首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary A pot-culture experiment was conducted to assess the leaching losses of N from the conventional and new nitrogen fertilizers under low-land rice culture. Leaching losses of N were generally less than 20% of applied N with sources other than sodium nitrate and these could be reduced by blending urea with nitrification inhibitor N-Serve or coating withneem cake or by using urea super granules or slow-release N fertilizer sulphur coated urea. These new nitrogen fertilizers were more effective than urea for rice.  相似文献   

2.
Summary To determine effects of level and time of application of urea on grain yields, components of grain yield, and nitrogen use efficiency by irrigated direct seeded rice (Oryza sativa L. var. IR 298-12-1-1-1), three field experiments were conducted at the Gezira Agricultural Research Station during the period 1976–78. The treatments included the factorial combination of three levels of nitrogen as urea (0,75 and 150 kg N/ha) two or three splits, and three times of topdressing of urea (early season application, 10 days after rice emergence, DRE; maximum tillering stage, 40 DRE; and panicle initiation stage, 75 DRE).Without application of nitrogen, grain yields averaged 1.5 t/ha. The yields averaged for rate and time of split significantly increased with increase in nitrogen applied to 3.9 and 5.0 t/ha, but nitrogen use efficiency (kg rice/kg N) decreased from 31 to 23 with the application of 75 and 150 kg N/ha respectively.As compared to other treatments of time of urea application, topdressing of urea at maximum tillering and panicle initiation stages significantly improved nitrogen use efficiency by promoting production of more panicles per unit land area, and increasing grain weight. Three splits were no better than the two splits given at maximum tillering and panicle initiation stages.  相似文献   

3.
Little is known about whether the high N losses from inorganic N fertilizers applied to lowland rice (Oryza sativa L.) are affected by the combined use of either legume green manure or residue with N fertilizers. Field experiments were conducted in 1986 and 1987 on an Andaqueptic Haplaquoll in the Philippines to determine the effect of cowpea [Vigna unguiculata (L.) Walp.] cropping systems before rice on the fate and use efficiency of15N-labeled, urea and neem cake (Azadirachta indica Juss.) coated urea (NCU) applied to the subsequent transplanted lowland rice crop. The pre-rice cropping systems were fallow, cowpea incorporated at the flowering stage as a green manure, and cowpea grown to maturity with subsequent incorporation of residue remaining after grain and pod removal. The incorporated green manure contained 70 and 67 kg N ha−1 in 1986 and 1987, respectively. The incorporated residue contained 54 and 49 kg N ha−1 in 1986 and 1987, respectively. The unrecovered15N in the15N balances for 58 kg N ha−1 applied as urea or NCU ranged from 23 to 34% but was not affected by pre-rice cropping system. The partial pressure of ammoniapNH3, and floodwater (nitrate + nitrite)-N following application of 29 kg N ha−1 as urea or NCU to 0.05-m-deep floodwater at 14 days after transplanting was not affected by pre-rice cropping system. In plots not fertilized with urea or NCU, green manure contributed an extra 12 and 26 kg N ha−1, to mature rice plants in 1986 and 1987, respectively. The corresponding contributions from residue were 19 and 23 kg N ha−1, respectively. Coating urea with 0.2g neem cake per g urea had no effect on loss of urea-N in either year; however, it significantly increased grain yield (0.4 Mg ha−1) and total plant N (11 kg ha−1) in 1987 but not in 1986.  相似文献   

4.
Summary Two15N-labelled slow-release nitrogen (N) sources, oxamide and isobutylidene diurea (IBDU), each at two particle sizes, and15N-labelled urea were compared at two rates as sources of N for rice (Oryza sativa) under two watering regimes which simulated a transplant (continuous flood, CF) and a direct-seeded (A/F) system of paddy rice culture. Highest grain yields were obtained from −8+10-mesh oxamide particles applied at the rate of 2,000 mg of N/5 kg of soil, CF series; this yield was slightly higher than that obtained from −3+4-mesh oxamide, A/F series. Incubating the N fertilizers in moist (22% water) soil for 21 days immediately before flooding and transplanting rice greatly reduced N supply because of nitrification during the preflood period, followed by denitrification after flooding. This resulted in less plant uptake of N and less grain yield from urea, fine oxamide and IBDU, A/F series. For coarse oxamide, N release during the preflood period resulted in higher N uptake and grain yield in the A/F rather than in the corresponding CF series. The pattern of fertilizer N uptake by rice plants was affected by kind of fertilizer, particle size of oxamide and IBDU, and watering regime. Uptake of fertilizer N generally paralleled uptake of soil N throughout the growth period. Plant tops continued to accumulate some N during the period of grain filling, but much of the N in plant tops was translocated to the grain after heading. There was a large decrease in dry weight, N content, and15N content of tops after heading. Root weight and N content increased rapidly at first, and then at a diminishing rate until maturity. Unexplained N deficits occurred in the CF series (14–23% of the N applied, depending on N rate and source), and in the A/F series for IBDU (37–43% of the N applied).  相似文献   

5.
Summary The symbiotic association of the water fernAzolla with the blue-green algaAnabaena azollae can fix 30–60 kg N ha–1 per rice cropping season. The value of this fixed N for rice production, however, is only realized once the N is released from theAzolla biomass and taken up by the rice plants. The availability of N applied asAzolla or as urea was measured in field experiments by two15N methods. In the first,Azolla caroliniana (Willd.) was labelled with15N in nutrient solution and incorporated into the soil at a rate of 144 kg N ha–1. The recovery ofAzolla-N in the above ground parts of rice [Oryza sativa (L) cv. Nucleoryza] was found to be 32% vs. 26% for urea applied at a rate of 100 kg N/ha; there was no significant difference in recovery. In the second, 100 kg N/ha of15N-urea was applied separately or in combination with either 250 or 330 kg N ha–1 of unlabelledAzolla. At the higher rate, the recovery ofAzolla-N was significantly greater than that of urea. There was a significant interaction when both N sources were applied together, which resulted in a greater recovery of N from each source in comparison to that source applied separately. Increasing the combined urea andAzolla application rate from 350 kg N ha–1 to 430 kg N ha–1 increased the N yield but had no effect on the dry matter yield of rice plants. The additional N taken up at the higher level of N application accumulated to a greater extent in the straw compared to the panicles. Since no assumptions need to be made about the contribution of soil N in the method using15N-labelledAzolla, this method is preferable to the15N dilution technique for assessing the availability ofAzolla-N to rice. Pot trials usingAzolla stored at –20°C or following oven-drying showed that both treatments decreased the recovery of N by one third in comparison to freshAzolla.  相似文献   

6.
Cissé  Madiama  Vlek  Paul L. G. 《Plant and Soil》2003,250(1):105-112
The N2 fixed by Azolla before and after urea application during the rice cycle, the mineralisation of Azolla-N as well as its availability to rice was studied in two greenhouse experiments conducted in 1996 and 1997 and in June 1998 in Goettingen (Germany). Dry matter production of the various rice parts of experiment 1 showed a clear positive synergism between treatment with Azolla and urea with a resulting apparent N recovery by rice increasing from 40% (without Azolla) to 57% in the presence of Azolla. Part of this increase may be due to N fixed biologically by Azolla and transferred to the rice. The second experiment shed some light on the role of BNF. Using an iterative method of estimation, the daily rate of N fixation was estimated at 0.6 – 0.7 kg N ha–1. The rate was not so much affected by the age of the Azolla crop. At this rate, the BNF would amount to up to 100 kg N ha–1 over a 130-day season. Assuming that BNF may be inhibited for a period of 5 – 10 days following urea application due to high levels of N in the floodwater, this might reduce the BNF by between 6 and 14 kg N ha over the season. Using the mean-pool-abundance concept, it was estimated that around 75 – 80% of the Azolla-N mineralized during the growth period was actually absorbed by the rice plants. Of the N taken up by rice around 28% was derived from the biologically fixed Azolla N, the remainder was urea N cycled through the Azolla. Azolla also seems to help sustain the soil N supply by returning N to the soil in quantities roughly equal to those extracted from the soil by the rice plant.  相似文献   

7.
Summary Under semi-arid conditions, three field experiments were conducted at Gezira Research Station to determine response of irrigated dry-seeded rice (Oryza sativa L. var IR 2053-206-1-3-6) to addition of nitrogen and phosphorus fertilizers. The experimental treatments included the factorial combinations of seven levels of nitrogen applied as urea and four levels of phosphorus applied as super phosphate. Plant growth and grain yield were significantly and progressively increased with the rise in the levels of added nitrogen and phosphorus. However, response to added phosphorus was restricted by the applied level of nitrogen. The responses of grain yield to nitrogen and phosphorus levels are given by quadratic regression equations. Without addition of nitrogen or phosphorus grain yield averaged 1.52 t/ha compared to 6.07 t/ha with addition of the optimal levels (160 kg N plus 35 kg P/ha). The high potential for rice production in semi-arid environment is evidently restricted by addition of relatively high rates of nitrogen and phosphorus.  相似文献   

8.
Japonica rice, Giza 171, was inoculated with either a dry or fresh soil-based inoculum of cyanobacteria containingAnabaena cylindrica, Anabaena oryzae, Nostoc muscorum andTolypothrix tenuis together with fertilization with urea at 0, 36, 72, or 108 kg N/ha. Fresh inoculum enhanced plant growth, yield and N content in comparison with the dry one. The efficiency of nitrogen utilization from the urea at all N concentrations was improved by using the fresh inoculum. Natural infection with leaf and neck blast caused byPyricularia oryzae Cav. increased with increasing N fertilization. Algalization with the fresh inoculum decreased leaf blast while neck blast was slightly higher in the algalized sub-plots but without considerable yield damage.  相似文献   

9.
A set of rice (Oryza sativa L.) recombinant inbred lines from a cross between Zhenshan 97 (indica) and HR5 (indica) was planted for four different growing seasons in two locations at three nitrogen (N) fertilization levels (N300, 300 kg urea/ha; N150, 150 kg urea/ha; and N0, 0 kg urea/ha). Grain yield and its components were evaluated, including grain yield per plant (GYPP), panicle number per plant (PNPP), grain number per panicle (GNPP), filled grains per panicle (FGPP), spikelet fertility percentage (SFP) and 100-grain weight (HGW). Correlation and path analysis indicated that SFP had the greatest contribution to GYPP at the N300 and N150 levels, but FGPP contributed the most to GYPP at the N0 level. Quantitative trait loci (QTL) were mapped based on a mixed linear model; genetic components (main effects, epistatic effects and QTL-by-environment interactions) were estimated separately. Six to 15 QTL with main effects were detected for each trait except SFP. Clusters of main-effect QTL associated with PNPP, GNPP, SFP and HGW were observed in regions on chromosomes 1, 2, 3, 5, 7 and 10. The main-effect QTL (qGYPP-4b and qGNPP-12) were only detected at the N0 level and explained 10.9 and 10.2% of the total phenotypic variation, respectively. A total of 33 digenic interactions among grain yield and its components were also identified. The identification of genomic regions associated with yield and its components at different nitrogen levels will be useful in marker-assisted selection for improving the nitrogen use efficiency of rice.  相似文献   

10.
Field experiments (20 m2 plots) were conducted to compare Azolla and urea as N sources for rice (Oryza sativa L.) in both the wet and dry seasons. Parallel microplot (1 m2) experiments were conducted using 15N. A total of approximately 60 kg N ha-1 was applied as urea, Azolla, or urea plus Azolla. Urea or Azolla applied with equal applications of 30 kg N ha-1 at transplanting (T) and at maximum tillering (MT) were equally effective for increasing rice grain yields in both seasons. Urea at 30 kg N ha-1 at T and Azolla 30 kg N ha-1 at MT was also equally effective. Urea applied by the locally recommended best split (40 kg at T and 20 kg at MT) gave a higher yield in the wet season, but an equal yield in the dry season. The average yield increase was 23% in the wet season, and 95% in the dry season. The proportion of the N taken up by the rice plants which was derived from urea (%NdfU) or Azolla (%NdfAz) was essentially identical for the treatments receiving the same N split. Recovery of 15N in the grain plus straw was also very similar. Positive yield responses to residual N were observed in the succeeding rice crop following both the wet and dry seasons, but the increases were not always statistically significant. Recovery of residual 15N ranged from 5.5 to 8.9% for both crops in succeeding seasons. Residual recovery from the urea applications was significantly higher than from Azolla in the crop succeeding the dry season crop. Azolla was equally effective as urea as an N source for rice production on a per kg N basis.  相似文献   

11.
In view of the recently generated interest in Azolla and the high cost of N fertilizers, this field study was aimed at measuring the availability of Azolla-N applied in two split application in comparison to urea-N. Azolla was cultivated and labelled with 15N isotope in the field. A total of about 60 kg N ha-1 was applied as Azolla, urea or Azolla and urea in combination, in two equal splits at transplanting and at maximum tillering, i.e. 30 days after transplanting (30 DAT).The recovery by the crop of Azolla-N applied at 30 DAT was significantly higher than that applied at transplanting, viz. 30.2% and 20.2%, respectively. The recoveries of urea-N applied at the same stages were similarly low, viz. 22.5% at transplanting and 38.6% at 30 DAT. Total recoveries of fertilizer N at the time of harvest were 26.8% from Azolla, 30.7% from urea applied in the same two splits and 49.1% from urea applied in locally recommended three splits. Recoveries of labelled Azolla-N in succeeding rice crop were twice higher than those of labelled urea-N. The recoveries ranged from 1.9 to 2.1% from urea-N and 4.0 to 4.9% from Azolla-N. There were no differences in residual 15N recovery in the succeeding crop between Azolla and urea either applied at transplanting or at 30 DAT.  相似文献   

12.
Cyanobacteria and/or azolla were inoculated, with urea at 0, 72 or 144 kg N/ha, in plots in which azolla-free Indica rice var. IR 28 was grown. Productive tillers, yield and nitrogen contents of grain and straw positively responded to inoculation with cyanobacteria or azolla, even with fertilizer-N up to 144 kg N/ha. Inoculation improved colonization by cyanobacteria. Azolla were superior to the asymbiotic cyanobacteria in enhancing rice performance. Urea at a rate of 72 kg N/ha was found to support the best colonizations when applied with cyanobacteria or azolla or, to give maximum rice yields, both inoculants.  相似文献   

13.
Summary The importance of initial exchangeable soil NH 4 + in nitrogen nutrition and grain yield of rice was studied in a number of representative lowland rice soils in the Philippines. The initial exchangeable soil NH 4 + +fertilizer N plotted against nitrogen uptake by the crop resulted in a highly significant linear relationship (R2=0.91), suggesting that the presence of exchangeable NH 4 + in the soil at transplanting behaved like fertilizer nitrogen. The correlation between N fertilizer rate and N uptake by the rice crop was relatively poor (R2=0.73). On the other hand, relative grain yield was more closely correlated with the initial exchangeable soil NH 4 + +fertilizer N than with fertilizer nitrogen applied alone. These results indicate that the initial exchangeable NH 4 + in the soil contributed substantially to the nitrogen uptake of the crop.Critical nitrogen levels in the soil defined as the initial exchangeable soil NH 4 + +fertilizer N at which the optimum grain yield (95% of the maximum yield) is obtained, varied from 60 to 100 kg N/ha in the wet season and from 100 to 120 kg N/ha in the dry season for the different fertilizer treatments. The results further suggest that the initial exchangeable soil NH 4 + should serve as a guide in selecting an optimum nitrogen fertilizer rate for high grain yields.  相似文献   

14.
Summary Isotopic as well as non-isotopic methods were used to assess symbiotic nitrogen fixation within eight soybean [Glycine max (L.) Merr.] cultivars grown at 20 and 100 kg N/ha levels of nitrogen fertilizer under field conditions.The15N methodology revealed large differences between soybean cultivars in their abilities to support nitrogen fixation. In almost all cases, the application of 100 kg N/ha resulted in lower N2 fixed in soybean than at 20 kg N/ha in the first year of the study. However, N2 fixed in one cultivar, Dunadja, was not significantly affected by the higher rate of N fertilizer application. These results were confirmed by measurements of acetylene reduction activity, nodule dry weight and N2 fixed as measured by the difference method. Further proof of differences in N2 fixed within soybean cultivars and the ability of Dunadja to fix similar amounts of N2 at 20 and 100 kg N/ha was obtained during a second year experiment. Dunadja yield was affected by N fertilizer and produced larger yield at 100 kg N/ha than at 20 kg N/ha. This type of cultivar could be particularly useful in situations where soil N levels are high or where there is need to apply high amounts of N fertilizer.The present study reveals the great variability between legume germplasms in the ability to fix N2 at different inorganic N levels, and also the potential that exists in breeding for nitrogen fixation associative traits. The15N methodology offers a unique tool to evaluate germplasms directly in the field for their N2 fixation abilities at different N fertilizer levels.  相似文献   

15.
深松与包膜尿素对玉米田土壤氮素转化及利用的影响   总被引:4,自引:0,他引:4  
耕作方式和氮肥施用是影响土壤中氮肥转化、利用效率和作物产量的重要因素。通过夏玉米田的2a(2011—2012)定位试验,研究了两种耕作方式(深松、旋耕)配合不同尿素类型(包膜尿素、普通尿素)的施用对玉米田土壤硝态氮和铵态氮含量、脲酶活性、硝化细菌和反硝化细菌数量、玉米产量以及氮肥农学效率的影响。研究结果表明:相同耕作方式下,包膜尿素处理土壤中脲酶活性较稳定,且增加了旱田土壤亚硝酸细菌数量而降低了反硝化细菌数量,有利于土壤硝态氮含量的提高,尤其是作物生长的中后期;包膜尿素处理的产量比普通尿素提高7.25%—10.82%,同时提高氮肥农学效率。深松处理增加了土壤中的反硝化细菌数量,配合施用包膜尿素进一步提高了土壤脲酶活性,增加了亚硝酸细菌数量;旋耕与包膜尿素配合施用在一段时期内能显著增加土壤硝态氮含量,减少反硝化细菌数量。深松配合包膜尿素处理能够显著的增加玉米产量,2a分别比旋耕配合包膜尿素增加1.41%和10.62%。因此,深松措施配合施用包膜尿素能够增强土壤脲酶活性,增加亚硝酸细菌数量,提高氮素转化速率,增加作物产量和氮肥农学效率,其稳产效果在干旱年份尤为显著。  相似文献   

16.
抑制剂和猪粪对尿素氮在稻田土壤中转化的影响   总被引:2,自引:0,他引:2  
为了阐明稻田土壤中尿素在配施抑制剂和猪粪的情况下不同形态氮的响应特征,探究不同管理措施下稻田土壤氮素保持和供给能力。本研究采用15N标记尿素进行盆栽试验,设置不施肥(CK)、猪粪(M)、尿素(N)、猪粪+尿素(NM)、尿素+抑制剂(NI)和尿素+抑制剂+猪粪(NIM)6个处理。抑制剂选用脲酶抑制剂(PPD+NBPT)和硝化抑制剂(DMPP)组合,测定返青期、分蘖期和成熟期土壤氮库的分配、尿素氮在氮库中的保存及水稻吸氮状况。结果表明: 施用猪粪显著提高了土壤铵态氮、固定态铵含量和微生物生物量氮,提高了分蘖期尿素氮在各氮库中的贮存,显著增加了水稻产量。与N处理相比,添加抑制剂促进了NH4+的矿物固定和微生物对尿素氮的固持;与NM处理相比,施用抑制剂增加了黏土矿物对15NH4+的固定。通径分析表明,施用猪粪能促进水稻吸收肥料氮,增加水稻产量;添加抑制剂可通过铵的矿物固定将更多的肥料氮暂时储存;NIM能将更多的氮贮存在微生物生物量氮中,至作物生长后期,铵的释放和微生物周转矿化可为水稻提供更多的有效氮源。在我国北方稻田,NM和NIM处理是推荐的施肥方式。  相似文献   

17.
Summary Dry-matter accumulation, and concentration and uptake of nitrogen increased with increasing level of nitrogen at all the stages of crop growth. The differences in nitrogen concentration due to nitrogen levels were greatest at panicle initiation stage and started becoming narrower with the advancement in crop age. Split application of nitrogen with its heavier fractions at tillering and panicle initiation stages either through soil alone or soil+foliage (1/3+1/3+1/3) resulted in higher dry-matter accumulation, and higher nitrogen concentration and uptake than other methods. The crop, on an average, removed 61 kg N/ha. Plants accumulated nearly 15% of the total absorbed nitrogen, up to tillering, 50% up to panicle initiation and 85–90% up to heading. Proportionately lesser nitrogen uptake and dry-matter accumulation at post-heading stage is an indicative of a major constraint for production efficiency of rainfed-upland rice culture.  相似文献   

18.
The development of management techniques to improve the poor N use efficiency by lowland rice (Oryza sativa L.) and reduce the high N losses has been an important focus of agronomic research. The potential of an Azolla cover in combination with urea was assessed under field conditions in Laguna, Philippines. Two on-station field experiments were established in the 1998–1999 dry season and eight on-farm experiments per season were carried out in the 2000–2001 wet and dry seasons. Treatment combinations consisting of N levels applied alone or combined with Azolla were evaluated with respect to floodwater chemistry, 15N recovery, crop growth, and grain yield. A full Azolla cover on the floodwater surface at the time of urea application prevented the rapid and large increase in floodwater pH and floodwater temperature. As a consequence, the partial pressure of ammonia (NH3), which is an indicator of potential NH3 volatilization, was significantly depressed. 15N recovery was higher in plots covered with Azolla where the total 15N recovery ranged between 77 and 99%, and the aboveground (grain and straw) recovery by rice ranged between 32 and 61%. The tiller count in Azolla-covered plots was significantly increased by 50% more than the uncovered plots at all urea levels. Consequently, the grain yield was likewise improved. Grain yields from the 16 on-farm trials increased by as much as 40% at lower N rates (40 and 50 kg N ha–1) and by as much as 29% at higher N rates (80 and 100 kg N ha–1). In addition, response of rice to treatments with lower N rates with an Azolla cover was comparable to that obtained with the higher N rates without a cover. Thus, using Azolla as a surface cover in combination with urea can be an alternative management practice worth considering as a means to reduce NH3 volatilization losses and improve N use efficiency.  相似文献   

19.
Erratic rainfall in rainfed lowlands and inadequate water supply in irrigated lowlands can results in alternate soil drying and flooding during a rice (Oryza sativa L.) cropping period. Effects of alternate soil drying and flooding on N loss by nitrification-denitrification have been inconsistent in previous field research. To determine the effects of water deficit and urea timing on soil NO3 and NH4, floodwater NO3, and N loss from added 15N-labeled urea, a field experiment was conducted for 2 yr on an Andaqueptic Haplaquoll in the Philippines. Water regimes were continuously flooded, not irrigated from 15 to 35 d after transplanting (DT), or not irrigated from 41 to 63 DT. The nitrogen treatments in factorial combination with water regimes were no applied N and 80 kg urea-N ha–1, either applied half basally and half at 37 DT or half at 11 DT and half at 65 DT. Water deficit at 15 to 35 DT and 41 to 63 DT, compared with continuous soil flooding, significantly reduced extractable NH4 in the top 30-cm soil layer and resulted in significant but small (<1.0 kg N ha–1) soil NO3 accumulations. Soil NO3, which accumulated during the water deficit, rapidly disappeared after reflooding. Water deficit at 15 to 35 DT, unlike that at 41 to 63 DT, increased the gaseous loss of added urea N as determined from unrecovered 15N in 15N balances. The results indicate that application of urea to young rice in saturated or flooded soil results in large, rapid losses of N (mean = 35% of applied N), presumably by NH3 volatilization. Subsequent soil drying and flooding during the vegetative growth phase can result in additional N loss (mean = 14% of applied N), presumably by nitrification-denitrification. This additional N loss due to soil drying and flooding decreases with increasing crop age, apparently because of increased competition by rice with soil microorganisms for NH4 and NO3.  相似文献   

20.
The potential benefit to be derived from seed inoculation of Phaseolus vulgaris beans with effective strains of Rhizobium phaseoli, was investigated in field experiments over three years on a site low in soil nitrogen and lacking indigenous effective strains of R. phaseoli. Inoculation with R. phaseoli (strain RCR 3644) produced significant increases in nodulation, nitrogenase activity and plant growth in all experiments. In trials in 1978 and 1979, with cv. Seafarer, inoculation, in the absence of nitrogen fertiliser doubled seed yields. In 1978, the seed yields from inoculated beans without nitrogen fertiliser (1–6 t/ha) were not significantly different from those obtained with uninoculated beans receiving the optimum nitrogen fertiliser treatment of 120 kg N/ha (1–75 t/ha). In 1979, with lower rainfall favouring more efficient utilisation of nitrogen fertiliser, inoculation gave seed yields (1–88 t/ha) equivalent to those obtained with 60 kg N/ha (1–70 t/ha) but significantly less than with 120 kg N/ha (2–88 t/ha). More precise estimates from nitrogen response curves showed that inoculation supplied the fertiliser equivalent of 105 and 70 kg N/ha in 1978 and 1979 respectively. In both years, significant benefits were also obtained by the combination of inoculation and nitrogen fertiliser. In a separate experiment in 1979, with four R. phaseoli strains inoculated onto eight bean cultivars, three were highly effective nitrogen fixers on all cultivars. Two strains (RCR 3644 and NVRS 963A) each increased mean yields, in the absence of nitrogen fertiliser, from 1–39 t/ha uninoculated to c. 2–5 t/ha inoculated whilst strain RCR 3622 was outstanding with a mean yield of 3-0 t/ha. An analysis of the nitrogen content of seed showed that gains from nitrogen fixation were 37–57 kg N/ha/growing cycle for the combination RCR 3644 with cv. Seafarer. However, 106 kg N/ha/growing cycle was recorded for the combination RCR 3622 and cv. Aurora.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号