首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously characterized the biogenesis of the human CD8α protein expressed in rat epithelial cells. We now describe the biosynthesis, post-translational maturation and hetero-oligomeric assembly of the human CD8α/p56lck protein complex in stable transfectants obtained from the same cell line. There were no differences in the myristilation of p56lck, or in the dimerization, O-glycosylation and transport to the plasma membrane of CD8α, between cells expressing either one or both proteins. In the doubly expressing cells, dimeric forms of CD8α established hetero-oligomeric complexes with p56lck, as revealed by co-immunoprecipitation assays performed with anti-CD8α antibody. Moreover, p56lck bound in these hetero-oligomeric complexes was endowed with auto- and hetero-phosphorylating activity. The present study shows that: (1) the newly synthesized p56lck binds rapidly to CD8α and most of the p56lck is bound to CD8α at steady state; (2) CD8α/p56lck protein complexes are formed at internal membranes as well as at the plasma membrane; and (3) about 50% of complexed p56lck reaches the cell surface.  相似文献   

2.
Two apiose-containing kaempferol triosides, together with nine known flavonoids were isolated from the leaves of Silphium perfoliatum L. Their structures were elucidated by acid hydrolysis and spectroscopic methods including UV, LSI MS, FAB MS, CI MS, 1H, 13C and 2D-NMR, DEPT, HMQC and HMBC experiments. The two new compounds were identified as kaempferol 3-O-β- -apiofuranoside 7-O-α- -rhamnosyl-(1′→6)-O-β- -galactopyranoside and kaempferol 3-O-β- -apiofuranoside 7-O-α- -rhamnosyl-(1→ 6)-O-β- (2-O-E-caffeoylgalactopyranoside).  相似文献   

3.
A procedure has been developed for the separation of intrinsic proteins of plasma membranes from the electric organ of Torpedo marmorata. (Na+ + K+)-ATPase, nicotinic acetylcholine receptor and acetylcholinesterase remained active after solubilization with the nonionic detergent dodecyl octaethylene glycol monoether (C12E8). These components could be separated by ion exchange chromatography on DEAE-Sephadex A-25. Fractions enriched in ouabain-sensitive K+-phosphatase or (Na+ + K+)-ATPase activity showed two bands in sodium dodecyl sulphate polyacrylamide gel electrophoresis corresponding to the α- and β-subunits. The (Na+ + K+)-ATPase was shown to have immunological determinants in common with a 93 kDa polypeptide which copurified with the nicotinic acetylcholine receptor, also after solubilization in Triton X-100 and chromatography on Naja naja siamensis α-toxin-Sepharose columns. The data suggest that the α-subunit of (Na+ + K+)-ATPase associates with the acetylcholine receptor in the membranes of the electric organ.  相似文献   

4.
Bhargava, H. N., S. Kumar and J. T. Bian. Up-regulation of brain N-methyl- -aspartate receptors following multiple intracerebroventricular injections of [ -Pen2, -Pen5]enkephalin and [ -Ala2, Glu4]deltorphin II in mice. Peptides 18(10) 1609–1613, 1997.—The effects of chronic administration of [ -Pen2, -Pen5]enkephalin and [ -Ala2, Glu4]deltorphin II, the selective agonists of the δ1- and δ2-opioid receptors, on the binding of [3H]MK-801, a noncompetitive antagonist of the N-methyl- -aspartate receptor, were determined in several brain regions of the mouse. Male Swiss-Webster mice were injected intracerebroventricularly (i.c.v.) with [ -Pen2, -Pen5]enkephalin or [ -Ala2, Glu4]deltorphin II (20 μg/mouse) twice a day for 4 days. Vehicle injected mice served as controls. Previously we have shown that the above treatment results in the development of tolerance to their analgesic activity. The binding of [3H]MK-801 was determined in brain regions (cortex, midbrain, pons and medulla, hippocampus, striatum, hypothalamus and amygdala). At 5 nM concentration, the binding of [3H]MK-801 was increased in cerebral cortex, hippocampus, and pons and medulla of [ -Pen2, -Pen5]enkephalin treated mice. In [ -Ala2, Glu4]deltorphin II treated mice, the binding of [3H]MK-801 was increased in cerebral cortex and hippocampus. The changes in the binding were due to increases in the Bmax value of [3H]MK-801. It is concluded that tolerance to δ1- and δ2-opioid receptor agonists is associated with up-regulation of brain N-methyl- -aspartate receptors, however, some brain areas affected differ with the two treatments. The results are consistent with the recent observation from this laboratory that N-methyl- -aspartate receptors antagonists block tolerance to the analgesic action of δ1- and δ2-opioid receptor agonists.  相似文献   

5.
The pentapeptide leucine enkephalin induced down-regulation of enkephalin receptors in neuroblastoma-glioma NG108-15 hybrid cells in a reversible fashion, whereas the stable enkephalin analogue, d-Ala2-Met-enkephalinamide (AMEA), and the potent opiate alkaloid, etorphine, had a prolonged effect. The opiate alkaloid, morphine, which has low affinity to δ-type enkephalin receptors of these cells did not induce down-regulation, whereas AMEA decreased the binding of both opiate agonists and antagonists but had no effect on the binding of the α2-adrenergic ligand, [3H]yohimbine. From several experiments that were designed to remove the tightly bound AMEA, and from experiments with solubilized receptor we ruled out the possibility that the decreased binding capacity of enkephalin-treated cells reflects only receptor masking. The study suggests that down-regulation of enkephalin receptors that may also occur in vivo can account for some of the abnormal physiological responses of subjects treated chromically with opiates. However, since opiates from the morphine type can induce opiate tolerance in vivo, but not down-regulation of enkephalin receptors in the cultured cells, we suggest that down-regulation of δ-type opiate receptors may not be prerequisite for the development of the physiological tolerance/dependence on these alkaloids.  相似文献   

6.
Importin-α proteins do not only mediate the nuclear import of karyophilic proteins but also regulate spindle assembly during mitosis and the assembly of ring canals during Drosophila oogenesis. Three importin-α genes are present in the genome of Drosophila. To gain further insights into their function we analysed their expression during spermatogenesis by using antibodies raised against each of the three Importin-α proteins identified in Drosophila, namely, Imp-α1, -α2, and -α3. We found that each Imp-α is expressed during a specific and limited period of spermatogenesis. Strong expression of Imp-α2 takes place in spermatogonial cells, persists in spermatocytes, and lasts up to the completion of meiosis. In growing spermatocytes, the intracellular localisation of Imp-α2 appears to be dependent upon the rate of cell growth. In pupal testes Imp-α2 is essentially present in the spermatocyte nucleus but is localised in the cytoplasm of spermatocytes from adult testes. Both Imp-α1 and -α3 expression initiates at the beginning of meiosis and ends during spermatid differentiation. Imp-α1 expression extends up to the onset of the elongation phase, whereas that of Imp-α3 persists up to the completion of nuclear condensation when the spermatids become individualised. During meiosis Imp-α1 and -α3 are dispersed in the karyoplasm where they are partially associated with the nuclear spindle, albeit not with the asters. At telophase they aggregate around the chromatin. During sperm head differentiation, both Imp-α1 and -α3 are nuclear. These data indicate that each Imp-α protein carries during Drosophila spermatogenesis distinct, albeit overlapping, functions that may involve nuclear import of proteins, microtubule organisation, and other yet unknown processes.  相似文献   

7.
Eukaryotic translation initiation factor 6 (eIF6), also termed p27BBP, is an evolutionary conserved regulator of ribosomal function. The protein is involved in maturation and/or export from the nucleus of the 60S ribosomal subunit. Regulated binding to and release from the 60S subunit also regulates formation of 80S ribosomes, and thus translation. The protein is also found in hemidesmosomes of epithelial cells expressing β4 integrin and is assumed to regulate cross-talk between β4 integrin, intermediate filaments and ribosomes. In the present study we show that the Dictyostelium eIF6 (also called p27BBP) gene is expressed during growth, down-regulated during the first hours of starvation, and up-regulated again at the end of aggregation. Phagocytosis, and to a lesser extent pinocytic uptake of axenic medium, stimulate gene expression in starving cells. The eIF6 gene is present in single copy and its ablation is lethal. We utilized the green fluorescent protein (GFT) as fusion protein marker to investigate sequences responsible for eIF6 subcellular localization. The protein is found both in cytoplasm and nucleus, and is enriched in nucleoli. Deletion sequence analysis shows that nucle(ol)ar localization sequences are located within the N- and C-terminal subdomains of the protein.  相似文献   

8.
The immunologic cross-reactivity of the α and α+ forms of the large subunit and the β subunit of the (Na+ + K+)-ATPase from brain and kidney preparations was examined using rabbit antiserum prepared against the purified holo lamb kidney enzyme. As previously reported by Sweadner ((1979) J. Biol. Chem. 254, 6060–6067) phosphorylation of the large subunit of the (Na+ + K+)-ATPase in the presence of Na+, Mg2+, and [γ-32P]ATP revealed that dog and, very likely, rat brain contain two forms of the large subunit (designated α and α+) while dog, rat, and lamb kidney contain only one form (α). The cross-reactivity of the α and α+ forms in these preparations was investigated by resolving the subunits by SDS-polyacrylamide gel electrophoresis. The separated polypeptides were transferred to unmodified nitrocellulose paper, and reacted with rabbit anti-lamb kidney serum, followed by detection of the antigen-antibody complex with 125I-labeled protein A and autoradiography. By this method, the α and α+ forms of rat and dog brain, as well as the α form found in kidney, were shown to cross-react. In addition, membranes from human cerebral cortex were shown to contain two immunoreactive bands corresponding to the α and α+ forms of dog brain. In contrast, the brain of the insect Manduca sexta contains only one immunoreactive polypeptide with a molecular weight intermediate to the α and α+ forms of dog brain. The β subunit from lamb, dog and rat kidney and from dog and rat brain cross-reacts with anti-lamb kidney (Na+ + K+)-ATPase serum. The mobility of the β subunit from dog and rat brain on SDS-polyacrylamide electrophoresis gels is greater than the mobility of the β subunit from lamb, rat or dog kidney.  相似文献   

9.
A gas chromatography–electron capture mass spectrometry assay has been developed for the histamine H3 receptor agonist, Nα-methylhistamine (Nα-MH). The assay is linear from 50 pg–10 ng, with a limit of detection of 50 pg/ml for gastric juice and plasma, and 50 pg/sample for bacteria (107–108 CFU) and gastric tissue (5–10 mg wet weight). The limits of quantification are 100 pg/ml for gastric juice (%RSD=1.4) and plasma (%RSD=9.4), and 100 pg/sample for bacteria (%RSD=3.9) and tissue (%RSD=5.8). Nα-MH was not present in human plasma, but low levels (1.4 ng/ml and 0.4 ng/ml) were detected in two samples of human gastric juice obtained from patients infected with Helicobacter pylori.  相似文献   

10.
Three phenolic glycosides 5-O-{[5′′-O-E-(4′′′-O-threo-guaiacylglycerol)-feruloyl]-β-apiofuranosyl-(1→2)-β-xylopyranosyl} gentisic acid, 5-O-[(5′′-O-vanilloyl)-β-apiofuranosyl-(1→2)-β-xylopyranosyl] gentisic acid and 1-O-[E-(4′′′-O-threo-guaiacylglycerol)-feruloyl]-3-O-β-galacturonopyranosyl glycerol were isolated and identified from the roots of Medicago truncatula together with four known 5-O-β-xylopyranosyl gentisic acid, vicenin-2, hovetrichoside C and pterosupin identified for the first time in this species. Structural elucidation was carried out on the basis of UV, mass, 1H and 13C NMR spectral data.  相似文献   

11.
An enhanced expression of transforming growth factor-α (TGFα) was demonstrated in two clones of NOG-8 mouse mammary epithelial cells, NOG-8 SR1 and NOG-8 SR2, that have been transformed by a v-Ha-ras oncogene. The amount of TGFα production in NOG-8 SR1 and NOG-8 SR2 cells was dependent on the level of p21ras expression in these clones, which directly correlated with their cloning efficiency in soft agar. There was also a decrease in the number of epidermal growth factor (EGF) receptors on the NOG-8 SR1 and NOG-8 SR2 cells that is proportional to the amount of TGFα secreted. These effects were specific for ras because neu-transformed NOG-8 cells grew in soft agar at a comparable level to NOG-8 SR2 cells yet did not show any increase in TGFα production or change in EGF receptor expression.  相似文献   

12.
The endoplasmic reticulum (ER) is not only a home for folding and posttranslational modifications of secretory proteins but also a reservoir for intracellular Ca2+. Perturbation of ER homeostasis contributes to the pathogenesis of various neurodegenerative diseases, such as Alzheimer''s and Parkinson diseases. One key regulator that underlies cell survival and Ca2+ homeostasis during ER stress responses is inositol-requiring enzyme 1α (IRE1α). Despite extensive studies on this ER membrane-associated protein, little is known about the molecular mechanisms by which excessive ER stress triggers cell death and Ca2+ dysregulation via the IRE1α-dependent signaling pathway. In this study, we show that inactivation of IRE1α by RNA interference increases cytosolic Ca2+ concentration in SH-SY5Y cells, leading to cell death. This dysregulation is caused by an accelerated ER-to-cytosolic efflux of Ca2+ through the InsP3 receptor (InsP3R). The Ca2+ efflux in IRE1α-deficient cells correlates with dissociation of the Ca2+-binding InsP3R inhibitor CIB1 and increased complex formation of CIB1 with the pro-apoptotic kinase ASK1, which otherwise remains inactivated in the IRE1α–TRAF2–ASK1 complex. The increased cytosolic concentration of Ca2+ induces mitochondrial production of reactive oxygen species (ROS), in particular superoxide, resulting in severe mitochondrial abnormalities, such as fragmentation and depolarization of membrane potential. These Ca2+ dysregulation-induced mitochondrial abnormalities and cell death in IRE1α-deficient cells can be blocked by depleting ROS or inhibiting Ca2+ influx into the mitochondria. These results demonstrate the importance of IRE1α in Ca2+ homeostasis and cell survival during ER stress and reveal a previously unknown Ca2+-mediated cell death signaling between the IRE1α–InsP3R pathway in the ER and the redox-dependent apoptotic pathway in the mitochondrion.  相似文献   

13.
GABA-gated Cl channels were studied in the nervous system of the larval tobacco hawk moth, Manduca sexta, using electrophysiology, 36Cl uptake into membrane microsacs and immunocytochemistry. A GABA-induced increase in Cl conductance was recorded from a visually identifiable neurone (fg1) in the desheathed frontal ganglion. The response was insensitive to the vertebrate GABAA receptor antagonist, bicuculline, but was blocked by picrotoxinin. Bicuculline-insensitive, picrotoxinin-sensitive, GABA-stimulated 36Cl uptake was also detected in membrane microsacs prepared from the isolated larval M. sexta nervous system. Such receptors appear to be the major type of GABA receptor in larval nervous system membrane microsac preparations. An antibody raised against a 17 amino acid peptide, based on the predicted C-terminus of the Drosophila GABA receptor subunit (RDL), stained not only cell bodies, including that of fg1, but also the neuropile in the frontal ganglion, indicating the existence of RDL-like GABA receptor subunits in neurones of this ganglion. Thus, bicuculline-insensitive GABA-gated Cl channels are present in the larval nervous system of M. sexta.  相似文献   

14.
A muscarinic acetylcholine receptor (mAChR), DM1, expressed in the nervous system of Drosophila melanogaster, has been stably expressed in a Drosophila S2 cell line (S2-DM1) and used to investigate spatiotemporal calcium changes following agonist activation. Carbamylcholine (CCh) and oxotremorine are potent agonists, whereas application of the vertebrate M1 mAChR agonist, McN-A-343, results in a weak response. Activation of S2-DM1 receptors using CCh resulted in an increase in intracellular calcium ([Ca2+]i) that was biphasic. Two distinct calcium sources were found to contribute to calcium signaling: (1) internal stores that are sensitive to both thapsigargin and 2-aminoethoxydiphenyl borate and (2) capacitative calcium entry. Spatiotemporal imaging of individual S2-DM1 cells showed that the CCh-induced [Ca2+]i transient resulted from a homogeneous calcium increase throughout the cell, indicative of calcium release from internal stores. In contrast, ionomycin induced the formation of a "calcium ring" at the cell periphery, consistent with external calcium influx.  相似文献   

15.
TGF-β superfamily members signal through a heteromeric receptor complex to regulate craniofacial development. TGF-β type II receptor appears to bind only TGF-β, whereas TGF-β type I receptor (ALK5) also binds to ligands in addition to TGF-β. Our previous work has shown that conditional inactivation of Tgfbr2 in the neural crest cells of mice leads to severe craniofacial bone defects. In this study, we examine and compare the defects of TGF-β type II receptor (Wnt1-Cre;Tgfbr2fl/fl) and TGF-β type I receptor/Alk5 (Wnt1-Cre;Alk5fl/fl) conditional knockout mice. Loss of Alk5 in the neural crest tissue resulted in phenotypes not seen in the Tgfbr2 mutant, including delayed tooth initiation and development, defects in early mandible patterning and altered expression of key patterning genes including Msx1, Bmp4, Bmp2, Pax9, Alx4, Lhx6/7 and Gsc. Alk5 controls the survival of CNC cells by regulating expression of Gsc and other genes in the proximal aboral region of the developing mandible. We conclude that ALK5 regulates tooth initiation and early mandible patterning through a pathway independent of Tgfbr2. There is an intrinsic requirement for Alk5 signal in regulating the fate of CNC cells during tooth and mandible development.  相似文献   

16.
Endoplasmic reticulum (ER) stress–induced apoptosis is involved in many diseases, but the mechanisms linking ER stress to apoptosis are incompletely understood. Based on roles for C/EPB homologous protein (CHOP) and ER calcium release in apoptosis, we hypothesized that apoptosis involves the activation of inositol 1,4,5-triphosphate (IP3) receptor (IP3R) via CHOP-induced ERO1-α (ER oxidase 1 α). In ER-stressed cells, ERO1-α is induced by CHOP, and small interfering RNA (siRNA) knockdown of ERO1-α suppresses apoptosis. IP3-induced calcium release (IICR) is increased during ER stress, and this response is blocked by siRNA-mediated silencing of ERO1-α or IP3R1 and by loss-of-function mutations in Ero1a or Chop. Reconstitution of ERO1-α in Chop−/− macrophages restores ER stress–induced IICR and apoptosis. In vivo, macrophages from wild-type mice but not Chop−/− mice have elevated IICR when the animals are challenged with the ER stressor tunicamycin. Macrophages from insulin-resistant ob/ob mice, another model of ER stress, also have elevated IICR. These data shed new light on how the CHOP pathway of apoptosis triggers calcium-dependent apoptosis through an ERO1-α–IP3R pathway.  相似文献   

17.
18.
We and others have recently demonstrated that the pharmacological tolerance observed after prolonged exposure to plant and synthetic cannabinoids in adult individuals seems to have a pharmacodynamic basis, based on the observed down-regulation of cannabinoid receptors in the brain of cannabinoid-tolerant rats. However, we were unable to elicit a similar receptor down-regulation after a chronic exposure to anandamide, the first discovered endogenous cannabinoid, possibly because of its rapid metabolic breakdown in arachidonic acid and ethanolamine. The present study was designed to progress in these previous studies, by using R-methanandamide, a more stable analog, instead anandamide. In addition, we examined not only cannabinoid receptor binding, but also WIN-55,212-2-stimulated [35S]-GTPγS binding, by autoradiography, and cannabinoid receptor mRNA levels, by in situ hybridization. Results were as follows. The daily administration of R-methanandamide for a period of five days produced decreases in cannabinoid receptor binding in the lateral caudate-putamen, cerebellum, entopeduncular nucleus and substantia nigra. The remaining areas, the medial caudate-putamen, globus pallidus, cerebral cortex (layers I and VI), hippocampus (dentate gyrus and Ammon’s horn) and several limbic structures (nucleus accumbens, septum nuclei and basolateral amygdaloid nucleus), exhibited no changes in cannabinoid receptor binding. Similarly, the levels of cannabinoid receptor mRNA expression decreased in the lateral and medial caudate-putamen and in the CA1 and CA2 subfields of the Ammon’s horn in the hippocampus after the chronic exposure to R-methanandamide, whereas the remaining areas showed no changes. WIN-55,212-2-stimulated [35S]-GTPγS binding did not change in the lateral caudate-putamen, cerebral cortex (layer I), septum nuclei and hippocampal structures (dentate gyrus and Ammon’s horn) of animals chronically exposed to R-methanandamide, whereas a certain trend to decrease could be observed in the substantia nigra and deep layer (VI) of the cerebral cortex in these animals. In summary, as reported for other cannabinoid receptor agonists, the prolonged exposure of rats to R-methanandamide, a more stable analog of anandamide, was able to produce cannabinoid receptor-related changes in contrast with the absence of changes observed early with the metabolically labile anandamide. The observed changes exhibited an evident regional pattern with areas, such as basal ganglia, cerebellum and hippocampus, responding to chronic R-methanandamide treatment while regions, such as the cerebral cortex and limbic nuclei, not responding.  相似文献   

19.
Mammalian intestinal epithelium undergoes continuous cell turn over, with cell proliferation in the crypts and apoptosis in the villus. Both transforming growth factor (TGF)-β and gastrin-releasing peptide (GRP) are involved in the regulation of intestinal epithelial cells for division, differentiation, adhesion, migration and death. Previously, we have shown that TGF-β and bombesin (BBS) synergistically induce cyclooxygenase-2 (COX-2) expression and subsequent prostaglandin E2 (PGE2) production through p38MAPK in rat intestinal epithelial cell line stably transfected with GRP receptor (RIE/GRPR), suggesting the interaction between TGF-β signaling pathway and GRPR. The current study examined the biological responses of RIE/GRPR cells to TGF-β and BBS. Treatment with TGF-β1 (40 pM) and BBS (100 nM) together synergistically inhibited RIE/GRPR growth and induced apoptosis. Pretreatment with SB203580 (10 μM), a specific inhibitor of p38MAPK, partially blocked the synergistic effect of TGF-β and BBS on apoptosis. In conclusion, BBS enhanced TGF-β growth inhibitory effect through apoptosis induction, which is at least partially mediated by p38MAPK.  相似文献   

20.
Acarbose-fructoside (acarbose-Fru) was newly synthesized via the acceptor reaction of a levansucrase from Leuconostoc mesenteroides B-512 FMC with acarbose and sucrose. The resultant product was separated with 10.5% purification yield via Bio-gel P-2 column chromatography and HPLC. Its structure was determined to be 1I-β-d-fructofuranosyl α-acarbose, according to the results of 1H, 13C, HSQC, and HMBC analyses. Acarbose-Fru was inhibited competitively on α-glucosidase (A. niger and baker's yeast) but mixed noncompetitively on α-amylases (A. oryzae and porcine pancreatic). Compared to acarbose, acarbose-Fru exhibited inhibition potency of 1.12 or 1.52 on A. niger α-glucosidase or A. oryzae α-amylase, respectively. Additionally, acarbose-Fru was identified as a novel substrate for dextransucrase with Km and Vmax values of 189.0 mM and 8.51 μmol/(mg min), respectively. Therefore, acarbose-Fru as a substrate might be synthesized novel acarbose derivatives by using dextransucrase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号