首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Nicotine and cocaine each stimulate hypothalamic-pituitary-adrenal and -gonadal axis hormones, and there is increasing evidence that the hormonal milieu may modulate the abuse-related effects of these drugs. This review summarizes some clinical studies of the acute effects of cigarette smoking or IV cocaine on plasma drug and hormone levels and subjective effects ratings. The temporal covariance between these dependent measures was assessed with a rapid (2 min) sampling procedure in nicotine-dependent volunteers or current cocaine users. Cigarette smoking and IV cocaine each stimulated a rapid increase in LH and ACTH, followed by gradual increases in cortisol and DHEA. Positive subjective effects ratings increased immediately after initiation of cigarette smoking or IV cocaine administration. However, in contrast to cocaine's sustained positive effects (< 20 min), ratings of “high” and “rush” began to decrease within one or two puffs of a high-nicotine cigarette while nicotine levels were increasing. Peak nicotine levels increased progressively after each of three successive cigarettes smoked at 60 min intervals, but the magnitude of the subjective effects ratings and peak ACTH and cortisol levels diminished. Only DHEA increased consistently after successive cigarettes. The possible influence of neuroactive hormones on nicotine dependence and cocaine abuse and the implications for treatment of these addictive disorders are discussed.  相似文献   

3.
Cigarettes containing cocaine paste were administered to experienced volunteer smokers in Peru, and plasma concentrations of cocaine were measured. Cocaine concentrations as high as 462 ng/ml were obtained after only three minutes of smoking cocaine paste. Subjects titrated their rate of consumption so as to achieve remarkably constant plasma concentrations during the smoking period. Areas under curve (AUC), adjusted for dose, were approximately 70% that obtained with oral or intranasal administration of cocaine to different subjects in previous experiments.  相似文献   

4.
5.
J L Katz  P Terry  J M Witkin 《Life sciences》1992,50(18):1351-1361
The present study compared the behavioral and toxic effects of cocaine and its ethanol derived metabolite, cocaine ethyl-ester (cocaethylene). Both drugs produced qualitatively similar psychomotor stimulant effects. Cocaine and cocaethylene increased locomotor activity in mice, with cocaine approximately four times more potent than cocaethylene. The durations of action of ED75 doses of each of the drugs were comparable. Each of the drugs also produced stimulation of operant responding in rats. In rats and squirrel monkeys trained to discriminate cocaine injections from saline, cocaine was approximately three to five times more potent than cocaethylene in producing these cocaine-like interoceptive effects. In contrast to the behavioral effects, cocaine and cocaethylene were equipotent in producing convulsions, and cocaethylene was more potent than cocaine in producing lethality. These results suggest that the conversion of cocaine to cocaethylene with simultaneous cocaine and alcohol use may produce an increased risk of toxicity due to a decrease in the potency of cocaethylene in producing psychomotor stimulant effects, and its increased potency in producing toxicity.  相似文献   

6.
7.
8.
Different drug stereoisomers can have different physiological and therapeutic effects. Difficulties in separating optical isomers often make it impractical to market stereochemically pure products or to monitor isomeric contamination. This is not thought to be a problem with drugs isolated from biological sources (the alkaloids, for example). However, small amounts of isomeric impurities also exist in many biological systems. More importantly the isolation and purification process can cause partial or complete racimization in some cases. Great care must be taken in the handling of some drugs and an efficient, sensitive means to monitor racimization is important. Liquid chromatographic separation on a chiral beta-cyclodextrin bonded phase can be an effective technique in many cases. Its use in separating optical isomers of dl-scopolamine, dl-hyoscyamine, dl-homatropine, and dl-cocaine is discussed.  相似文献   

9.
Acute lethal cocaine intoxication in the rat induces significant increases of plasma dopamine, norepinephrine, and epinephrine concentrations associated with cardiac functional and morphologic changes. Nitrendipine (a calcium channel antagonist) administered 5 min following cocaine administration lowers catecholamine concentration and restores cardiovascular function to normal, while preventing lethality, and so does enalaprilat (an enzyme-converting inhibitor) administration with diazepam. Cocaine cardiac toxicity in the rat appears to be associated with a significant stimulation of the sympathoadrenal and a sustained elevated plasma concentration of epinephrine. The renin angiotensin system also appears to be activated.  相似文献   

10.
Effect of cocaine and cocaine metabolites on cerebral arteries in vitro   总被引:3,自引:0,他引:3  
J A Madden  R H Powers 《Life sciences》1990,47(13):1109-1114
Cocaine has pronounced peripheral vasoconstrictor effects. Despite the short half life of cocaine in the body these effects are relatively long-lived. The role of cocaine metabolites in vasoconstriction attributed to cocaine has not been reported. We evaluated the contractile ability of cocaine and its major metabolites in isolated cat cerebral arteries. The primary cocaine metabolite, benzoylecgonine was a potent contractile agent, causing a 50% decrease in cross sectional area at 10(-5) M. This was less than caused by serotonin, but greater than caused by norepinehrine. Ecgonine and cocaine were less active contractile agents than was benzoylecgonine, and ecgonine methyl ester was a mild relaxant.  相似文献   

11.
《Life sciences》1994,56(1):PL7-PL12
The pulmonary effects of the cocaine pyrolysis product, methylecgonidine (MEG; anhydroecgonine methyl ester), were assessed in guinea pigs. Specific airway conductance (SGaw), which decreases during bronchoconstriction, was measured in guinea pigs exposed to atmospheres containing a condensation aerosol of MEG free base (13 ± 1 mg/liter of air), nebulized MEG fumarate (3 and 12% in phosphate buffered saline) or nebulized acetylcholine chloride (0.2 and 0.4% in phosphate buffered saline). A decrease in SGaw to 24.0 ± 4.2% (mean ± 2 S.E.M.) of baseline levels was observed in guinea pigs breathing MEG free base. A decrease to 28.4 + 4.5% of baseline was observed following administration of 0.4% acetylcholine. No change in SGaw was measured in guinea pigs exposed to 3% MEG fumarate but SGaw was reduced to 69.3 ± 5.3% of baseline after exposure to 12% MEG fumarate. MEG free base poses an alkaline challenge to the lung, 3% MEG fumarate is neutral (pH ≈ 7.4) and 12% MEG fumarate is acidic (pH ≈ 4.3); thus, MEG free-base and 12% MEG fumarate might provoke a reflex bronchoconstriction due to direct pulmonary irritant effects. These results suggest that MEG free base produced during crack pyrolysis may play a role in bronchoconstriction observed in crack smokers.  相似文献   

12.
13.
Autonomic actions of cocaine   总被引:1,自引:0,他引:1  
The development of our knowledge of the physiological, pharmacological, and biochemical actions of cocaine has in essence occurred in parallel with the development of our knowledge about the function of the autonomic nervous system. Cocaine is a sympathomimetic compound with potent local anesthetic properties. The principal hypothesis accepted to date to explain the sympathomimetic effects of cocaine is that this drug inhibits neuronal monoamine neurotransmitter reuptake by binding to a transporter or uptake site thereby increasing the effective concentration of neurotransmitter at adrenergic receptor sites. Much of the available evidence for this hypothesis has come from studies utilizing in vitro or in situ techniques. There have been relatively fewer studies examining the impact of cocaine on the autonomic nervous system in the intact animal. In addition, few studies have examined the effects of cocaine on central autonomic function. Past studies concerning the mechanism of action of cocaine are reviewed and recent data addressing the cardiovascular, respiratory, and central autonomic effects of cocaine are discussed.  相似文献   

14.
Impaired attention is the hallmark consequence of prenatal cocaine exposure (PCE), affecting brain development, learning, memory and social adaptation starting at an early age. To date, little is known about the brain structures and neurochemical processes involved in this effect. Through focusing on the visual system and employing zebrafish as a model, we show that PCE reduces expression of dopamine receptor Drd1, with levels reduced in the optic tectum and other brain regions, but not the telencephalon. Organism‐wide, PCE results in a 1.7‐fold reduction in the expression of the dopamine transporter (dat), at baseline. Acute cocaine administration leads to a 2‐fold reduction in dat in drug‐naive larvae but not PCE fish. PCE sensitizes animals to an anxiogenic‐like behavioral effect of acute cocaine, bottom‐dwelling, while loss of DAT due to genetic knockout (DATKO) leads to bottom‐dwelling behavior at baseline. Neuronal calcium responses to visual stimuli in both PCE and DATKO fish show tolerance to acute cocaine in the principal regions of visual attention, the telencephalon and optic tectum. The zebrafish model can provide a sensitive assay by which to elucidate the molecular mechanisms and brain region‐specific consequences of PCE, and facilitate the search for effective therapeutic solutions.  相似文献   

15.
Cocaine-induced enhancement of motor activity and extracellular dopamine concentrations exhibits sensitization upon repeated exposure. In this study, the neuroendocrine responses to cocaine were examined following cocaine pretreatment regimens which have been shown to produce behavioral sensitization. Adult male rats were injected with cocaine (15 mg/kg, IP) once daily for 14 days, followed by a dose-response challenge with cocaine (1-15 mg/kg, IP) either 18 hours or 7 days after the final pretreatment injection. Blood was collected 15 minutes following injections for radioimmunoassay of ACTH, corticosterone, prolactin, and renin. Cocaine increased plasma ACTH and corticosterone, while it decreased prolactin and renin concentrations. Pretreatment with cocaine for 2 weeks did not alter any of these endocrine responses after either the 18 hour or 7 day interval between pretreatment and challenge injections. In contrast, sensitization to the locomotor stimulant effects of cocaine was observed on the final day of pretreatment injections, and 7 days later. These data suggest that these endocrine effects of cocaine do not exhibit sensitization following repeated cocaine exposure.  相似文献   

16.
17.
Serotonin transporters are key target sites for clinical drugs and psychostimulants, such as fluoxetine and cocaine. Molecular cloning of a serotonin transporter from the central nervous system of the insect Manduca sexta enabled us to define domains that affect antagonist action, particularly cocaine. This insect serotonin transporter transiently expressed in CV-1 monkey kidney cells exhibits saturable, high affinity Na+ and Cl- dependent serotonin uptake, with estimated Km and Vmax values of 436 +/- 19 nm and 3.8 +/- 0.6 x 10-18 mol.cell.min-1, respectively. The Manduca high affinity Na+/Cl- dependent transporter shares 53% and 74% amino acid identity with the human and fruit fly serotonin transporters, respectively. However, in contrast to serotonin transporters from these two latter species, the Manduca transporter is inhibited poorly by fluoxetine (IC50 = 1.23 micro m) and cocaine (IC50 = 12.89 micro m). To delineate domains and residues that could play a role in cocaine interaction, the human serotonin transporter was mutated to incorporate unique amino acid substitutions, detected in the Manduca homologue. We identified a domain in extracellular loop 2 (amino acids 148-152), which, when inserted into the human transporter, results in decreased cocaine sensitivity of the latter (IC50 = 1.54 micro m). We also constructed a number of chimeras between the human and Manduca serotonin transporters (hSERT and MasSERT, respectively). The chimera, hSERT1-146/MasSERT106-587, which involved N-terminal swaps including transmembrane domains (TMDs) 1 and 2, was remarkably insensitive to cocaine (IC50 = 180 micro m) compared to the human (IC50 = 0.431 micro m) and Manduca serotonin transporters. The chimera MasSERT1-67/hSERT109-630, which involved only the TMD1 swap, showed greater sensitivity to cocaine (IC50 = 0.225 micro m) than the human transporter. Both chimeras showed twofold higher serotonin transport affinity compared to human and Manduca serotonin transporters. Our results show TMD1 and TMD2 affect the apparent substrate transport and antagonist sensitivity by possibly providing unique conformations to the transporter. The availability of these chimeras facilitates elucidation of specific amino acids involved in interactions with cocaine.  相似文献   

18.
Evolving conceptualizations of cocaine dependence   总被引:1,自引:0,他引:1  
Cocaine was considered incapable of producing dependence in 1980 but was proclaimed the "drug of greatest national public health concern" by 1984. Clinical consensus in 1980 held that cocaine did not produce a withdrawal syndrome, but recent clinical investigations demonstrate that cocaine produces unique abuse and withdrawal patterns that differ from other major abused drugs. Evolving pre-clinical research over the past two decades now suggests that chronic cocaine abuse produces neurophysiological alterations in specific central nervous system systems that regulate the capacity to experience pleasure. These evolving clinical and pre-clinical constructs have led to applications of promising experimental pharmacological treatments for cocaine abuse.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号