and b occur as the MV-derivatives in green plants, but Chl precursors sometimes accumulate as DV-intermediates, and the ratio between the two forms can vary depending on the species, tissue, and growth conditions (Shioi and Takamiya, 1992; Kim and Rebeiz, 1996). So far, five 8-vinyl reductase activities have been detected at the levels of DV Mg-protoporphyrin IX (Kim and Rebeiz, 1996), Mg-protomonomethyl ester (Kolossov et al., 2006), protochlorophyllide (Pchlide) a (Tripathy and Rebeiz, 1988), Chlide a (Kolossov and Rebeiz, 2001; Nagata et al., 2005), and Chl a (Adra and Rebeiz, 1998). What is not clear at this stage is whether the various 8-vinyl reductase activities are catalyzed by one enzyme of broad specificity or by a family of enzymes of narrow specificity encoded by one gene or multiple genes, as is the case for NADPH Pchlide oxidoreductases (Rebeiz et al., 2003). The issue could be settled by purification of the various putative reductases and comparison of their properties.Nagata et al. (2005) and Nakanishi et al. (2005) independently identified the AT5G18660 gene of Arabidopsis as a divinyl reductase (DVR) that has sequence similarity to isoflavone reductase. Chew and Bryant (2007) demonstrated that BciA (CT1063), which is an ortholog of the Arabidopsis gene, encodes a DVR of the green sulfur bacterium Chlorobium tepidum TLS. They also considered that BchJ, which had been reported to be a vinyl reductase (Suzuki and Bauer, 1995), is not the enzyme, but it may play an important role in substrate channeling and/or regulation of bacteriochlorophyll biosynthesis. Islam et al. (2008) and Ito et al. (2008) independently identified a novel 8-vinyl reductase gene (Slr1923) in DVR-less cyanobacterium Synechocystis sp. PCC6803. However, no DVR gene has yet been identified in monocotyledonous plants.In this study, we isolated a spontaneous mutant, 824ys, from indica rice cv 824B. The mutant exhibited a yellow-green leaf phenotype throughout the growth stage, reduced level of Chls, arrested development of chloroplasts, and retarded growth rate. Map-based cloning of the mutant resulted in the identification of the OsDVR gene, showing sequence similarity to the DVR gene of Arabidopsis. In the 824ys mutant, nine nucleotides were deleted at residues 952 to 960 in the open reading frame (ORF), resulting in three amino acid deletion in the encoded protein. HPLC analysis of Chls indicated the mutant accumulates only DV-Chls. Enzymatic analysis demonstrated that the recombinant protein expressed in Escherichia coli is able to catalyze the conversion of DV-Chl(ide) a to MV-Chl(ide) a. Therefore, this study has confirmed that the OsDVR gene encodes a functional DVR in rice.  相似文献   

10.
[4-Vinyl] chlorophyllide a reductase (4VCR) is a key enzyme of the chlorophyll (Chl) biosynthetic pathway. It catalyzes the conversion of divinyl chlorophyllide (Chlide) a to monovinyl Chlide a by reduction of the vinyl group at position 4 of the macrocycle to ethyl. 4VCR is a membrane-bound enzyme, embedded in etioplast and etiochloroplast membranes. A study of the regulation and properties of this enzyme is mandatory for a comprehensive understanding of the biosynthetic heterogeneity of Chl biosynthesis. Solubilization and partial purification of 4VCR are described for the first time. The enzyme was solubilized with 5 mM Chaps and was partially purified by chromatography on DEAE-Sephacel and Cibacron Blue 3GA-1000 agarose. An overall 20-fold purification was achieved. The partially purified enzyme was stable for several months at -80 degrees C.  相似文献   

11.
In most reviews on Chl biosynthesis, Chl is described as being synthesized via the route involving the reduction of [3,8-divinyl]-protochlorophyllide a. However, the possibility remains that the conversion of the divinyl form of the Chl intermediate to its monovinyl form takes place at other enzymatic steps. To determine the actual route of Chl biosynthesis, we examined the substrate specificity of the formerly named [3,8-divinyl]-protochlorophyllide a 8-vinyl reductase (DVR) in vitro. In addition, we investigated the accumulation of various Chl intermediates in etiolated seedlings in vivo. Collectively, these studies indicate that [3,8-divinyl]-chlorophyllide a is the major substrate of DVR.  相似文献   

12.
Bacteriochlorophyll a is widely distributed among anoxygenic photosynthetic bacteria. In bacteriochlorophyll a biosynthesis, the reduction of the C8 vinyl group in 8-vinyl-chlorophyllide a is catalyzed to produce chlorophyllide a by an 8-vinyl reductase called divinyl reductase (DVR), which has been classified into two types, BciA and BciB. However, previous studies demonstrated that mutants lacking the DVR still synthesize normal bacteriochlorophyll a with the C8 ethyl group and suggested the existence of an unknown “third” DVR. Meanwhile, we recently observed that chlorophyllide a oxidoreductase (COR) of a purple bacterium happened to show the 8-vinyl reduction of 8-vinyl-chlorophyllide a in vitro. In this study, we made a double mutant lacking BciA and COR of the purple bacterium Rhodobacter sphaeroides in order to investigate whether the mutant still produces pigments with the C8 ethyl group or if COR actually works as the third DVR. The single mutant deleting BciA or COR showed production of the C8 ethyl group pigments, whereas the double mutant accumulated 8-vinyl-chlorophyllide, indicating that there was no enzyme other than BciA and COR functioning as the unknown third DVR in Rhodobacter sphaeroides (note that this bacterium has no bciB gene). Moreover, some COR genes derived from other groups of anoxygenic photosynthetic bacteria were introduced into the double mutant, and all of the complementary strains produced normal bacteriochlorophyll a. This observation indicated that COR of these bacteria performs two functions, reductions of the C8 vinyl group and the C7=C8 double bond, and that such an activity is probably conserved in the widely ranging groups.  相似文献   

13.
Chlorophyll biosynthetic heterogeneity is rooted mainly in parallel divinyl (DV) and monovinyl (MV) biosynthetic routes interconnected by 4-vinyl reductases (4VRs) that convert DV tetrapyrroles to MV tetrapyrroles by conversion of the vinyl group at position 4 of the macrocycle to ethyl. What is not clear at this stage is whether the various 4VR activities are catalyzed by one enzyme of broad specificity or by a family of enzymes encoded by one gene or multiple genes with each enzyme having narrow specificity. Additional research is needed to identify the various regulatory components of 4-vinyl reduction. In this undertaking, Arabidopsis mutants that accumulate DV chlorophyllide a and/or DV chlorophyll [Chl(ide)] a are likely to provide an appropriate resource. Because the Arabidopsis genome has been completely sequenced, the best strategy for identifying 4VR and/or putative regulatory 4VR genes is to screen Arabidopsis Chl mutants for DV Chl(ide) a accumulation. In wild-type Arabidopsis, a DV plant species, only MV chlorophyllide (Chlide) a is detectable. However in Chl mutants lacking 4VR activity, DV Chl(ide) a may accumulate in addition to MV Chl(ide) a. In the current work, an in situ assay of DV Chl(ide) a accumulation, suitable for screening a large number of mutants lacking 4-vinyl Chlide a reductase activity with minimal experimental handling, is described. The assay involves homogenization of the tissues in Tris-HCl:glycerol buffer and the recording of Soret excitation spectra at 77K. DV Chlide a formation is detected by a Soret excitation shoulder at 459 nm over a wide range of DV Chlide a/MV Chl a ratios. The DV Chlide a shoulder became undetectable at DV Chlide a/MV Chl a ratios less than 0.049, that is, at a DV Chlide a content of less than 5%.  相似文献   

14.
Abstract: Light‐dependent NADPH‐protochlorophyllide oxidoreductase (LPOR) is a nuclear‐encoded chloroplast protein in green algae and higher plants which catalyzes the light‐dependent reduction of protochlorophyllide to chlorophyllide. Light‐dependent chlorophyll biosynthesis occurs in all oxygenic photosynthetic organisms. With the exception of angiosperms, this pathway coexists with a separate light‐independent chlorophyll biosynthetic pathway, which is catalyzed by light‐independent protochlorophyllide reductase (DPOR) in the dark. In contrast, the light‐dependent function of chlorophyll biosynthesis is absent from anoxygenic photosynthetic bacteria. Consequently, the question is whether cyanobacteria are the ancestors of all organisms that conduct light‐dependent chlorophyll biosynthesis. If so, how did photosynthetic eukaryotes acquire the homologous genes of LPOR in their nuclear genomes? The large number of complete genome sequences now available allow us to detect the evolutionary history of LPOR genes by conducting a genome‐wide sequence comparison and phylogenetic analysis. Here, we show the results of a detailed phylogenetic analysis of LPOR and other functionally related enzymes in the short chain dehydrogenase/reductase (SDR) family. We propose that the LPOR gene originated in the cyanobacterial genome before the divergence of eukaryotic photosynthetic organisms. We postulated that the photosynthetic eukaryotes obtained their LPOR homologues through endosymbiotic gene transfer.  相似文献   

15.
It is shown that barley (Hordeum vulgare), a dark monovinyl/light divinyl plant species, and cucumber (Cucumis sativus L.) a dark divinyl/light divinyl plant species synthesize monovinyl and divinyl protochlorophyllide in darkness from monovinyl and divinyl protoporphyrin IX via two distinct monovinyl and divinyl monocarboxylic chlorophyll biosynthetic routes. Evidence for the operation of monovinyl monocarboxylic biosynthetic routes consisted (a) in demonstrating the conversion of delta-aminolevulinic acid to monovinyl protoporphyrin and to monovinyl Mg-protoporphyrins, and (b) in demonstrating the conversion of these tetrapyrroles to monovinyl protochlorophyllide by both isolated barley and cucumber etiochloroplasts. Likewise, evidence for the operation of divinyl monocarboxylic chlorophyll biosynthetic routes consisted (a) in demonstrating the biosynthesis of divinyl protoporphyrin and divinyl Mg-protoporphyrins from delta-aminolevulinic acid, and (b) in demonstrating the conversion of the latter tetrapyrroles to divinyl protochlorophyllide. Finally, it was shown that the divinyl tetrapyrrole substrates were metabolized differently by barley and cucumber. For example, divinyl protoporphyrin, divinyl Mg-protoporphyrin, and divinyl Mg-protoporphyrin monoester were converted predominantly to monovinyl protochlorophyllide and to smaller amounts of divinyl protochlorophyllide by barley etiochloroplasts. In contrast, cucumber etiochloroplasts converted the above substrates predominantly to divinyl protochlorophyllide, although smaller amounts of monovinyl protochlorophyllide were also formed. Furthermore, it was shown that monovinyl protochlorophyllide was not formed from divinyl protochlorophyllide either in barley or in cucumber etiochloroplasts. These metabolic differences are explained by the presence of strong biosynthetic interconnections between the divinyl and monovinyl monocarboxylic routes, prior to divinyl protochlorophyllide formation, in barley but not in cucumber.  相似文献   

16.
Green genes gleaned   总被引:14,自引:0,他引:14  
A recent paper by Ayumi Tanaka and colleagues identifying an Arabidopsis thaliana gene for 3,8-divinyl(proto)chlorophyllide 8-vinyl reductase brings a satisfying conclusion to the hunt for genes encoding enzymes for the steps in the chlorophyll biosynthetic pathway. Now, at least in angiosperm plants represented by Arabidopsis, genes for all 15 steps in the pathway from glutamyl-tRNA to chlorophylls a and b have been identified.  相似文献   

17.
Several isolates of the marine cyanobacterial genus Prochlorococcus have smaller genome sizes than those of the closely related genus Synechococcus. In order to test whether loss of protein-coding genes has contributed to genome size reduction in Prochlorococcus, we reconstructed events of gene family evolution over a strongly supported phylogeny of 12 Prochlorococcus genomes and 9 Synechococcus genomes. Significantly, more events both of loss of paralogs within gene families and of loss of entire gene families occurred in Prochlorococcus than in Synechococcus. The number of nonancestral gene families in genomes of both genera was positively correlated with the extent of genomic islands (GIs), consistent with the hypothesis that horizontal gene transfer (HGT) is associated with GIs. However, even when only isolates with comparable extents of GIs were compared, significantly more events of gene family loss and of paralog loss were seen in Prochlorococcus than in Synechococcus, implying that HGT is not the primary reason for the genome size difference between the two genera.  相似文献   

18.
Prochlorococcus species are the first example of free-living bacteria with reduced genome. Codon and amino acid usages bias of Prochlorococcus marinus MED4 was investigated using all protein coding genes having length greater than or equal to 100 amino acids. Correspondence analysis on relative synonymous codon usage (RSCU) values shows that there is no such influence of translational selection in shaping the codon usage variation among the genes in this organism. However, amino acid usages were markedly different between the highly and lowly expressed genes in this organism and in particular, GC rich amino acids were found to occur significantly higher in highly expressed genes than the lowly expressed genes. Comparative analysis of the homologous genes of Synechococcus sp. WH8102 and Prochlorococcus marinus MED4 shows that amino acids conservation in highly expressed genes is significantly higher than lowly expressed genes. Based on our results we concluded that conservation of GC rich amino acids in the highly expressed genes to its ancestor is the major source of variation in amino acid usages in the organism.  相似文献   

19.
Genome sequence analyses revealed the occurrence of two paralogous ppa genes potentially encoding distinct Family I inorganic pyrophosphatases (sPPases, EC3.6.1.1) in the marine unicellular cyanobacteria Prochlorococcus marinus strains MED4 and MIT9313 and Synechococcus sp. WH8102. Protein sequence alignment and phylogenetic analysis indicated that the ppa gene proper of cyanobacteria (ppa1) encodes a presumably inactive mutant enzyme whereas the second gene (ppa2) might encode an active sPPase closely related to those of some proteobacteria. Heterologous expression of the two cloned P. marinus MED4 ppa genes in Escherichia coli confirmed this proposal, only the inactive ppa1 product being immunodetected by anti-cyanobacterial sPPase antibodies. A possible scenario of ppa gene inactivation and replacement in the context of the postulated rapid diversification of marine unicellular cyanobacteria, the most abundant photosynthetic prokaryotes in the oceans, is discussed.  相似文献   

20.
The gene for ribonucleotide reductase from Anabaena sp. strain PCC 7120 was identified and expressed in Escherichia coli. This gene codes for a 1,172-amino-acid protein that contains a 407-amino-acid intein. The intein splices itself from the protein when it is expressed in E. coli, yielding an active ribonucleotide reductase of 765 residues. The mature enzyme was purified to homogeneity from E. coli extracts. Anabaena ribonucleotide reductase is a monomer with a molecular weight of approximately 88,000, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Superose 12 column chromatography. The enzyme reduces ribonucleotides at the triphosphate level and requires a divalent cation and a deoxyribonucleoside triphosphate effector. The enzyme is absolutely dependent on the addition of the cofactor, 5'-adenosylcobalamin. These properties are characteristic of the class II-type reductases. The cyanobacterial enzyme has limited sequence homology to other class II reductases; the greatest similarity (38%) is to the reductase from Lactobacillus leichmannii. In contrast, the Anabaena reductase shows over 90% sequence similarity to putative reductases found in genome sequences of other cyanobacteria, such as Nostoc punctiforme, Synechococcus sp. strain WH8102, and Prochlorococcus marinus MED4, suggesting that the cyanobacterial reductases form a closely related subset of the class II enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号