共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A. M. Labhardt 《Biopolymers》1981,20(7):1459-1480
The thermal-denaturation transition of ribonuclease S (RNAase S) is measured by circular dichroism at 225 nm. Only conformational transitions involving the S-peptide–S-protein complex are detected at this wavelength. Different pathways of thermal unfolding at high and low concentrations are apparent: at low concentrations the temperature of half-completion of denaturation (Tm) varies with concentration. Above a total enzyme concentration of 50 μM, Tm remains constant. The observed data can be explained on the basis of a model where the association–dissociation step occurs between S-peptide and thermally (at least partly) unfolded S-protein. The complex as a whole undergoes a major folding–unfolding transition in the course of which the S-peptide μ-helix appears to be formed. The unfolded complex is well populated in the unfolding transition region for enzyme concentrations of 100 μM or more. The model succeeds in deducing thermodynamic parameters from the thermal denaturation curves in various different ways. The values thus obtained are fully self-consistent and, moreover, consistent with the values for the apparent association constant and apparent association enthalpy as measured in enzyme-dilution experiments and by batch calorimetry. 相似文献
3.
Elucidation of the high-resolution structures of folding intermediates is a necessary but difficult step toward the ultimate understanding of the mechanism of protein folding. Here, using hydrogen-exchange-directed protein engineering, we populated the folding intermediate of the Thermus thermophilus ribonuclease H, which forms before the rate-limiting transition state, by removing the unfolded regions of the intermediate, including an α-helix and two β-strands (51 folded residues). Using multidimensional NMR, we solved the structure of this intermediate mimic to an atomic resolution (backbone rmsd, 0.51 Å). It has a native-like backbone topology and shows some local deviations from the native structure, revealing that the structure of the folded region of an early folding intermediate can be as well defined as the native structure. The topological parameters calculated from the structures of the intermediate mimic and the native state predict that the intermediate should fold on a millisecond time scale or less and form much faster than the native state. Other factors that may lead to the slow folding of the native state and the accumulation of the intermediate before the rate-limiting transition state are also discussed. 相似文献
4.
Structural studies of a folding intermediate of bovine pancreatic ribonuclease A by continuous recycled flow 总被引:3,自引:0,他引:3
A new technique, continuous recycled flow (CRF) spectroscopy, has been developed for observing intermediates of any thermally induced, reversible reaction with a half-life of 10 s or longer. The structure can be probed by any spectroscopic method which does not perturb the system. Prolonged signal acquisitions of 8 h for ribonuclease A are possible. CRF was used to investigate the structure of the slow-folding intermediates of chemically intact ribonuclease A (RNase A) during thermal unfolding/folding under acidic conditions. The following conclusions were reached on the basis of the proton nuclear magnetic resonance and far-ultraviolet circular dichroism spectra of a folding intermediate(s): (A) The conformation of the detected folding intermediate(s) is similar to that of the heat-denatured protein. There is only limited formation of new structures. (B) The N-terminal alpha-helix is partially stable under these conditions and is in rapid (less than 10 ms) equilibrium with the denatured conformation. (C) There are long-range interactions between the hydrophobic residues of the N-terminal alpha-helix and the rest of the protein. These interactions persist well above the melting point. (D) An aliphatic methyl group reports on the formation of a new structure(s) that lie(s) outside of the N-terminal region. (E) The structures detected in chemically modified, nonfolding forms of the RNase A are also present in the folding intermediate(s). There are, however, additional interactions that are unique to chemically intact RNase A. 相似文献
5.
6.
7.
M E Goldberg G V Semisotnov B Friguet K Kuwajima O B Ptitsyn S Sugai 《FEBS letters》1990,263(1):51-56
The refolding kinetics of the tryptophan synthase beta 2 subunit have been investigated by circular dichroism (CD) and binding of a fluorescent hydrophobic probe (ANS), using the stopped-flow technique. The kinetics of regain of the native far UV CD signal show that, upon refolding of urea denatured beta 2, more than half of the protein secondary structure is formed within the dead time of the CD stopped-flow apparatus (0.013 s). On the other hand, upon refolding of guanidine unfolded beta 2, the fluorescence of ANS passes through a maximum after about 1 s and then 'slowly' decreases. These results show the accumulation, in the 1-10 s time range, of an early transient folding intermediate which has a pronounced secondary structure and a high affinity for ANS. In this time range, the near UV CD remains very low. This transient intermediate thus appears to have all the characteristics of the 'molten globule' state [(1987) FEBS Lett. 224, 9-13]. Moreover, by comparing the intrinsic time of the disappearance of this transient intermediate (t1/2 35 s) with the time of formation of the previously characterized [(1988) Biochemistry 27, 7633-7640] early immunoreactive intermediate recognized by a monoclonal antibody (t1/2 12 s), it is shown that this native-like epitope forms within the 'molten globule', before the tight packing of the protein side chains. 相似文献
8.
Proline isomerization during refolding of ribonuclease A is accelerated by the presence of folding intermediates 总被引:3,自引:0,他引:3
F X Schmid 《FEBS letters》1986,198(2):217-220
The trans----cis isomerization of Pro 93 was measured during refolding of bovine ribonuclease A. This isomerization is slow (tau = 500 s) under marginally stable folding conditions of 2.0 M GdmCl, pH 6, at 10 degrees C. However, it is strongly accelerated (tau = 100 s) in samples which, prior to isomerization, had been converted to a folding intermediate by a 15 s refolding pulse under strongly native conditions (0.8 M ammonium sulfate, 0 degree C). The results demonstrate that extensive folding is possible before Pro 93 isomerizes to its native cis state and that the presence of structural folding intermediates leads to a marked increase in the rate of subsequent proline isomerization. 相似文献
9.
G. Kern T. Handel S. Marqusee 《Protein science : a publication of the Protein Society》1998,7(10):2164-2174
The RNase H domain from HIV-1 (HIV RNase H) encodes an essential retroviral activity. Refolding of the isolated HIV RNase H domain shows a kinetic intermediate detectable by stopped-flow far UV circular dichroism and pulse-labeling H/D exchange. In this intermediate, strands 1, 4, and 5 as well as helices A and D appear to be structured. Compared to its homolog from Escherichia coli, the rate limiting step in refolding of HIV RNase H appears closer to the native state. We have modeled this kinetic intermediate using a C-terminal deletion fragment lacking helix E. Like the kinetic intermediate, this variant folds rapidly and shows a decrease in stability. We propose that inhibition of the docking of helix E to this folding intermediate may present a novel strategy for anti HIV-1 therapy. 相似文献
10.
T. Kiefhaber F. X. Schmid K. Willaert Y. Engelborghs A. Chaffotte 《Protein science : a publication of the Protein Society》1992,1(9):1162-1172
Kinetic intermediates in protein folding are short-lived and therefore difficult to detect and to characterize. In the folding of polypeptide chains with incorrect isomers of Xaa-Pro peptide bonds the final rate-limiting transition to the native state is slow, since it is coupled to prolyl isomerization. Incorrect prolyl isomers thus act as effective traps for folding intermediates and allow their properties to be studied more easily. We employed this strategy to investigate the mechanism of slow folding of ribonuclease T1. In our experiments we use a mutant form of this protein with a single cis peptide bond at proline 39. During refolding, protein chains with an incorrect trans proline 39 can rapidly form extensive secondary structure. The CD signal in the amide region is regained within the dead-time of stopped-flow mixing (15 ms), indicating a fast formation of the single alpha-helix of ribonuclease T1. This step is correlated with partial formation of a hydrophobic core, because the fluorescence emission maximum of tryptophan 59 is shifted from 349 nm to 325 nm within less than a second. After about 20 s of refolding an intermediate is present that shows about 40% enzymatic activity compared to the completely refolded protein. In addition, the solvent accessibility of tryptophan 59 is drastically reduced in this intermediate and comparable to that of the native state as determined by acrylamide quenching of the tryptophan fluorescence. Activity and quenching measurements have long dead-times and therefore we do not know whether enzymatic activity and solvent accessibility also change in the time range of milliseconds. At this stage of folding at least part of the beta-sheet structure is already present, since it hosts the active site of the enzyme. The trans to cis isomerization of the tyrosine 38-proline 39 peptide bond in the intermediate and consequently the formation of native protein is very slow (tau = 6,500 s at pH 5.0 and 10 degrees C). It is accompanied by an additional increase in tryptophan fluorescence, by the development of the fine structure of the tryptophan emission spectrum, and by the regain of the full enzymatic activity. This indicates that the packing of the hydrophobic core, which involves both tryptophan 59 and proline 39, is optimized in this step. Apparently, refolding polypeptide chains with an incorrect prolyl isomer can very rapidly form partially folded intermediates with native-like properties. 相似文献
11.
Yenjai S Malaikaew P Liwporncharoenvong T Buranaprapuk A 《Biochemical and biophysical research communications》2012,419(1):126-129
In this study, the cleavage of protein by molybdenum cluster is reported for the first time. The protein target used is porcine pepsin. The data presented in this study show that pepsin is cleaved to at least three fragments with molecular weights of ~23, ~19 and ~16 kDa when the mixture of the protein and ammonium heptamolybdate tetrahydrate ((NH(4))(6)Mo(7)O(24)·4H(2)O) was incubated at 37°C for 24h. No self cleavage of pepsin occurs at 37 °C, 24h indicating that the reaction is mediated by the metal ions. N-terminal sequencing of the peptide fragments indicated three cleavage sites of pepsin between Leu 112-Tyr 113, Leu 166-Leu 167 and Leu 178-Asn 179. The cleavage reaction occurs after incubation of the mixture of pepsin and (NH(4))(6)Mo(7)O(24)·4H(2)O) only for 2h. However, the specificity of the cleavage decreases when incubation time is longer than 48 h. The mechanism for cleavage of pepsin is expected to be hydrolytic chemistry of the amide bonds in the protein backbone. 相似文献
12.
R W Henkens A D Gerber M R Cooper W R Herzog 《The Journal of biological chemistry》1980,255(15):7075-7078
The guanidinium chloride-unfolded state of ribonuclease A was found to be an equilibrium mixture of slow- and fast-refolding forms of the protein chain, as has been suggested. Both forms appear to have the same spectroscopic observables as judged by the relative changes in fluorescence emission and polarization. The equilibrium between them is thermally dependent, with deltaHapp equal to -1.4 kcal/mol. The activation energy Ea is equal to 18 kcal/mol. These findings are consistent with the proposal that cis-trans isomerism of peptide bonds that are NH2-terminal to proline residues is responsible for the slow phase of RNase A refolding. However, the actual dependence of the magnitude of the slow reaction on initial, prefolding temperature cannot be explained by a model in which the proline configurations of the fast refolding form must be identical to those of the native protein, as has been suggested. Instead, the data reveal that, although the native structure of RNase A contains two cis prolines, cis isomers need not be present in the fast-refolding form in order for folding to occur. 相似文献
13.
Vinci F Ruoppolo M Pucci P Freedman RB Marino G 《Protein science : a publication of the Protein Society》2000,9(3):525-535
The oxidative refolding of ribonuclease A has been investigated in several experimental conditions using a variety of redox systems. All these studies agree that the formation of disulfide bonds during the process occurs through a nonrandom mechanism with a preferential coupling of certain cysteine residues. We have previously demonstrated that in the presence of glutathione the refolding process occurs through the reiteration of two sequential reactions: a mixed disulfide with glutathione is produced first which evolves to form an intramolecular S-S bond. In the same experimental conditions, protein disulfide isomerase (PDI) was shown to catalyze formation and reduction of mixed disulfides with glutathione as well as formation of intramolecular S-S bonds. This paper reports the structural characterization of the one-disulfide intermediate population during the oxidative refolding of Ribonuclease A under the presence of PDI and glutathione with the aim of defining the role of the enzyme at the early stages of the reaction. The one-disulfide intermediate population occurring at the early stages of both the uncatalyzed and the PDI-catalyzed refolding was purified and structurally characterized by proteolytic digestion followed by MALDI-MS and LC/ESIMS analyses. In the uncatalyzed refolding, a total of 12 disulfide bonds out of the 28 theoretical possible cysteine couplings was observed, confirming a nonrandom distribution of native and nonnative disulfide bonds. Under the presence of PDI, only two additional nonnative disulfides were detected. Semiquantitative LC/ESIMS analysis of the distribution of the S-S bridged peptides showed that the most abundant species were equally populated in both the uncatalyzed and the catalyzed process. This paper shows the first structural characterization of the one-disulfide intermediate population formed transiently during the refolding of ribonuclease A in quasi-physiological conditions that mimic those present in the ER lumen. At the early stages of the process, three of the four native disulfides are detected, whereas the Cys26-Cys84 pairing is absent. Most of the nonnative disulfide bonds identified are formed by nearest-neighboring cysteines. The presence of PDI does not significantly alter the distribution of S-S bonds, suggesting that the ensemble of single-disulfide species is formed under thermodynamic control. 相似文献
14.
Subal Bishayee Umadas Maitra 《Biochemical and biophysical research communications》1976,73(2):306-313
The specificity of RNase III for various synthetic homopolymeric doublestranded RNA substrates have been examined. Although RNase III appears to cleave all homopolymeric RNA duplex structures, with Poly (U)·Poly (A) as the substrate, the enzyme cleaves the Poly (U) strand much faster than it cleaves the Poly (A) strand. Under conditions where the Poly (U) strand is quantitatively cleaved into acid-soluble fragments ranging in size between 5–8 nucleotides in length, the poly (A) strand is cleaved into large fragments 40–60 nucleotides in length. These results indicate that RNase III recognizes duplex RNA structures for binding, and makes single-stranded scissions and suggests that the enzyme has a preference for cleaving adjacent to UMP residues over AMP residues in polynucleotide chains. 相似文献
15.
16.
During the folding of many proteins, collapsed globular states are formed prior to the native structure. The role of these states for the folding process has been widely discussed. Comparison with properties of synthetic homo and heteropolymers had suggested that the initial collapse represented a shift of the ensemble of unfolded conformations to more compact states without major energy barriers. We investigated the folding/unfolding transition of a collapsed state, which transiently populates early in lysozyme folding. This state forms within the dead-time of stopped-flow mixing and it has been shown to be significantly more compact and globular than the denaturant-induced unfolded state. We used the GdmCl-dependence of the dead-time signal change to characterize the unfolding transition of the burst phase intermediate. Fluorescence and far-UV CD give identical unfolding curves, arguing for a cooperative two-state folding/unfolding transition between unfolded and collapsed lysozyme. These results show that collapse leads to a distinct state in the folding process, which is separated from the ensemble of unfolded molecules by a significant energy barrier. NMR, fluorescence and small angle X-ray scattering data further show that some local interactions in unfolded lysozyme exist at denaturant concentrations above the coil-collapse transition. These interactions might play a crucial role in the kinetic partitioning between fast and slow folding pathways. 相似文献
17.
Ivarsson Y Travaglini-Allocatelli C Jemth P Malatesta F Brunori M Gianni S 《The Journal of biological chemistry》2007,282(12):8568-8572
The folding pathways of some proteins include the population of partially structured species en route to the native state. Identification and characterization of these folding intermediates are particularly difficult as they are often only transiently populated and play different mechanistic roles, being either on-pathway productive species or off-pathway kinetic traps. To define the role of folding intermediates, a quantitative analysis of the folding and unfolding rate constants over a wide range of denaturant concentration is often required. Such a task is further complicated by the reversible nature of the folding reaction, which implies the observed kinetics to be governed by a complex combination of different microscopic rate constants. Here, we tackled this problem by measuring directly the folding rate constant under highly denaturing conditions, namely by inducing the folding of a PDZ domain through a quasi-irreversible binding reaction with a specific peptide. In analogy with previous works based on hydrogen exchange experiments, we present evidence that the folding pathway of the PDZ domain involves the formation of an obligatory on-pathway intermediate. The results presented exemplify a novel type of kinetic test to detect an on-pathway folding intermediate. 相似文献
18.
Orrù S Vitagliano L Esposito L Mazzarella L Marino G Ruoppolo M 《Protein science : a publication of the Protein Society》2000,9(12):2577-2582
The folding of ribonuclease A (RNase A) has been extensively studied by characterizing the disulfide containing intermediates using different experimental conditions and analytical techniques. So far, some aspects still remain unclear such as the role of the loop 65-72 in the folding pathway. We have studied the oxidative folding of a RNase A derivative containing at position 67 the substitution Asn --> isoAsp where the local structure of the loop 65-72 has been modified keeping intact the C65-C72 disulfide bond. By comparing the folding behavior of this mutant to that of the wild-type protein, we found that the deamidation significantly decreases the folding rate and alters the folding pathway of RNase A. Results presented here shed light on the role of the 65-72 region in the folding process of RNase A and also clarifies the effect of the deamidation on the folding/unfolding processes. On a more general ground, this study represents the first characterization of the intermediates produced along the folding of a deamidated protein. 相似文献
19.
Osmolytes stabilize proteins against denaturation, but little is known about how their stabilizing effect might affect a protein folding pathway. Here, we report the effects of the osmolytes, trimethylamine-N-oxide, and sarcosine on the stability of the native state of barstar as well as on the structural heterogeneity of an early intermediate ensemble, IE, on its folding pathway. Both osmolytes increase the stability of the native protein to a similar extent, with stability increasing linearly with osmolyte concentration. Both osmolytes also increase the stability of IE but to different extents. Such stabilization leads to an acceleration in the folding rate. Both osmolytes also alter the structure of IE but do so differentially; the fluorescence and circular dichroism properties of IE differ in the presence of the different osmolytes. Because these properties also differ from those of the unfolded form in refolding conditions, different burst phase changes in the optical signals are seen for folding in the presence of the different osmolytes. An analysis of the urea dependence of the burst phase changes in fluorescence and circular dichroism demonstrates that the formation of IE is itself a multistep process during folding and that the two osmolytes act by stabilizing, differentially, different structural components present in the IE ensemble. Thus, osmolytes can alter the basic nature of a protein folding pathway by discriminating, through differential stabilization, between different members of an early intermediate ensemble, and in doing so, they thereby appear to channel folding along one route when many routes are available. 相似文献
20.
T7 early RNAs were synthesized in vitro by transcribing T7 DNA with Escherichia coli RNA polymerase and treating the resulting precursor molecule with ribonuelease III. Oligonucleotide fragments from the 5′ and 3′ termini of several of the cleaved species were then selectively isolated. Structural analysis revealed sequences identical to the corresponding in vivo RNAs. Thus, the T7 early RNAs found in phage-infected cells appear to be the direct products of RNAase III cleavage of a large precursor molecule. We conclude further that RNAase III action on this particular natural substrate is a sequence-specific event. 相似文献