首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Of the various intermediate filament (IF) proteins certain cytokeratins, usually a hallmark of epithelial differentiation, can also be detected in some non-epithelial cells in low amounts. We have studied a representative case of this atypical expression, the smooth muscle cells of the blood vessel walls of the human umbilical cord, at the protein and nucleic acid level, by light and electron microscopic immunolocalization, gel electrophoresis and immunoblotting of cytoskeletal proteins, and mRNA identification by Northern blotting. For the latter we have used sensitive probes for various cytokeratins, including new probes for cytokeratin 19. We also describe the chromosome 17 locus comprising the genes for cytokeratins 15 and 19, and we emphasize the occurrence of several unusual and evolutionarily stable sequence elements in the introns of the cytokeratin 19 gene. Most, perhaps all smooth muscle cells of these blood vessels, positively identified by the presence of desmin and smooth muscle type alpha-actin, are immunostained by antibodies specific for cytokeratins 8 and 18, and a subpopulation also contains cytokeratin 19. Immunoelectron microscopy indicates that these cytokeratins are arranged in IFs that are distributed differently from the majority of the IFs formed by desmin and vimentin. Gel electrophoresis of cytoskeletal proteins from microdissected vascular wall tissue shows that the amounts of cytokeratins 8 and 18 present in these tissues are very low, representing less than 1% of the total IF protein, and that cytokeratin 19 is present only in trace amounts. Correspondingly, the contents of mRNAs for cytokeratins 8, 18 and 19 in these tissues are much lower than those present in epithelial cells examined in parallel. We have also established cell cultures derived from umbilical cord vascular smooth muscles that have maintained the expression of cytokeratins 8, 18 and 19, together with vimentin and the smooth muscle type alpha-actin, but do not synthesize desmin. In these cell cultures the cytokeratins are present in much higher amounts than in the original tissue and form IFs that, surprisingly, show a similar distribution as the vimentin IFs and, upon treatment of the cells with colcemid, collapse into juxtanuclear aggregates, often even more effectively than the vimentin IFs do. We conclude that in a certain subtype of smooth muscle cells, the genes encoding cytokeratins of the "simple epithelial type", i.e., cytokeratins 8, 18 and 19, are expressed and that the low level expression of these genes is compatible with myogenic differentiation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Using immunolocalization techniques, electron microscopy, and gel electrophoresis combined with immunoblotting, we have noted remarkable interspecies differences in the expression of cytokeratins in certain nonepithelial cells. In the present study we describe, in two taxonomically distant vertebrate species, the African clawed toad Xenopus laevis and man, endothelial and smooth muscle cells which express cytokeratin intermediate filaments (IFs), in addition to vimentin and/or desmin IFs. In Xenopus, all endothelia seem to produce both vimentin and cytokeratin IFs. As well, certain smooth muscle bundles located in the periphery of the walls of the esophagus and the urinary bladder produce small amounts of cytokeratin IFs in addition to IFs containing vimentin or desmin or both. The amphibian equivalents of human cytokeratins 8 and 18 have been identified in these nonepithelial tissues. In human endothelial cells, immunocytochemical reactions with certain cytokeratin antibodies are restricted to a rare subset of blood vessels. Vessels of this type were first noted in synovial and submucosal tissues, but also occur in some other locations. Cytokeratins have also been detected in certain groups of smooth muscles, such as those present in the walls of some blood vessels in synovial tissue and umbilical cord. Here, the synthesis of low levels of cytokeratins 8 and 18, sometimes with traces of cytokeratin 19, has been demonstrated in smooth muscle cells by colocalization with myogenic marker proteins, such as desmin and/or the smooth-muscle-specific isoform of alpha-actin. Possible reasons for the differences in cytokeratin expression between adjacent endothelia in man, and smooth-muscle structures in both species, as well as biologic and histodiagnostic implications of these findings, are discussed.  相似文献   

3.
Summary Immunohistochemistry with monoclonal and polyclonal antibodies revealed the presence of cytokeratins in epithelial cells of Rathke's cysts in the pars intermedia of the human pituitary gland. With monoclonal antibodies specific for individual cytokeratins, the expression of CK 18, CK 8, CK 7, and CK 19 could be shown in these cells. Within the hypophysis, CK 19 and CK 7 were restricted to Rathke's cysts and a few epithelial cell clusters in the pars tuberalis, whereas other cytokeratins were also present in endocrine cells of the pars distalis. Furthermore, vimentin and, focally, glial fibrillary acidic protein (GFAP) were detected in the cystic epithelia. By double labelling, coexpression of cytokeratin and vimentin, GFAP and cytokeratin, and GFAP and vimentin could be demonstrated. Compiled data of all known cases of coexpression of cytokeratin and vimentin in normal cells reveal physiological correlations and suggest a functional significance of this rare type of coexpression of intermediate filament proteins.  相似文献   

4.
In the present study we have localized immunohistochemically the intermediate filament proteins of the human pituitary gland (adenohypophysis, pars intermedia and pars tuberalis) by an indirect immunoperoxidase technique or by double immunofluorescence methods and analysed the individual cytokeratin polypeptides using two-dimensional gel electrophoresis. We found that the expression of cytokeratins in different epithelial cells of the human anterior pituitary gland was heterogeneous. Whereas the endocrine cells only expressed cytokeratins 8 and 18, the folliculo-stellate cells exhibited a reactivity for cytokeratins 7, 8, 18 and 19 as well as for GFAP and vimentin. The squamous epithelial cells of the pars tuberalis and the Ratke's cysts showed a more complex cytokeratin pattern of both squamous and simple type. Whereas in may cystic epithelial cells including the "pseudo-follicles" a triple expression of cytokeratin, vimentin and GFAP could be observed, only some basal cells of squamous epithelial nests coexpressed cytokeratin and vimentin. The differences in the intermediate filament protein distribution are discussed in the light of embryological relationships of the different parts of the human pituitary gland.  相似文献   

5.
The expression patterns of intermediate filament proteins in fetal and normal or nonpathological adult human lung tissues are described using (chain-specific) monoclonal antibodies. In early stages of development (9-10 weeks and 25 weeks of gestation) only so-called simple cytokeratins such as cytokeratins 7 (minor amounts). 8, 18 and 19 are detected in bronchial epithelial cells. At later stages of development, the cytokeratin expression patterns become more complex. The number of bronchial cells positive for cytokeratin 7 increases, but basal cells in the bronchial epithelium remain negative. These latter cells show, however, expression of cytokeratin 14 in the third trimester of gestation. Developing alveolar epithelial cells express cytokeratins 7, 8, 18 and 19. In adult human bronchial epithelium cytokeratins 4 (varying amounts), 7, 8, 13 (minor amounts), 14, 18 and 19 can be detected, with the main expression of cytokeratins 7, 8, and 18 in columnar cells and the main expression of cytokeratin 14 in basal cells. Vimentin is detected in all mesenchymal tissues. In addition, fetal lung expresses vimentin in bronchial epithelium, however, to a lesser extent with increasing age, resulting in the expression of vimentin in only few scattered bronchial cells at birth. Also in adult bronchial epithelium the expression of vimentin is noticed in part of the basal and columnar epithelial cells. Desmin filaments, present in smooth muscle cells of the lung, appear to alter their protein structure with age. In early stages of development smooth muscle cells surrounding blood vessels are partly reactive with some cytokeratin antibodies and with a polyclonal desmin antibody. At week 9-10 and week 25 of gestation a monoclonal antibody to desmin, however, is not reactive with blood vessel smooth muscle cells but is only reactive with smooth muscle cells surrounding bronchi. With increasing age the reactivity of cytokeratin antibodies with smooth muscle cells in blood vessels decreases, while the reactivity with the monoclonal desmin antibody increases. Our results show that during differentiation profound changes in the intermediate filament expression patterns occur in the different cell types of the developing lung.  相似文献   

6.
Summary In the present study we have localized immunohistochemically the intermediate filament proteins of the human pituitary gland (adenohypophysis, pars intermedia and pars tuberalis) by an indirect immunoperoxidase technique or by double immunofluorescence methods and analysed the individual cytokeratin polypeptides using two-dimensional gel electrophoresis. We found that the expression of cytokeratins in different epithelial cells of the human anterior pituitary gland was heterogeneous. Whereas the endocrine cells only expressed cytokeratins 8 and 18, the folliculo-stellate cells exhibited a reactivity for cytokeratins 7, 8, 18 and 19 as well as for GFAP and vimentin. The squamous epithelial cells of the pars tuberalis and the Ratke's cysts showed a more complex cytokeratin pattern of both squamous and simple type. Whereas in many cystic epithelial cells including the pseudo-follicles a triple expression of cytokeratin, vimentin and GFAP could be observed, only some basal cells of squamous epithelial nests coexpressed cytokeratin and vimentin. The differences in the intermediate filament protein distribution are discussed in the light of embryological relationships of the different parts of the human pituitary gland.  相似文献   

7.
The various epithelial cells of the lower respiratory tract and the carcinomas derived from them differ markedly in their differentiation characteristics. Using immunofluorescence microscopy and two-dimensional gel electrophoresis of cytoskeletal proteins from microdissected tissues we have considered whether cytokeratin polypeptides can serve as markers of cell differentiation in epithelia from various parts of the human and bovine lower respiratory tract. In addition , we have compared these protein patterns with those found in the two commonest types of human lung carcinoma and in several cultured lung carcinoma cell lines. By immunofluorescence microscopy, broad spectrum antibodies to cytokeratins stain all epithelial cells of the respiratory tract, including basal, ciliated, goblet, and alveolar cells as well as all tumor cells of adenocarcinomas and squamous cell carcinomas. However, in contrast, selective cytokeratin antibodies reveal cell type-related differences. Basal cells of the bronchial epithelium react with antibodies raised against a specific epidermal keratin polypeptide but not with antibodies derived from cytokeratins characteristic of simple epithelia. When examined by two-dimensional gel electrophoresis, the alveolar cells of human lung show cytokeratin polypeptides typical of simple epithelia (nos. 7, 8, 18 and 19) whereas the bronchial epithelium expresses, in addition, basic cytokeratins (no. 5, small amounts of no. 6) as well as the acidic polypeptides nos. 15 and 17. Bovine alveolar cells also differ from cells of the tracheal epithelium by the absence of a basic cytokeratin polypeptide. All adenocarcinomas of the lung reveal a "simple-epithelium-type" cytokeratin pattern (nos. 7, 8, 18 and 19). In contrast, squamous cell carcinomas of the lung contain an unusual complexity of cytokeratins. We have consistently found polypeptides nos. 5, 6, 8, 13, 17, 18 and 19 and, in some cases, variable amounts of cytokeratins nos. 4, 14 and 15. Several established cell lines derived from human lung carcinomas (SK-LU-1, Calu -1, SK-MES-1 and A-549) show a uniform pattern of cytokeratin polypeptides (nos. 7, 8, 18 and 19), similar to that found in adenocarcinomas. In addition, vimentin filaments are produced in all the cell lines examined, except for SK-LU-1.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
During myogenesis the intermediate-sized filament (IF) cytoskeleton is characterized by increasing proportions of desmin. While skeletal and smooth muscle formation occurs in free mesenchymal cells containing vimentin-type IFs, myocardial development starts from a polar epithelium containing cytokeratin IFs and desmosomes. Therefore, we have studied the formation of the epicardium and the myocardium in different vertebrate species, combining light and electron microscopic immunolocalization techniques with gel-electrophoretic analyses of cytoskeletal proteins of microdissected myocardial tissue at differing developmental stages. In this report, we describe results obtained from advanced stages of myocardial differentiation. In all species studied the myocardial cell possess IFs abundant in desmin, often together with smaller amounts of vimentin, and the mesothelial layer of the epicardium contains cytokeratin IFs. However, we have observed remarkable interspecies differences with respect to the occurrence of cytokeratins in embryonic myocardial cells. In fetal human myocardium, from week 10 of pregnancy on, but not in juvenile and adult myocardium, and in chicken myocardium of all stages examined (until several days after hatching) specific immunostaining was seen with certain broad-range cytokeratin antibodies as well as with antibodies specific for cytokeratins 18 (in both species) and 8 (showing significant reaction only in human). This cytokeratin immunoreaction, however, did not appear in IFs extending throughout the cytoplasm or at Z-lines, but was localized in punctate arrays representing aggregates of dense material. The aggregates were often enriched at, but not restricted to, the desmosomal plaques of the intercalated discs. These observations were supported by gel-electrophoretic demonstration of small but significant amounts of cytokeratins 18 (in both species) and 8 (detected only in human) in microdissected myocardial tissue. We also observed cytokeratins in smooth muscle cells of some cardiac blood vessels. In contrast, bovine myocardium of advanced fetal age as well as rat and mouse myocardium (from fetal day 12 on) were negative for cytokeratins with all methods, although epicardial cytokeratin IFs were demonstrable. These observations are discussed in relation to myocardial histogenesis and to general problems of cytokeratin gene expression control in epithelial and nonepithelial cells.  相似文献   

9.
Using immunofluorescence microscopy we show that cells expressing cytokeratins 8 and 18 are frequently enriched in human vascular wall tissue pathologically altered by the appearance of intimal thickenings and atherosclerotic plaques. These cytokeratins occur in cells which also synthesize IFs containing vimentin and/or desmin, and a considerable proportion of the cytokeratin-positive cells has been identified as smooth muscle cells by colocalization of desmin and/or smooth muscle type alpha-actin. The presence of extremely low concentrations of these cytokeratins in such vascular tissues has been confirmed by gel electrophoresis with immunoblotting as well as by Northern blot hybridization using specific cytokeratin cRNA probes. The results are discussed in relation to the recent demonstration that low-level synthesis of cytokeratins 8 and 18 occurs in other muscular tissues and to the specific proliferative activity of these cells.  相似文献   

10.
Using electron microscopy and immunohistochemistry with a large panel of antibodies to various cytoskeletal proteins we have noted that the single- or multi-layered sheaths of epithelioid cells ("neurothelia") surrounding peripheral nerves (perineurial cells) or structures of the central nervous system, including the optic nerve (arachnoid cells), show remarkable interspecies differences in their cytoskeletal complements. In two anuran amphibia examined (Xenopus laevis, Rana ridibunda), the cells of both forms of neurothelia, i.e., perineurial and arachnoid, are interconnected by true desmosomes and are rich intermediate-sized filaments (IFs) of the cytokeratin type. Among higher vertebrates, a similar situation is found in the bovine and chicken nervous systems, in which the arachnoid cells of the meninges contain desmosomes and IFs of both the cytokeratin (apparently with restricted epitope accessibilities in the chicken) and the vimentin type, whereas the perineurial cells of many nerves contain cytokeratin IFs, often together with vimentin, but no desmosomes. In contrast, in rat arachnoidal and perineurial cells significant reactions have been observed neither for cytokeratins nor for desmosomes. In the human nervous system, cytokeratins and desmosomes have also not been seen in the various perineuria studied whereas desmosomes are frequent in arachnoidal cell layers which are dominated by vimentin IFs and only in certain small regions of the brain contain some additional cytokeratins. The occurrence of cytokeratins in the tissues found positive by immunohistochemistry has been confirmed by gel electrophoresis of cytoskeletal proteins, followed by immunoblotting. Our results emphasize both similarities and differences between the neurothelia on the one hand and epithelia or endothelia on the other, justifying classification as a separate kind of tissue, i.e., neurothelium. The observations of interspecies differences lead to the challenging conclusion that neither desmosomes nor cytokeratins are essential for the basic functions of neurothelial sheaths nor does the specific type of IF protein expressed in these cells appear to matter in this respect. The results are also discussed in relation to the cytoskeletal characteristics of other epithelioid tissues and of human neurothelium-derived tumors.  相似文献   

11.
Summary An immunohistochemical study of the production of the intermediate filaments [vimentin, cytokeratin, and glial filament acidic protein (GFAP)] during development of the pituitary gland was made by use of fetal and adult human pituitary tissue. Among these intermediate filament proteins in the anterior and intermediate lobes of the pituitary, cytokeratin is the first to appear, followed by GFAP and vimentin. However, only cytokeratin is seen during the period of morphogenesis of the pituitary gland, with the type-II subfamily cytokeratin 8 being the earliest to appear. Among the simple-epithelial-type cytokeratins, cytokeratins 8 and 19 were observed within the pituitary primordium during morphogenesis. Cells immunoreactive for cytokeratins 8 and 19 showed a heterogeneous three-dimensional distribution pattern in Rathke's pouch. Both cytokeratins 8 and 19 tended to be strongly positive at sites in the pituitary primordium where cells had become more loosely arranged (i.e., areas far from the diencephalon) but were only weakly positive in areas in which the epithelial cells were densely packed (i.e., areas closely associated with the diencephalon). It is concluded that, during the period of morphogenesis, Rathke's pouch has the intermediate filaments characteristic of simple epithelium and shows different immunoreactivity for simple-epithelial-type cytokeratins from place to place according to the extent of cellular differentiation.  相似文献   

12.
Summary In vertebrate tissue development a given cell differentiation pathway is usually associated with a pattern of expression of a specific set of cytoskeletal proteins, including different intermediate filament (IF) and junctional proteins, which is identical in diverse species. The retinal pigment epithelium (RPE) is a layer of polar cells that have very similar morphological features and practically identical functions in different vertebrate species. However, in biochemical and immunolocalization studies of the cytoskeletal proteins of these cells we have noted remarkable interspecies differences. While chicken RPE cells contain only IFs of the vimentin type and do not possess desmosomes and desmosomal proteins RPE cells of diverse amphibian (Rana ridibunda, Xenopus laevis) and mammalian (rat, guinea pig, rabbit, cow, human) species express cytokeratins 8 and 18 either as their sole IF proteins, or together with vimentin IFs as in guinea pig and a certain subpopulation of bovine RPE cells. Plakoglobin, a plaque protein common to desmosomes and the zonula adhaerens exists in RPE cells of all species, whereas desmoplakin and desmoglein have been identified only in RPE desmosomes of frogs and cows, including bovine RPE cell cultures in which cytokeratins have disappeared and vimentin IFs are the only IFs present. These challenging findings show that neither cytokeratin IFs nor desmosomes are necessary for the establishment and function of a polar epithelial cell layer and that the same basic cellular architecture can be achieved by different programs of expression of cytoskeletal proteins. The differences in the composition of the RPE cytoskeleton further indicate that, at least in this tissue, a specific program of expression of IF and desmosomal proteins is not related to the functions of the RPE cell, which are very similar in the various species.  相似文献   

13.
Abstract. The development and sexual differentiation of gonads in female rat embryos and fetuses between the ages of 11 and 17 days was studied by immunocytochemical analysis of intermediate filament proteins and laminin by light and electron microscopy. In the 11-day-old pregonadal embryo, the surface epithelial cells in the ventral cortex of the mesonephros contained desmin but not cytokeratin or vimentin. The development of the gonad began on the following day by proliferative growth of the mesonephric surface cells, which like the subepithelial cells soon expressed vimentin in addition to desmin. The differentiation continued by formation of separate epithelial cell clusters, which joined into cords, irregular in shape and size. Desmin disappeared from the cord cells and cytokeratins appeared while vimentin remained in all somatic cell types. Desmin was especially abundant in some stromal cells adjacent to the epithelial tissues. After the segration of the basic ovarian tissues, vimentin and desmin decreased and cytokeratins appeared in the surface epithelial cells. New changes in cytokeratin expression appeared with the differentiation of the embryonic cords in a sex-specific manner with gradual decrease of reactivity for cytokeratin 18. No immunoreaction to the neurofilament proteins was found at the present ages, and the germ cells were negative for intermediate filaments. The results show that desmin is expressed in several primitive ovarian and mesonephric cells even though they are not myogenic. The sexual differences emerge after the incipient formation of the genetically female gonad, as different organization of the internal epithelial tissue with different timing of changes in intermediate filament proteins when compared with the male gonad.  相似文献   

14.
Intermediate filament proteins of normal epithelia of the human and the bovine male urogenital tract and of certain human renal and bladder carcinomas have been studied by immunofluorescence microscopy and by two-dimensional gel electrophoresis of cytoskeletal fractions from microdissected tissue samples. The patterns of expression of cytokeratin polypeptides differ in the various epithelia. Filaments of a cytokeratin nature have been identified in all true epithelial cells of the male urogenital tract, including renal tubules and rete testis. Simple epithelia of renal tubules and collecting ducts of kidney, as well as rete testis, express only cytokeratin polypeptides nos. 7, 8, 18, and 19. In contrast, the transitional epithelia of renal pelvis, ureter, bladder, and proximal urethra contain, in addition to those polypeptides, cytokeratin no. 13 and small amounts of nos. 4 and 5. Most epithelia lining the human male reproductive tract, including those in the epididymis, ductus deferens, prostate gland, and seminal vesicle, synthesize cytokeratin no. 5 in addition to cytokeratins nos. 7, 8, 18, and 19 (cytokeratin no. 7 had not been detected in the prostate gland). Cytokeratin no. 17 has also been identified, but in very low amounts, in seminal vesicle and epididymis. The cytokeratin patterns of the urethra correspond to the gradual transition of the pseudostratified epithelium of the pars spongiosa (cytokeratins nos. 4, 5, 6, 13, 14, 15, and 19) to the stratified squamous epithelium of the fossa navicularis (cytokeratins nos. 5, 6, 10/11, 13, 15, and 19, and minor amounts of nos. 1 and 14). The noncornified stratified squamous epithelium of the glans penis synthesizes cytokeratin nos. 1, 5, 6, 10/11, 13, 14, 15, and 19. In immunofluorescence microscopy, selective cytokeratin antibodies reveal differential staining of different groups or layers of cells in several epithelia that may relate to the specific expression of cytokeratin polypeptides. Human renal cell carcinomas show a simple cytokeratin pattern consisting of cytokeratins nos. 8, 18, and 19, whereas transitional cell carcinomas of the bladder reveal additional cytokeratins such as nos. 5, 7, 13, and 17 in various proportions. The results shows that the wide spectrum of histological differentiation of the diverse epithelia present in the male urogenital tract is accompanied by pronounced changes in the expression of cytokeratin polypeptides and suggest that tumors from different regions of the urogenital tract may be distinguished by their cytokeratin complements.  相似文献   

15.
Flow cytometric DNA measurements in human thyroid tumors   总被引:2,自引:0,他引:2  
By means of flow cytometry (FCM), DNA distribution pattern and the fraction of cells in the various phases of the cell cycle were studied in 52 samples of normal thyroid tissues, follicular adenomas, follicular carcinomas, medullary carcinoma and fibrosarcomas. In the normal thyroid tissues and follicular adenomas DNA diploid cell populations only were found. Among 20 follicular carcinomas in 13 cases (65%) together with the DNA diploid cells, DNA aneuploid cell lines were also observed. S-phase fraction in follicular adenomas is higher than in the normal thyroid tissues and lower than those in thyroid carcinomas. The percentage of S-phase cells in DNA aneuploid populations is significantly higher (S = 19 +/- 9.3%) than in the diploid cell lines (S = 3.7 +/- 2.6%). DNA aneuploid cell populations were predominantly observed in carcinomas with a high degree of morphological anaplasia.  相似文献   

16.
Expression of intermediate filament (IF) isotypes was studied in six human and two murine melanoma cell lines. With one exception, these lines expressed IFs only of the vimentin type; neurofilament peptides, desmin and GFAP were not detected. However, the M5 human melanoma line also expressed extensive cytokeratin tonofilament arrays, as visualized by immunofluorescence with a panel of eleven monoclonal antibodies and hetero-antisera to cytokeratins; only the keratin 19-specific antibody BA16 did not react. By 2 D gel electrophoresis, five major keratin peptides were detected (keratins 7, 8, 13, 17 and 18), and an additional 57 kD peptide was detected on immunoblots with several antikeratin antibodies. Also observed in M5 cells was focal collapse of tonofilament arrays in mitotic cells. All the melanoma lines tested were positive for S100; M5 and two other cell lines were also positive for the 220-240 kD neuroectoderm-associated cell-surface differentiation antigen defined by monoclonal antibody UJ 127:11. In all the melanoma cell lines, secretion of extracellular matrix proteins (fibronectin, laminin and collagen type IV) was sparse or absent, and all were negative for the epithelial cell markers HMG-1 and HMG-2. Co-expression of keratin and vimentin by a melanoma cell line is discussed in the light of recent controversy concerning expression of cytokeratins by other neoplasms of putative neuroectodermal origins.  相似文献   

17.
Cytoskeletal components of lymphoid organs   总被引:24,自引:0,他引:24  
Using light and electron microscopic immunolocalization with antibodies to cytoskeletal proteins, we have characterized the nonlymphoid cells of various human lymphoid organs (lymph nodes, tonsils, spleen). In all these tissues, the lymphoid follicles contain a three-dimensional meshwork of "dendritic reticulum cells" which are characterized by the presence of desmosomal junctions, as demonstrated by positive punctate staining with antibodies to the desmosome-specific proteins desmoplakin I and desmoglein, and by intermediate-sized filaments (IFs) of the vimentin type only. In contrast, the extrafollicular regions are characterized by an extended meshwork of other types of reticulum cells, which also contain vimentin IFs but lack desmosomal proteins. In addition, a considerable, although variable proportion of these extrafollicular reticulum cells forms IFs containing cytokeratins 8 and 18 and/or desmin-containing IFs. The occurrence of cytokeratins 8 and 18 in lymph nodes has also been shown by gel electrophoresis and immunoblotting. Results of double-label immunolocalization indicate that some of the extrafollicular reticulum cells coexpress all three kinds of IF protein. A large proportion of these cells also synthesizes another marker of myogenic differentiation, i.e., the isoform of alpha-actin specific for smooth muscle. This proportion includes some cells that are negative for desmin. Comparison of the distribution of cells expressing cytokeratins and/or desmin with that of reticulum cells showing strong alkaline phosphatase activity (as a marker for the so-called "fiber-associated (fibroblastic) reticulum cells") suggests that the former represent a subset of the latter. The biological meaning of these different patterns of expression in reticulum cells and of the resulting cell-type heterogeneity as well as possible implications of these observations for tumor diagnosis, notably of lymph-node metastases and lymphomas, are discussed.  相似文献   

18.
Testicular seminoma has in the past been considered to represent a germ cell tumor incapable of further differentiation. In recent years this view has been challenged on the basis of morphologic and chromosomal studies. Moreover, studies of intermediate filaments (IF) of seminoma cells have provided evidence of the capability of seminoma cells to differentiate in different directions. In the present study of the IF protein profile of 26 human testicular seminomas, using frozen as well as formalin-fixed, paraffin-embedded tissues, we report evidence of a heterogeneous differentiation potential inherent in these neoplasms. Thus, in 4 of the seminomas neither cytokeratins nor vimentin were detected; 3 showed vimentin positive cells but no cytokeratins; in 4 seminomas only cytokeratins were detected. In the remaining 15 cases both cytokeratins and vimentin were present, with occasional cells demonstrating coexpression of cytokeratin and vimentin. While the cytokeratins present were mostly of the "simple epithelial type", in 2 instances seminoma cells also contained cytokeratins 4 and 17, normally found in stratified and/or complex glandular epithelia. Furthermore, in 3 cases scattered tumor cells stained for desmin and in 2 other seminomas neurofilaments were identified. All of the cases showed variable positive staining for desmoplakins and desmoglein, indicative of the presence of desmosomes. It can therefore be concluded that, while some seminomas seem to be devoid of IFs, most of them show varied differentiation patterns usually with epithelial features but occasionally also with components commonly regarded as characteristic of myogenic or neurogenic differentiation. These observations may help to elucidate the relationship of seminomas to other germ cell tumors, and also contribute to our understanding of the histogenesis of these neoplasms.  相似文献   

19.
Antibodies to intermediate filament proteins react in a tissue-specific manner and can be used to characterize tumor cells present in thin-needle aspirates from solid tumors, from palpable lymph nodes and cells present in samples from peritoneal and pleural effusions. From our studies so far the following conclusions can be drawn: Polyclonal antisera to cytokeratins can identify carcinoma metastases in thin-needle aspirates from palpable lymph nodes and distinguish them from malignant lymphomas and nonmalignant lesions such as chronic lymphadenitis, which show only vimentin-positive cells. Monoclonal antibodies to specific cytokeratin polypeptides are able to distinguish between different types of epithelial tumor metastases, i.e. metastases from adenocarcinomas and metastases from squamous cell carcinomas. Cells present in peritoneal and pleural effusions can be partly characterized using intermediate filament antisera. We have found that metastatic adenocarcinoma cells from breast, ovary, endometrium, cervix, colon and stomach, as well as squamous cell carcinomas and malignant mesothelioma stain specifically with antibodies to cytokeratin while mesenchymally derived tumors such as malignant lymphomas, malignant melanomas, and fibrosarcomas, are positive for vimentin only. Metastatic tumor cells of epithelial origin present in aspirates from human serous body cavity fluids may coexpress vimentin next to their original cytokeratin intermediate filaments. Benign mesothelial cells present in body cavity fluids frequently coexpress cytokeratins and vimentin. Tumor cells present in thin-needle aspirates from solid tumors such as pleomorphic adenomas of the parotid gland can be identified as such because of their typical patterns of intermediate filament (co-)expression.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
We applied immunohistochemical techniques and gel electrophoresis to examine the distribution of intermediate filaments in human fetal oral epithelium and the epithelia of the human enamel organ. Both methods demonstrated that human enamel epithelia contain cytokeratins 5, 14, and 17, which are typical of the basal cells of stratified epithelia, as well as smaller quantities of cytokeratins 7, 8, 19, and in trace amounts 18, which are characteristic components of simple epithelial cells. In the external enamel epithelium and stellate-reticulum cells, most of these components appeared to be simultaneously expressed. In contrast, the parental oral epithelium was negative for cytokeratin 7, thus indicating possible "neoexpression" during the course of tooth formation. Immunohistochemical procedures using various monoclonal antibodies against vimentin revealed the transient coexpression of vimentin and cytokeratins in the external enamel epithelium and in stellate-reticulum cells during enamel development. The significance of the coexpression of cytokeratins and vimentin is discussed in relation to previous findings obtained in other normal tissues and in the light of the functional processes characteristic of these epithelia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号