首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methylglyoxal (MG) (pyruvaldehyde) is a reactive carbonyl compound produced in glycolysis. MG can form covalent adducts on proteins resulting in advanced glycation end products that may alter protein function. Here we report that MG covalently modifies the mitochondrial permeability transition pore (PTP), a high conductance channel involved in the signal transduction of cell death processes. Incubation of isolated mitochondria with MG for a short period of time (5 min), followed by removal of excess free MG, prevented both ganglioside GD3- and Ca2+-induced PTP opening and the ensuing membrane depolarization, swelling, and cytochrome c release. Under these conditions MG did not significantly interfere with mitochondrial substrate transport, respiration, or oxidative phosphorylation. The suppression of permeability transition was reversible following extended incubation in MG-free medium. Of the 29 physiological carbonyl and dicarbonyl compounds tested only MG and its analogue glyoxal were able to specifically alter the behavior of the PTP. Using a set of arginine-containing peptides, we found that the major MG-derived arginine adduct formed, following a short time exposure to MG, was the 5-hydro-5-methylimidazol-4-one derivative. These findings demonstrate that MG rapidly modifies the PTP covalently and stabilizes the PTP in the closed conformation. This is probably due to the formation of an imidazolone adduct on an arginine residue involved in the control of PTP conformation (Linder, M. D., Morkunaite-Haimi, S., Kinnunen, P. J. K., Bernardi, P., and Eriksson, O. (2002) J. Biol. Chem. 277, 937-942). We deduce that the permeability transition constitutes a potentially important physiological target of MG.  相似文献   

2.
Methylglyoxal and synthetic glyoxal derivatives react covalently with arginine residue(s) on the mitochondrial permeability transition pore (PTP). In this study, we have investigated how the binding of a panel of synthetic phenylglyoxal derivatives influences the opening and closing of the PTP. Using both isolated mitochondria and mammalian cells, we demonstrate that the resulting arginine-phenylglyoxal adduct can lead to either suppression or induction of permeability transition, depending on the net charge and hydrogen bonding capacity of the adduct. We report that phenylglyoxal derivatives that possess a net negative charge and/or are capable of forming hydrogen bonds induced permeability transition. Derivatives that were overall electroneutral and cannot form hydrogen bonds suppressed permeability transition. When mammalian cells were incubated with low concentrations of negatively charged phenylglyoxal derivatives, the addition of oligomycin caused a depolarization of the mitochondrial membrane potential. This depolarization was completely blocked by cyclosporin A, a PTP opening inhibitor, indicating that the depolarization was due to PTP opening. Collectively, these findings highlight that the target arginine(s) is functionally linked with the opening/closing mechanism of the PTP and that the electric charge and hydrogen bonding of the resulting arginine adduct influences the conformation of the PTP. These results are consistent with a model where the target arginine plays a role as a voltage sensor.  相似文献   

3.
We have investigated the consequences of permeability transition pore (PTP) opening on the rate of production of reactive oxygen species in isolated rat liver mitochondria. We found that PTP opening fully inhibited H(2)O(2) production when mitochondria were energized both with complex I or II substrates. Because PTP opening led to mitochondrial pyridine nucleotide depletion, H(2)O(2) production was measured again in the presence of various amounts of NADH. PTP opening-induced H(2)O(2) production began when NADH concentration was higher than 50 microm and reached a maximum at over 300 microm. At such concentrations of NADH, the maximal H(2)O(2) production was 4-fold higher than that observed when mitochondria were permeabilized with the channel-forming antibiotic alamethicin, indicating that the PTP opening-induced H(2)O(2) production was not due to antioxidant depletion. Moreover, PTP opening decreased rotenone-sensitive NADH ubiquinone reductase activity, whereas it did not affect the NADH FeCN reductase activity. We conclude that PTP opening induces a specific conformational change of complex I that (i) dramatically increases H(2)O(2) production so long as electrons are provided to complex I, and (ii) inhibits the physiological pathway of electrons inside complex I. These data allowed the identification of a novel consequence of permeability transition that may partly account for the mechanism by which PTP opening induces cell death.  相似文献   

4.
The mitochondrial permeability transition pore (PTP) undergoes a calcium-dependent transition (MPT) that disrupts membrane potential and releases apoptogenic proteins. Because PTP opening is enhanced by oxidation of thiols at the so-called "S-site," we hypothesized that nitrogen monoxide (NO*) could enhance the open probability of the PTP, e.g., by S-nitrosylation or S-thiolation. At low NO donor concentrations (1 to 20 microM), PTP opening in succinate-energized liver mitochondria at nonlimiting calcium was delayed or unaffected, while it was accelerated by NO donors at 20 to 100 microM. At low donor concentrations, PTP opening was facilitated twofold by adenosine triphosphate (ATP), which normally delays PTP opening. Among NO donors, the oxatriazole GEA 3162, with an activation constant (Ka) of 1.9 microM at 500 microM ATP was more effective at enhancing pore transition than SIN-1 or SNAP. NO donor effects were superseded by diamide, which induces disulfide formation, but independent of SH-adduct formation by alkylation. NO-related changes in PTP function were accompanied by protein mixed disulfide formation, inhibited by dithiothreitol (DTT), and reversed by DTT after donor addition. PTP opening was stimulated in the presence of ATP by L-arginine-dependent NO production, i.e., mitochondrial NOS activity. ATP-facilitated pore opening was sensitive to atractyloside and depended on nucleotide interactions but not on hydrolysis, because specific nonhydrolyzable ATP analogs accelerated pore opening. These data indicate NO can influence pore transition by oxidation of thiols that produce conformational changes governing the ATP interaction at the adenine nucleotide transporter.  相似文献   

5.
The permeability transition pore (PTP) is central for mitochondria function. PTP either open in low-conductance state to carry out mCICR (Ca2+-induced Ca2+ release from mitochondria) and play roles in cell phsyiological activities or open in high-conductance conformation to release harmful substances and play important roles in cell pathological responses and apoptosis. The results of study on the relationship between mCICR and PTP opening show Ca2+ concentrations but not the Ca2+ delivery mode determined the occurrence of mCICR or PTP opening. Ca2+-induced PTP opening began with and depended on mCICR. mCICR was a prerequisite for H2O2 and As2O3-induced PTP opening. The results indicated that the PTP opening was determined by Ca2+ stimulation intensity but not mode. PTP could switch from low- to high-conductance conformation and the PTP open by high-conductance began with low-conductance state. mCICR is necessary for Ca2+-dependent PTP opening. Our data suggested also that it would be possible to control cellular responses first by modulating mCICR, then by regulating PTP opening.  相似文献   

6.
1. The reactivities of phenylglyoxal (PGO), glyoxal (GO), and/or methylglyoxal (MGO) with several proteins, including ribonuclease A [EC 3.1.4.22] and its derivatives, alpha-chymotrypsin [EC 3.4.21.1], trypsin [EC 3.4.21.4], lysozyme [EC 3.2.1.17], pepsin [EC 3.4.23.1], rennin [EC 3.4.23.4], thermolysin, and insulin and its B chain, have been examined. From analyses of the reaction products, PGO was shown to be the most specific for arginine residues. GO and MGO also reacted rapidly with arginine residues, but they also reacted with lysine residues to a significant extent. A side reaction with N-terminal alpha-amino groups was observed with each of these reagents. 2. Two arginine residues out of four in ribonuclease A, two out of three in alpha-chymotrypsin, one out of two in trypsin, one out of two in pepsin, and one out of five in rennin appeared to react with PGO fairly rapidly, indicating a difference in the relative accessibility of these residues by the reagent. Extensive modification of the arginine residues by PGO occurred with RCM-derivatives of ribonuclease A and insulin B chain. The N-terminal isoleucine residues of alpha-chymotrypsin and trypsin appeared to be unreactive with PGO because of salt bridge formation with an aspartyl residue. The activity of alpha-chymotrypsin toward N-benzoyl-L-tyrosine ethyl ester and the lytic activity of lysozyme were lost rapidly on treatment with PGO, as in the case of ribonuclease A. Pepsin and rennin were only partially inactivated by reaction with PGO.  相似文献   

7.
The effects of three arginine-specific reagents on uptake were studied using corn seedlings (Zea mays L., GoldenCross Bantam). In the presence of borate, 0.25 mM 2, 3-butanedione(BD) and 1.0 mM 1, 2-cyclohexanedione (CHD) inhibited uptake by 76% and 68%, respectively, compared tothe controls. However, in the absence of borate, only 18% and38% inhibition was observed for 0.25 mM BD and 1.0 mM CHD, respectively.Similarly, 0.5 mM phenylglyoxal (PGO) resulted in 75% inhibition.The degree of inhibition of nitrate uptake exhibited a concentration-dependencewith respect to the reagents. Corn seedlings are 2- or 3-foldmore sensitive to BD than to PGO and CHD, respectively, presumablydue to the unfavourable steric effects of the benzal ring. Uptakeof was partially restored after removal of BD, CHD, and PGO from the uptake medium. No significant differenceswere observed for the ATPase and plasma membrane-associatedvanadate-sensitive H+-ATPase or K+-stimulated ATPase activityin homogenates and microsomal fractions prepared from corn seedlingswhich had been incubated for 2 h in the presence or absenceof 0.5 mM BD or 1.0 mM PGO. This suggests that inhibition ofnitrate uptake by the arginine-specific reagents was not causedby the indirect effect of their binding and inhibiting H+-ATPase.The fact that the arginine-specific reagents strongly inhibit uptake indicates that the transport system has arginine residues at or near the activesite. Key words: Arginine-specific reagents, borate effect, nitrate uptake, reversibility  相似文献   

8.
Curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) is a natural compound with antiproliferative properties. Recent studies suggest that these properties might be due to the ability of curcumin to induce apoptosis in tumor cells by increasing the permeability of the mitochondrial membrane. In the present study, we confirm these observations and provide a molecular mechanism for the action of curcumin in rat liver mitochondria. Curcumin induced mitochondrial swelling, the collapse of Deltapsi, and the release of cytochrome C, events associated with the opening of the permeability transition pore (PTP). Experiments were performed with chemically substituted curcumin derivatives. Some derivatives were obtained by modification of groups on the terminal aromatic rings, and others were obtained by substitution of the diketone function with the cyclohexanone function. They demonstrated that phenol and methoxy groups were essential to promote PTP opening. Curcumin and curcumin derivatives that open the PTP were able to oxidize thiol groups. In addition, PTP opening was abolished in medium devoid of O2 and decreased in the presence of catalase, ferrozine, o-phenanthroline, mannitol, or N-ethylmaleimide. These data suggest that the mechanism by which curcumin promotes PTP opening involves the reduction of Fe3+ to Fe2+, inducing hydroxyl radical (HO*) production and oxidation of thiol groups in the membrane, leading to pore opening.  相似文献   

9.
The relationship between mitochondrial Ca2 transport and permeability transition pore (PTP) opening as well as the effects of mitochondrial energetic status on mitochondrial Ca2 transport and PTP opening were studied. The results showed that the calcium-induced calcium release from mitochondria (mClCR) induced PTP opening. Inhibitors for electron transport of respiratory chain inhibited mClCR and PTP opening. Partial recovery of electron transport in respiratory chain resulted in partial recovery of mClCR and PTP opening. mClCR and PTP opening were also inhibited by CCCP which eliminated transmembrane proton gradient. The results indicated that mitochondrial Ca2 transport and PTP opening are largely dependent on electron transport and energy coupling.  相似文献   

10.
The relationship between mitochondrial Ca2+ transport and permeability transition pore (PTP) opening as well as the effects of mitochondrial energetic status on mitochondrial Ca2+ transport and PTP opening were studied. The results showed that the calcium-induced calcium release from mitochondria (mCICR) induced PTP opening. Inhibitors for electron transport of respiratory chain inhibited mCICR and PTP opening. Partial recovery of electron transport in respiratory chain resulted in partial recovery of mCICR and PTP opening. mCICR and PTP opening were also inhibited by CCCP which eliminated transmembrane proton gradient. The results indicated that mitochondrial Ca2+ transport and PTP opening are largely dependent on electron transport and energy coupling.  相似文献   

11.
To analyze the involvement of structured water (bound to macromolecules) in apoptosis-induced mitochondrial outer-membrane permeability, we compared the dynamics of water protons from nuclear magnetic resonance (NMR) data in apoptotic liver mitochondria with that of control mitochondria incubated in vitro with free Ca(2+) (opening of the permeability transition pore, PTP) or with Bax alpha. Our results demonstrate that water molecules in apoptotic mitochondria exhibit an accelerated translational motion of structured water common with that induced by the opening of the PTP, but limited in amplitude. On the other hand, no significant quantitative change in structured water was observed in apoptotic mitochondria, a phenomenon also observed with Bax alpha-induced permeability. We conclude that the changes observed in the different water phases differ both quantitatively and qualitatively during the opening of the PTP and the Bax alpha-induced permeability, and that the apoptotic mitochondria exhibit mixed properties between these model situations.  相似文献   

12.
The overexpression of Bax kills cells by a mechanism that depends on induction of the mitochondrial permeability transition (MPT) (Pastorino, J. G., Chen, S.-T., Tafani, M., Snyder, J. W., and Farber, J. L. (1998) J. Biol. Chem. 273, 7770-7775). In the present study, purified, recombinant Bax opened the mitochondrial permeability transition pore (PTP). Depending on its concentration, Bax had two distinct effects. At a concentration of 125 nM, Bax caused the release of the intermembranous proteins cytochrome c and adenylate kinase and the release from the matrix of sequestered calcein, effects prevented by the inhibitor of the PTP cyclosporin A (CSA). At this concentration of Bax, there was no detectable mitochondrial swelling or depolarization. These effects of low Bax concentrations are interpreted as the consequence of transient, non-synchronous activation of the PTP followed by a prompt recovery of mitochondrial integrity. By contrast, Bax concentrations between 250 nM and 1 microM caused a sustained opening of the PTP with consequent persistent mitochondrial swelling and deenergization (the MPT). CSA prevented the MPT induced by Bax. Increasing concentrations of calcium caused a greater proportion of the mitochondria to undergo the MPT in the presence of Bax. Importantly, two known mediators of apoptosis, ceramide and GD3 ganglioside, potentiated the induction by Bax of the MPT. The data imply that Bax mediates the opening of the mitochondrial PTP with the resultant release of cytochrome c from the intermembranous space.  相似文献   

13.
Fructose has been shown to protect hepatocyte viability during hypoxia or exposure to mitochondrial electron transport inhibitors. We report here that the fructose metabolite D-glyceraldehyde (D-GA) is a good inhibitor of the mitochondrial permeability transition pore (PTP) in isolated rat liver mitochondria. We propose that a substantial portion of the protective effect of fructose on hepatocytes is due to D-GA inhibition of the permeability transition. Aldehydes which are substrates of the mitochondrial aldehyde dehydrogenase (mALDH) afford protection, while poor substrates do not. Protection is prevented by the ALDH inhibitor chloral hydrate. We propose that the NADH/NAD(+) ratio is the key to protection. The aldehydes phenylglyoxal (PGO) and 4-hydroxynonenal (4-HNE), which have previously been shown to inhibit the PTP, apparently function by a different mechanism independent of mALDH activity. Both PGO or 4-HNE are themselves potent inhibitors of ALDH, and their protective effect cannot be blocked by an ALDH inhibitor.  相似文献   

14.
Oxidative stress promotes Ca2+-dependent opening of the mitochondrial inner membrane permeability transition pore (PTP), causing bioenergetic failure and subsequent cell death in many paradigms, including those related to acute brain injury. One approach to pre-conditioning against oxidative stress is pharmacologic activation of the Nrf2/ARE pathway of antioxidant gene expression by agents such as sulforaphane (SFP). This study tested the hypothesis that administration of SFP to normal rats increases resistance of isolated brain mitochondria to redox-sensitive PTP opening. SFP or DMSO vehicle was administered intraperitoneally to adult male rats at 10 mg/kg 40 h prior to isolation of non-synaptic brain mitochondria. Mitochondria were suspended in medium containing a respiratory substrate and were exposed to an addition of Ca2+ below the threshold for PTP opening. Subsequent addition of tert-butyl hydroperoxide (tBOOH) resulted in a cyclosporin A-inhibitable release of accumulated Ca2+ into the medium, as monitored by an increase in fluorescence of Calcium Green 5N within the medium, and was preceded by a decrease in the autofluorescence of mitochondrial NAD(P)H. SFP treatment significantly reduced the rate of tBOOH-induced Ca2+ release but did not affect NAD(P)H oxidation or inhibit PTP opening induced by the addition of phenylarsine oxide, a direct sulfhydryl oxidizing agent. SFP treatment had no effect on respiration by brain mitochondria and had no effect on PTP opening or respiration when added directly to isolated mitochondria. We conclude that SFP confers resistance of brain mitochondria to redox-regulated PTP opening, which could contribute to neuroprotection observed with SFP.  相似文献   

15.
The relationship between mitochondrial Ca2+ transport and permeability transition pore (PTP) opening as well as the effects of mitochondrial energetic status on mitochondrial Ca2+ transport and PTP opening were studied. The results showed that the calcium-induced calcium release from mitochondria (mCICR) induced PTP opening. Inhibitors for electron transport of respiratory chain inhibited mCICR and PTP opening. Partial recovery of electron transport in respiratory chain resulted in partial recovery of mCICR and PTP opening. mCICR and PTP opening were also inhibited by CCCP which eliminated transmembrane proton gradient. The results indicated that mitochondrial Ca2+ transport and PTP opening are largely dependent on electron transport and energy coupling.  相似文献   

16.
研究Zn2+对Ca2+介导线粒体通透过渡孔道(PTP)开放和线粒体细胞色素c释放的影响,及其与线粒体膜电位(ΔΨm)和Ca2+介导的线粒体Ca2+释放(mCICR)之间的关系.提取大鼠肝线粒体,通过紫外分光光度仪检测不同浓度Zn2+作用下Ca2+介导的PTP开放状态;采用荧光分光光度仪测定不同浓度Zn2+作用下线粒体膜电位的变化;采用双波长双光束紫外分光光度仪检测不同浓度Zn2+作用下测试体系内Ca2+浓度的变化,以反映线粒体Ca2+的转运情况(即mCICR);通过免疫印迹法检测不同浓度Zn2+作用下Ca2+介导的线粒体细胞色素c的释放.高浓度Zn2+完全抑制Ca2+介导的PTP开放和细胞色素c释放.一定浓度的Zn2+部分抑制Ca2+介导的PTP开放和细胞色素c释放.适当浓度Zn2+自身介导PTP开放和细胞色素c释放.低浓度Zn2+加速Ca2+介导PTP开放和Ca2+释放;高浓度和一定浓度Zn2+分别完全或部分破坏ΔΨm;高浓度Zn2+完全抑制mCICR.当抑制mCICR时,Ca2+和Zn2+对PTP开放和细胞色素c释放的作用完全抑制.结果表明,Zn2+以浓度依赖方式双向调节PTP开放和细胞色素c释放.Zn2+的作用可能与Zn2+破坏ΔΨm和影响mCICR相关.  相似文献   

17.
Suppression of the mitochondrial permeability transition pore (PTP) and induction of lymphoma P388 cell death were studied in the presence of cyclosporin A (CsA) and its derivatives. In experiments with permeabilized P388 cells, CsA and its nonimmunosuppressive derivative N-methyl-Val-4-CsA, but not cyclosporin H (CsH), enhanced Ca2+ accumulation in mitochondria and suppressed PTP opening. Moreover, CsA was able either itself to induce or to enhance a prooxidant-induced P388 programmed cell death. Blebbing and formation of apoptotic bodies were among the observed CsA effects. N-Methyl-Val-4-CsA showed similar effects, but CsH had no effect on P388 cell death. These results show that initial-stage P388 tumour cell death is not related to PTP opening but can be the result of PTP closing with a corresponding increase in the formation of reactive oxygen species.  相似文献   

18.
Catisti R  Vercesi AE 《FEBS letters》1999,464(1-2):97-101
The ability of low concentrations (5-15 microM) of long-chain fatty acids to open the permeability transition pore (PTP) in Ca(2+)-loaded mitochondria has been ascribed to their protonophoric effect mediated by mitochondrial anion carriers, as well as to a direct interaction with the pore assembly [M.R. Wieckowski and L. Wojtczak, FEBS Lett. 423 (1998) 339-342]. Here, we have compared the PTP opening ability of arachidonic acid (AA) with that of carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP) at concentrations that cause similar quantitative dissipation of the membrane potential (DeltaPsi) in Ca(2+)-loaded rat liver mitochondria respiring on succinate. The initial protonophoric effects of AA and FCCP were only slightly modified by carboxyatractyloside and were followed by PTP opening, as indicated by a second phase of DeltaPsi disruption sensitive to EGTA, ADP, dithiothreitol and cyclosporin A. This second phase of DeltaPsi dissipation could also be prevented by rotenone or NAD(P)H-linked substrates which decrease the pyridine nucleotide (PN) oxidation that follows the stimulation of oxygen consumption induced by AA or FCCP. These results suggest that, under the experimental conditions used here, the PTP opening induced by AA or FCCP was a consequence of PN oxidation. Exogenous catalase also inhibited both AA- and FCCP-induced PTP opening. These results indicate that a condition of oxidative stress associated with the oxidized state of PN underlies membrane protein thiol oxidation and PTP opening.  相似文献   

19.
We have investigated the effects of the myotoxic local anesthetic bupivacaine on rat skeletal muscle mitochondria and isolated myofibers from flexor digitorum brevis, extensor digitorum longus, soleus, and from the proximal, striated portion of the esophagus. In isolated mitochondria, bupivacaine caused a concentration-dependent mitochondrial depolarization and pyridine nucleotide oxidation, which were matched by an increased oxygen consumption at bupivacaine concentrations of 1.5 mm or less at pH 7.4, whereas respiration was inhibited at higher concentrations. As a consequence of depolarization, bupivacaine caused the opening of the permeability transition pore (PTP), a cyclosporin A-sensitive inner membrane channel that plays a key role in many forms of cell death. In intact flexor digitorum brevis fibers bupivacaine caused mitochondrial depolarization and pyridine nucleotides oxidation that were matched by increased concentrations of cytosolic free Ca(2+), release of cytochrome c, and eventually, hypercontracture. Both mitochondrial depolarization and cytochrome c release were inhibited by cyclosporin A, indicating that PTP opening rather than bupivacaine as such was responsible for these events. Similar responses to bupivacaine were observed in the soleus, which is highly oxidative. In contrast, fibers from the esophagus (which we show to be more fatigable than flexor digitorum brevis fibers) and from the highly glycolytic extensor digitorum longus didn't undergo pyridine nucleotide oxidation upon the addition of bupivacaine and were resistant to bupivacaine toxicity. These results suggest that active oxidative metabolism is a key determinant in bupivacaine toxicity, that bupivacaine myotoxicity is a relevant model of mitochondrial dysfunction involving the PTP and Ca(2+) dysregulation, and that it represents a promising system to test new PTP inhibitors that may prove relevant in spontaneous myopathies where mitochondria have long been suspected to play a role.  相似文献   

20.
Oxidation is emerging as an important regulatory mechanism of protein-tyrosine phosphatases (PTPs). Here we report that PTPs are differentially oxidized, and we provide evidence for the underlying mechanism. The membrane-proximal RPTPalpha-D1 was catalytically active but not readily oxidized as assessed by immunoprobing with an antibody that recognized oxidized catalytic site cysteines in PTPs (oxPTPs). In contrast, the membrane-distal RPTPalpha-D2, a poor PTP, was readily oxidized. Oxidized catalytic site cysteines in PTP immunoprobing and mass spectrometry demonstrated that mutation of two residues in the Tyr(P) loop and the WPD loop that reverse catalytic activity of RPTPalpha-D1 and RPTPalpha-D2 also reversed oxidizability, suggesting that oxidizability and catalytic activity are coupled. However, catalytically active PTP1B and LAR-D1 were readily oxidized. Oxidizability was strongly dependent on pH, indicating that the microenvironment of the catalytic cysteine has an important role. Crystal structures of PTP domains demonstrated that the orientation of the absolutely conserved PTP loop arginine correlates with oxidizability of PTPs, and consistently, RPTPmu-D1, with a similar conformation as RPTPalpha-D1, was not readily oxidized. In conclusion, PTPs are differentially oxidized at physiological pH and H(2)O(2) concentrations, and the PTP loop arginine is an important determinant for susceptibility to oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号