首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The human multiple drug resistance (MDR) gene has been used as a model for human gene transfer which could lead to human gene therapy. MDR is a transmembrane protein which pumps a number of toxic substances out of cells including several drugs used in cancer chemotherapy. Normal bone marrow cells express low levels of MDR and are particularly sensitive to the toxic effects of these drugs. There are two general applications of MDR gene therapy: (1) to provide drug-resistance to the marrow of cancer patients receiving chemotherapy, and (2) as a selectable marker which when co-transferred with a non-selectable gene such as the human beta globin gene can be used to enrich the marrow for cells containing both genes. We demonstrate efficient transfer and expression of the human MDR gene in a retroviral vector into live mice and human marrow cells including CD34+ cells isolated from marrow and containing the bulk of human hematopoietic progenitors. MDR gene transduction corrects the sensitivity of CD34+ cells to taxol, an MDR drug substrate, and enriches the marrow for MDR-transduced cells. The MDR gene-containing retroviral supernatant used has been shown to be safe and free of replication-competent retrovirus. Because of the safety of the MDR retroviral supernatant, and efficient gene transfer into mouse and human marrow cells, a phase 1 clinical protocol for MDR gene transfer into cancer patients has been approved to evaluate MDR gene transfer and expression in human marrow.  相似文献   

2.
The human multidrug resistance gene (MDR1) encodes a drug efflux pump glycoprotein (P-glycoprotein) responsible for resistance to multiple cytotoxic drugs. A plasmid carrying a human MDR1 cDNA under the control of a chicken beta-actin promoter was used to generate transgenic mice in which the transgene was mainly expressed in bone marrow and spleen. Immunofluorescence localization studies showed that P-glycoprotein was present on bone marrow cells. Furthermore, leukocyte counts of the transgenic mice treated with daunomycin did not fall, indicating that their bone marrow was resistant to the cytotoxic effect of the drug. Since bone marrow suppression is a major limitation to chemotherapy, these transgenic mice should serve as a model to determine whether higher doses of drugs can cure previously unresponsive cancers.  相似文献   

3.
Multidrug resistance resulting from expression of an energy-dependent drug efflux pump encoded by the human MDR1 gene is a major impediment to effective cancer therapy. Pharmacologic intervention aimed at inhibiting this multidrug transporter should improve existing chemotherapy of human cancer, but drug development has been delayed by the difficulty and expense of developing valid animal models. Using recombinant DNA technology, a transgenic mouse has been engineered whose bone marrow is protected from the toxic effects of chemotherapy by expression of the MDR1 gene. This animal system allows the rapid screening of drugs which inhibit the multidrug transporter and heralds a new era of using transgenic animals for pharmacologic screening.  相似文献   

4.
Gene therapy using anticancer drug-resistance genes   总被引:1,自引:0,他引:1  
Sugimoto Y 《Human cell》1999,12(3):115-123
Myelosuppression is a major dose-limiting factor in cancer chemotherapy. Introduction of drug-resistance genes into bone marrow cells of cancer patients has been proposed to overcome this limitation. In theory, any gene whose expression protects cells against the toxic effects of chemotherapy should be useful in vivo for this purpose. Among such genes, human multidrug-resistance gene (MDR1) has been studied most extensively for this purpose, and clinical trials of drug-resistance gene therapy have been started in the US for cancer patients who undergo high-dose chemotherapy with autologous hematopoietic stem cell transplantation. In Japan, our clinical protocol of MDR1 gene therapy "A clinical study of drug-resistance gene therapy to improve the efficacy and safety of chemotherapy against breast cancer" has been submitted to the government. To improve the efficacy and safety of this drug-resistance gene therapy, we have constructed a series of MDR1-bicistronic retrovirus vectors using a retrovirus backbone of Harvey murine sarcoma virus and internal ribosome entry site (IRES) from picornavirus to co-express a second gene with the MDR1 gene. MDR1-MGMT bicistronic vectors can be used to protect bone marrow cells of cancer patients from combination chemotherapy with MDR1-related anticancer agents and nitrosoureas. In addition, MDR1-bicistronic retrovirus vectors can be designed to use the MDR1 gene as an in vivo selectable marker to enrich the transduced cells which express therapeutic genes, if disease is curable by the expression of a single-peptide gene in any types of bone marrow cells or peripheral blood cells.  相似文献   

5.
SLD5 forms a GINS complex with PSF1, PSF2 and PSF3, which is essential for the initiation of DNA replication in lower eukaryotes. Although these components are conserved in mammals, their biological function is unclear. We show here that targeted disruption of SLD5 in mice causes a defect in cell proliferation in the inner cell mass, resulting in embryonic lethality at the peri-implantation stage, indicating that SLD5 is essential for embryogenesis. Moreover, this phenotype of SLD5 mutant mice is quite similar compared with that of PSF1 mutant mice. We have previously reported that haploinsufficiency of PSF1 resulted in failure of acute proliferation of bone marrow hematopoietic stem cells (HSCs) during reconstitution of bone marrow ablated by 5-FU treatment. Since SLD5 was highly expressed in bone marrow, we investigated its involvement in bone marrow reconstitution after bone marrow ablation as observed in PSF1 heterozygous mutant mice. However, heterozygous deletion of the SLD5 gene was found not to significantly affect bone marrow reconstitution. On the other hand, abundant SLD5 expression was observed in human cancer cell lines and heterozygous deletion of the gene attenuated tumor progression in a murine model of spontaneous gastric cancer. These indicated that requirement and dependency of SLD5 for cell proliferation is different in different cell types.  相似文献   

6.
Multidrug resistance (MDR) is characterized by the occurrence of cross-resistance to a broad range of structurally and functionally unrelated drugs. Several mechanisms are involved in MDR. One of the most well-known mechanisms is the overexpression of P-glycoprotein (P-gp), encoded by the MDR1 gene in humans and by the mdr1a and mdr1b genes in rodents. P-gp is extensively expressed in the human body, e.g., in the blood-brain barrier and also in solid tumor tissue. Overexpression of P-gp on tumor membranes might result in MDR of human tumors. To circumvent this resistant phenotype, several P-gp modulators such as cyclosporin A (CsA) are available. Competition between P-gp drugs and modulators results in decreased transport of the drug out of tumor tissue and an increased cellular level of these drugs. For effective clinical treatment it is important to have knowledge about P-gp functionality in tumors. Therefore, we have developed a method to measure the P-gp functionality in vivo with PET and [(11)C]verapamil as a positron-emitting P-gp substrate. The results obtained in rodents and in cancer patients are described in this article.  相似文献   

7.
BACKGROUND: The objective of multidrug resistance-1 (MDR1) gene therapy is protection of the myeloid cell lineage. It is therefore important to examine the effect of retroviral transduction on myeloid maturation. Transfer of the human MDR1 gene can confer resistance to a variety of cytostatic drugs. For a safe application in humans it is paramount to follow-up the development of transduced cells. METHODS: We transduced human mobilized peripheral blood progenitor cells (PBPC) with a viral vector containing the human MDR1 cDNA and transplanted the transduced cells into non-obese diabetic severe combined immunodeficient (NOD/SCID) mice. The progeny of the transduced cells was analyzed in detail by flow cytometry. RESULTS: A detailed analysis by four-color flow cytometry showed that MDR1 transgene-expressing CD33+ myeloid cells were preferentially negative for the maturation-associated myeloid markers CD11b and CD10, while the untransduced CD33+ myeloid cells expressed significantly higher proportions of these Ag (P<0.01 each). There was no difference in the expression of B- or T-lymphoid Ag among the MDR1-transduced and untransduced lymphoid cells. DISCUSSION: These data indicate that retroviral MDR1 gene transfer results in preferential P-glycoprotein expression in myeloid progenitor cells, which is the target cell population for myelotoxicity of cytostatic drugs.  相似文献   

8.
An adriamycin-resistant human colonic cancer cell line was characterized. This clone exhibits the classical multidrug resistance (MDR) phenotype, being cross-resistant to hydrophobic drugs such as colchicine, and vinblastine. In contrast, this clone shows a normal response to DNA-damaging agents. The appearance of MDR in these cells was linked to a decreased accumulation of the drug [3H]colchicine as compared to the drug-sensitive cells. This MDR line expressed 80-100 fold increased levels of the specific 4.5-kb mdr mRNA, and a gene amplification. Our results indicate that MDR in human colonic cancer cells can result from increased expression of at least one member of the mdr gene family.  相似文献   

9.
Drug-induced myelosuppression is a frequent reason for curtailing chemotherapy in cancer patients. Rescue of myelosuppressed patients with autologous marrow transplants is reasonably advanced and permits an increase in the dose of anticancer drugs. Despite this improvement, patients often relapse with drug resistance disease. The human multidrug resistance (mdr1) gene might make it possible to render hemopoietic stem cells resistant to anticancer drugs after transfer of this gene. By introducing resistant stem cells into patients it might be possible to treat these patients repeatedly with otherwise ablative therapy. This review explores the feasibility ofmdr1 gene therapy.Abbreviations MDR multidrug resistance - ABMT autologous bone marrow transplantation - P-gp P-glycoprotein - RCR replication-competent retrovirus  相似文献   

10.
Abstract

A major problem in the chemotherapy of solid tumors and hematologic malignancies is the intrinsic as well as acquired cross resistance to multiple chemotherapeutic agents. Recently, this type of multidrug resistance has been related to a gene, MDR1, and its gene product, p-glycoprotein, which functions as the efflux pump, prevents accumulation of drugs and alters their cytotoxicity. Many drug-resistant human tumors express the MDR1 gene and MDR1 RNA levels are elevated in many cancers that have not responded to chemotherapy. The same persistent observation has been made in recurrent tumors who have responded initially to chemotherapy.

Doxorubicin is one of the most important anticancer agent having significant single agent activity in a variety of cancer types and is now the cornerstone of some widely used combination regimens. Despite the clinical effectiveness of the drug, doxorubicin resistance that arises in malignant cells following repeated courses of treatment is the major problem in the clinical management of neoplastic diseases. Recently, extensive studies have demonstrated that liposome encapsulated doxorubicin effectively modulates the multidrug resistance phenotype in cancer cells by altering the function of p-glycoprotein. This modulation of MDR phenotype by liposomes has been demonstrated in vitro in human breast cancer cells, ovarian cancer cells, human promyelocytic leukemia cells and in human colon cancer cells and in vivo in transgenic mice transfected with a functional MDR1 gene. It appears liposomes can play an effective role as a new modality of treatment for human cancers which have become refractory to chemotherapy. An exciting area of research which soon will emerge will exploit the different binding sites on p-glycoprotein by using combination of liposomes with other pharmacological modulators of MDR to impart maximal overcoming of multidrug resistance in cancer patients.  相似文献   

11.
Two new mAbs (M/K-1 and M/K-2) define an adhesion molecule expressed on stromal cell clones derived from murine bone marrow. The protein is similar in size to a human endothelial cell adhesion molecule known as VCAM-1 or INCAM110. VCAM-1 is expressed on endothelial cells in inflammatory sites and recognized by the integrin VLA-4 expressed on lymphocytes and monocytes. The new stromal cell molecule is a candidate ligand for the VLA-4 expressed on immature B lineage lymphocytes and a possible homologue of human VCAM-1. We now report additional similarities in the distribution, structure, and function of these proteins. The M/K antibodies detected large cells in normal bone marrow, as well as rare cells in other tissues. The antigen was constitutively expressed and functioned as a cell adhesion molecule on cultured murine endothelial cells. It correlated with the presence of mRNA which hybridized to a human VCAM-1 cDNA probe. Partial NH2 terminal amino acid sequencing of the murine protein revealed similarities to VCAM-1 and attachment of human lymphoma cells to murine endothelial cell lines was inhibited by the M/K antibodies. All of these observations suggest that the murine and human cell adhesion proteins may be related. The antibodies selectively interfered with B lymphocyte formation when included in long term bone marrow cultures. Moreover, they caused rapid detachment of lymphocytes from the adherent layer when added to preestablished cultures. The VCAM-like cell adhesion molecule on stromal cells and VLA-4 on lymphocyte precursors may both be important for B lymphocyte formation.  相似文献   

12.
The human MDR3 gene is a member of the multidrug resistance (MDR) gene family. The MDR3 P-glycoprotein is a transmembrane protein that translocates phosphatidylcholine. The MDR1 P-glycoprotein related transports cytotoxic drugs. Its overexpression can make cells resistant to a variety of drugs. Attempts to show that MDR3 P-glycoprotein can cause MDR have been unsuccessful thus far. Here, we report an increased directional transport of several MDR1 P-glycoprotein substrates, such as digoxin, paclitaxel, and vinblastine, through polarized monolayers of MDR3-transfected cells. Transport of other good MDR1 P-glycoprotein substrates, including cyclosporin A and dexamethasone, was not detectably increased. MDR3 P-glycoprotein-dependent transport of a short-chain phosphatidylcholine analog and drugs was inhibited by several MDR reversal agents and other drugs, indicating an interaction between these compounds and MDR3 P-gp. Insect cell membranes from Sf9 cells overexpressing MDR3 showed specific MgATP binding and a vanadate-dependent, N-ethylmaleimide-sensitive nucleotide trapping activity, visualized by covalent binding with [alpha-(32)P]8-azido-ATP. Nucleotide trapping was (nearly) abolished by paclitaxel, vinblastine, and the MDR reversal agents verapamil, cyclosporin A, and PSC 833. We conclude that MDR3 P-glycoprotein can bind and transport a subset of MDR1 P-glycoprotein substrates. The rate of MDR3 P-glycoprotein-mediated transport is low for most drugs, explaining why this protein is not detectably involved in multidrug resistance. It remains possible, however, that drug binding to MDR3 P-glycoprotein could adversely affect phospholipid or toxin secretion under conditions of stress (e.g. in pregnant heterozygotes with one MDR3 null allele).  相似文献   

13.
To understand the role of a gene in the development of colitis, we compared the responses of wild-type mice and gene-of-interest deficient knockout mice to colitis. If the gene-of-interest is expressed in both bone marrow derived cells and non-bone marrow derived cells of the host; however, it is possible to differentiate the role of a gene of interest in bone marrow derived cells and non- bone marrow derived cells by bone marrow transplantation technique. To change the bone marrow derived cell genotype of mice, the original bone marrow of recipient mice were destroyed by irradiation and then replaced by new donor bone marrow of different genotype. When wild-type mice donor bone marrow was transplanted to knockout mice, we could generate knockout mice with wild-type gene expression in bone marrow derived cells. Alternatively, when knockout mice donor bone marrow was transplanted to wild-type recipient mice, wild-type mice without gene-of-interest expressing from bone marrow derived cells were produced. However, bone marrow transplantation may not be 100% complete. Therefore, we utilized cluster of differentiation (CD) molecules (CD45.1 and CD45.2) as markers of donor and recipient cells to track the proportion of donor bone marrow derived cells in recipient mice and success of bone marrow transplantation. Wild-type mice with CD45.1 genotype and knockout mice with CD45.2 genotype were used. After irradiation of recipient mice, the donor bone marrow cells of different genotypes were infused into the recipient mice. When the new bone marrow regenerated to take over its immunity, the mice were challenged by chemical agent (dextran sodium sulfate, DSS 5%) to induce colitis. Here we also showed the method to induce colitis in mice and evaluate the role of the gene of interest expressed from bone-marrow derived cells. If the gene-of-interest from the bone derived cells plays an important role in the development of the disease (such as colitis), the phenotype of the recipient mice with bone marrow transplantation can be significantly altered. At the end of colitis experiments, the bone marrow derived cells in blood and bone marrow were labeled with antibodies against CD45.1 and CD45.2 and their quantitative ratio of existence could be used to evaluate the success of bone marrow transplantation by flow cytometry. Successful bone marrow transplantation should show a vast majority of donor genotype (in term of CD molecule marker) over recipient genotype in both the bone marrow and blood of recipient mice.  相似文献   

14.
Despite significant progress in our understanding of mesenchymal stem cell (MSC) biology during recent years, much of the information is based on experiments using in vitro culture-selected stromal progenitor cells. Therefore, the natural cellular identity of MSCs remains poorly defined. Numerous studies have reported that CD44 expression is one of the characteristics of MSCs in both humans and mice; however, we here have prospectively isolated bone marrow stromal cell subsets from both human and mouse bone marrow by flow cytometry and characterized them by gene expression analysis and function assays. Our data provide functional and molecular evidence suggesting that primary mesenchymal stem and progenitor cells of bone marrow reside in the CD44(-) cell fraction in both mice and humans. The finding that these CD44(-) cells acquire CD44 expression after in vitro culture provides an explanation for the previous misconceptions concerning CD44 expression on MSCs. In addition, the other previous reported MSC markers, including CD73, CD146, CD271, and CD106/VCAM1, are also differentially expressed on those two cell types. Our microarray data revealed a distinct gene expression profile of the freshly isolated CD44(-) cells and the cultured MSCs generated from these cells. Thus, we conclude that bone marrow MSCs physiologically lack expression of CD44, highlighting the natural phenotype of MSCs and opening new possibilities to prospectively isolate MSCs from the bone marrow.  相似文献   

15.
C C Chao  C M Ma  S Lin-Chao 《FEBS letters》1991,291(2):214-218
The human P-glycoprotein gene family contains the mdr1 and the mdr3 gene. The mdr1 P-glycoprotein is over-expressed in multidrug resistant (MDR) tumor cells and is believed to play a role in the elimination of certain cytotoxic drugs used in the chemotherapy of cancer. The mdr3 gene has not been found to be amplified or over-expressed in MDR cells. In this study, gene-specific mdr gene probes were developed for the detection of the gene and the total mRNA level. Southern and Northern hybridization analyses showed that the mdr genes and the mRNA levels were increased 30--40-fold in a MDR human colon cancer cell line. In addition, this MDR cell line had an altered growth rate and morphology and detectable double minute chromosomes.  相似文献   

16.
The Ikaros gene is alternately spliced to generate multiple DNA-binding and nonbinding isoforms that have been implicated as regulators of hematopoiesis, particularly in the lymphoid lineages. Although early reports of Ikaros mutant mice focused on lymphoid defects, these mice also show significant myeloid, erythroid, and stem cell defects. However, the specific Ikaros proteins expressed in these cells have not been determined. We recently described Ikaros-x (Ikx), a new Ikaros isoform that is the predominant Ikaros protein in normal human hematopoietic cells. In this study, we report that the Ikx protein is selectively expressed in human myeloid lineage cells, while Ik1 predominates in the lymphoid and erythroid lineages. Both Ik1 and Ikx proteins are expressed in early human hematopoietic cells (Lin(-)CD34(+)). Under culture conditions that promote specific lineage differentiation, Ikx is up-regulated during myeloid differentiation but down-regulated during lymphoid differentiation from human Lin(-)CD34(+) cells. We show that Ikx and other novel Ikaros splice variants identified in human studies are also expressed in murine bone marrow. In mice, as in humans, the Ikx protein is selectively expressed in the myeloid lineage. Our studies suggest that Ikaros proteins function in myeloid, as well as lymphoid, differentiation and that specific Ikaros isoforms may play a role in regulating lineage commitment decisions in mice and humans.  相似文献   

17.
18.
Heparan sulfate proteoglycans (HSPGs) are ubiquitous macromolecules. In bone, they are associated with cell surfaces and the extracellular matrix (ECM). The heparan sulfate (HS) chains of HSPGs bind a multitude of bioactive molecules, thereby controlling normal and pathologic processes. The HS-degrading endoglycosidase, heparanase, has been implicated in processes such as inflammation, vascularization associated with wound healing and malignancies, and cancer metastasis. Here we show progressive mRNA expression of the hpa gene (encoding heparanase) in murine bone marrow stromal cells undergoing osteoblastic (bone forming) differentiation and in primary calvarial osteoblasts. Bone marrow stromal cells derived from transgenic mice expressing recombinant human heparanase (rh-heparanase) and MC3T3 E1 osteoblastic cells exposed to soluble rh-heparanase spontaneously undergo osteogenic differentiation. In addition, the transgenic bone marrow stromal cells degrade HS chains. In wild-type (WT) and hpa-transgenic (hpa-tg) mice, heparanase is weakly expressed throughout the bone marrow with a substantial increase in osteoblasts and osteocytes, especially in the hpa-tg mice. Heparanase expression was absent in osteoclasts. Micro-computed tomographic and histomorphometric skeletal analyses in male and female hpa-tg versus WT mice show markedly increased trabecular bone mass, cortical thickness, and bone formation rate, but no difference in osteoclast number. Collectively, our data suggest that proteoglycans tonically suppress osteoblast function and that this inhibition is alleviated by HS degradation with heparanase.  相似文献   

19.
Chloride channel-3 (ClC-3), a member of the ClC family of voltage-gated Cl channels, is involved in the resistance of tumor cells to chemotherapeutic drugs. Here, we report a new mechanism for ClC-3 in mediating multidrug resistance (MDR). ClC-3 was highly expressed in the P-glycoprotein (P-gp)-dependent human lung adenocarcinoma cell line (A549)/paclitaxel (PTX) and the human breast carcinoma cell line (MCF-7)/doxorubicin (DOX) resistant cells. Changes in the ClC-3 expression resulted in the development of drug resistance in formerly drug-sensitive A549 or MCF-7 cells, and drug sensitivity in formerly drug-resistant A549/Taxol and MCF-7/DOX cells. Double transgenic MMTV-PyMT/CLCN3 mice with spontaneous mammary cancer and ClC-3 overexpression demonstrated drug resistance to PTX and DOX. ClC-3 expression upregulated the expression of MDR1 messenger RNA and P-gp by activating the nuclear factor-κB (NF-κB)-signaling pathway. These data suggest that ClC-3 expression in cancer cells induces MDR by upregulating NF-κB-signaling-dependent P-gp expression involving another new mechanism for ClC-3 in the development of drug resistance of cancers.  相似文献   

20.
Human mutant-type (mt) p53 cDNA was synthesized and cloned from human lung cancer cell line GL containing mt-p53 gene by using polymerase chain reaction (PCR). It was confirmed that the mt-p53 cDNA con-tained the complete coding sequence of p53 gene but mutated at codon 245 (G→T) and resulted in glycine to cysteine by sequencing analysis. The retroviral vector pD53M of the mt-p53 was constructed and introduced into the drug-sen-sitive human lung cancer cells GAO in which p53 gene did not mutate. The transfected GAO cells strongly expressed mutant-type p53 protein by immunohistochemistry, showing that pD53M vector could steadily express in GAO cells. The drug resistance to several anticancer agents of GAO cells infected by pD53M increased in varying degrees, with the highest increase of 4-fold, in vitro and in vivo. By quantitative PCR and flow cytometry (FCM) analyses, the expression of MDR1 gene and the activity of P-glycoprotein (Pgp) did not increase, the expression of MRP gene and the activity of m  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号