首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 240 毫秒
1.
The use of exogenous progestagens for estrus synchronization in cattle can result in a persistent dominant follicle which is associated with reduced fertility. We examined whether the LHRH agonist, deslorelin, would prevent the formation of a persistent follicle in heifers synchronized with norgestomet. The estrous cycles of heifers were synchronized with cloprostenol, and on Day 7 of the ensuing cycle the heifers received one of the following treatments for 10 d: Group C (n = 5), untreated control; Group N (n = 6), injection of a luteolytic dose of cloprostenol on Days 7 and 8 and implant of norgestomet from Day 7 to Day 17 (i.e. typical 10-day norgestomet implant period); Group D (n = 6), injection of cloprostenol on Days 7 and 8 and implants of deslorelin from Day 7 to Day 17; Group ND (n = 6), injections of cloprostenol and both norgestomet and deslorelin implants as above. Follicle growth was monitored using ultrasonography. Group-N heifers showed continued follicle growth and had larger follicles on Day 17 of the cycle than Group-C heifers (16.8 +/- 1.6 and 10.4 +/- 1.6 mm). Follicle growth for Group-D and ND heifers was similar and variable, and seemed to depend on follicle status at the initiation of treatment. Heifers with follicles of 5 to 10 mm (n = 9) in diameter either showed no follicle growth (2 9 ) or developed large follicles (7 9 ), while heifers with follicles approximately 12 mm (n = 3) in diameter showed follicle atresia with no further significant growth. On Day 17, size of the largest follicle was similar for Group-ND (14.3 +/- 2.9) and Group-D (16.8 +/- 1.6) heifers. Heifers in Group N showed estrous behavior 1.8 +/- 0.2 d after treatment, whereas heifers in Groups D and ND did not show estrus for 2 to 4 wk. The results show that combined treatment with progestagen and an LHRH agonist does not consistently prevent the development of a persistent dominant follicle and that return to estrus can be delayed after treatment with an LHRH agonist.  相似文献   

2.
Ovarian follicular dynamics in heifers during early pregnancy   总被引:1,自引:0,他引:1  
Daily ultrasonic monitoring of individual follicles was used to compare follicular wave characteristics of nonbred (n = 6) and pregnant heifers (n = 6). The dominant follicle of the first wave (Wave 1) did not differ significantly between reproductive statuses for any endpoint. The dominant follicle of Wave 2 was the ovulatory follicle in all nonbred heifers. The maximum diameter of the dominant follicle of Wave 2 was greater (p less than 0.05) for the nonbred heifers (14.8 mm) than for the pregnant heifers (13.0 mm). The dominant follicle of Wave 3 was detected later (p less than 0.003; Day 19.7 vs. Day 17.3) and reached a greater diameter (p less than 0.05; 16.6 mm vs. 12.0 mm) in the nonbred than in the pregnant heifers. On the mean day of onset of luteolysis (Day 15.2) in the nonbred heifers, the dominant follicle was similar in diameter for the two groups. Within a few days, the follicle began to regress in the pregnant heifers but maintained or increased in diameter in the nonbred heifers so that a greater maximum diameter was attained. During Days 0 70 of pregnancy, the interval from emergence of a wave to the emergence of the next wave was constant (not significantly different; mean intervals, 8.5 9.8 days). The mean maximum diameter attained by the dominant follicles differed significantly among the first 6 follicular waves; diameter was greatest for Wave 1 (15.7 mm), smallest for Waves 2 (13.1 mm) and 3 (12.6 mm), and intermediate for Waves 4 (14.0 mm), 5 (13.7 mm), and 6 (14.5 mm).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
We hypothesized that reducing the size of the ovulatory follicle using aspiration and GnRH would reduce the size of the resulting CL, reduce circulating progesterone concentrations, and alter conception rates. Lactating dairy cows (n=52) had synchronized ovulation and AI by treating with GnRH and PGF2alpha as follows: Day -9, GnRH (100 microg); Day -2, PGF2alpha (25 mg); Day 0, GnRH (100 microg); Day 1, AI. Treated cows (aspirated group; n=29) had all follicles > 4 mm in diameter aspirated on Days -5 or -6 in order to start a new follicular wave. Control cows (nonaspirated group: n=23) had no follicle aspiration. The size of follicles and CL were monitored by ultrasonography. The synchronized ovulation rate (ovulation rate to second GnRH injection: 42/52=80.8%) and double ovulation rate of synchronized cows (6/42=14.3%) did not differ (P > 0.05) between groups. Aspiration reduced the size of the ovulatory follicle (P < 0.0001; 11.5 +/- 0.2 vs 14.5 +/- 0.4 mm), and serum estradiol concentrations at second GnRH treatment (P < 0.0002; 2.5 +/- 0.4 vs 5.7 +/- 0.6 pg/mL). The volume of CL was less (P < 0.05) for aspirated than nonaspirated cows on Day 7 (2,862 +/- 228 vs 5,363 +/- 342 mm3) or Day 14 (4,652 +/- 283 vs 6,526 +/- 373 mm3). Similarly, serum progesterone concentrations were less on Day 7 (P < 0.05) and Day 14 (P < 0.10) for aspirated cows. Pregnancy rate per AI for synchronized cows was lower (P < 0.05) for aspirated (3/21=14.3%) than nonaspirated (10/21=47.6%) cows. In conclusion, ovulation of smaller follicles produced lowered fertility possibly because development of smaller CL decreased circulating progesterone concentrations.  相似文献   

4.
The objective of this study was to evaluate the effects of treatment with an intravaginal progesterone-releasing device (CIDR) and estradiol benzoate (EB) on follicular dynamics in Bos indicus (n=23), Bos taurus (n=25), and cross-bred (n=23) heifers. To assess the influence of reduced serum progesterone concentrations during 8 days of treatment with a progesterone-releasing device on follicular dynamics, half of the heifers received PGF at CIDR insertion (Day 0; 3 x 2 factorial design). Mean (+/-S.E.M.) serum progesterone concentrations during CIDR treatment varied (P<0.05) among genetic groups: B. indicus (5.4+/-0.1 ng/mL), B. taurus (3.3+/-0.0 ng/mL), and cross-bred (4.3+/-0.1 ng/mL). Maximum diameter of the dominant follicle (DF) was smaller (P<0.01) in B. indicus heifers (9.5+/-0.5 mm) than in cross-bred (12.3+/-0.4 mm) or B. taurus heifers (11.6+/-0.5 mm). B. indicus experienced lower (P<0.01) ovulation rate (39.1%) than did B. taurus (72.7%) and cross-bred (84.0%). Heifers treated with PGF on Day 0 had lower (P<0.05) serum progesterone concentrations during progesterone treatment. The PGF treatment on Day 0 increased (P<0.01) the diameter of the DF (11.9+/-0.4 mm vs. 10.5+/-0.4 mm). Moreover, greater (P=0.02) ovulation rates (78.8 vs. 54.0%) occurred in heifers treated with PGF on Day 0. In summary, B. indicus heifers had greater serum progesterone concentrations, smaller DF diameter, and a lower ovulation rate compared to B. taurus heifers. Prostaglandin treatment on the day of CIDR insertion reduced serum progesterone during treatment, and resulted in increased maximum DF diameter and ovulation rate.  相似文献   

5.
Ten buffalo were superovulated by administration of 8 doses of FSH in a descending schedule spread over 4 d (5.5/5.5, 4.5/4.5, 3.5/3.5 and 2.5/2.5 mL, i.m.; total dose of 64 AU in 32 mL) beginning on Day 10 of an unstimulated estrous cycle, and 30 and 20 mg Lutalyse was given alongwith the 5th and 6th injections of FSH, respectively, to induce luteolysis. The number of corpora lutea (CL) was determined on 6 d post estrus. The ovaries were examined daily by ultrasonography from Day -5 to Day 5 (Day 0 = day of start of superovulation). The animals were retrospectively classified into 2 groups depending upon the presence (n = 4) or absence of a dominant follicle (n = 6). The mean diameter of the largest follicle (F1) increased from 8.25 +/- 0.48 mm on Day -5 to 10.75 +/- 0.25 mm on Day 0 in the dominant group, whereas in the nondominant group the F1 follicle exhibited a progressive decrease from 9.00 +/- 0.45 mm to 7.00 +/- 0.65 mm during the same period, the difference in profiles between the 2 groups was significant (P = 0.042). The profile of the diameter of the second largest follicle (F2) and the difference in diameters between largest and second largest follicles (F1-F2) were not significantly different between the 2 groups. The profile of mean number of large (> or = 10 mm diameter), but not small (2 to 5 mm diameter) or medium (6 to 9 mm diameter) follicles differed significantly (P = 0.001) between the 2 groups from Day -5 to Day 5 (P = 0.030). The number of CL was not significantly different between nondominant (4.00 +/- 0.97) and dominant groups (3.25 +/- 1.31). The number of CL was positively correlated (P < 0.01) with the number of medium follicles and the total number of follicles on the day of initiation of superovulation, but not with follicles of any size category or total number of follicles on any previous day. The results of this study indicate that following the use of morphological criteria based on the size of the largest follicle alone, the superovulation response is not affected by the presence of a dominant follicle at the initiation of superovulation in buffalo.  相似文献   

6.
On Day 3 of the estrous cycle (estrus = Day 0), dairy heifers were given either 10 mg i.m. FSH-P (FSH-P primed; n = 9) or a saline vehicle (saline primed; n = 9). On Day 10, all heifers were superovulated with FSH-P (total = 27.7 mg i.m.) in declining doses over 5 d. Heifers were inseminated artificially at estrus. From Day 2 until estrus, the number and size of follicles >2 mm were monitored daily by ultrasonography. The mean (+/- SEM) number of corpora lutea (CL) (6.2 +/- 1.5 vs 10.7 +/- 0.9; P<0.05) and the mean number of recovered embryos and unfertilized ova (3.6 +/- 1.7 vs 8.4 +/- 2.2; P<0.05) were lower in FSH-P-primed than in saline-primed heifers. Prior to initiation of superovulation, follicles >10 mm appeared on Days 6 to 7 in saline-primed heifers but only on Days 8 to 10 in FSH-P-primed heifers (P<0.05). Also, until Day 10, the mean number of follicles 4 to 6 mm and 7 to 10 mm was higher (P<0.05) in FSH-P-primed than in saline-primed heifers. After initiation of the superovulatory treatment (Day 10 to estrus), saline-primed heifers had a greater and faster increase in the mean number of follicles >10 mm (P<0.02) than FSH-P-primed heifers did. Depletion in the number of follicles 2 to 3 mm (P<0.001) between Day 10 and estrus and in the number of follicles 4 to 6 mm (P<0.05) between Day 12 and estrus occurred in both groups of heifers. Decreased superovulatory response and embryo recovery in FSH-P-primed heifers may have been due to the presence of large follicles (>10 mm) prior to the initiation of the superovulatory treatment which reduced the ability of small follicles to grow into larger size classes during superovulatory treatment.  相似文献   

7.
Follicle ablation has been recognized as an efficient method of follicular wave synchronization. Treatment with recombinant bovine somatotropin (BST) has been shown to enhance follicular development in Bos taurus. This experiment assessed the effects of these treatments in Nelore (B. indicus) heifers. Eight cycling Nelore heifers were randomly assigned to 3 different treatments. On Day 2 of a synchronized cycle (Day 0 = day of ovulation), heifers assigned to Treatments 1 and 2 received 2 mL of saline, whereas heifers assigned to Treatment 3 received 320 mg of BST. On Day 5, the first-wave dominant follicle was ablated by ultrasound-guided transvaginal aspiration in heifers in Treatments 2 and 3, and all heifers received an injection of prostaglandin on Day 11. Aspiration of the dominant follicle advanced and synchronized (P < 0.05) the day of second-wave emergence (6.9 +/- 0.1 vs. 8.4 +/- 0.4) and the day of the pre-wave FSH peak (6.0 +/- 0.0 vs. 6.9 +/- 0.4), and increased FSH peak concentrations (381 +/- 21 vs. 292 +/- 30; pg/mL; P < 0.01). Recombinant bovine somatotropin treatment caused a two-fold increase in plasma insulin-like growth factor-I (IGF-I) concentrations (P < 0.001) and resulted in a 36% increase in the number of small follicles (<5 mm; P < 0.001) compared with saline-treated heifers. In summary, in agreement with previous reports on B. taurus, dominant follicle aspiration synchronized ovarian follicular development, and BST treatment increased peripheral concentrations of IGF-I in Nelore heifers. Recombinant bovine somatotropin also increased the number of small follicles, but this response appeared to be inferior to that reported for B. taurus.  相似文献   

8.
Friesian x Hereford heifers (n = 19; mean +/- s.e.m. body weight (BW) = 375 +/- 5 kg) were used in a randomized incomplete block design. Heifers were fed 0.7 (n = 7; L), 1.1 (n = 7; M) or 1.8% (n = 5; G) of BW in dry matter (DM)/day for 10 weeks. Ovaries were examined by ultrasound, for one oestrous cycle, from week 5 of treatment. Maximum diameter of dominant follicles was smaller (P less than 0.05) in L (11.8 +/- 0.1 mm) than in M (13.7 +/- 0.2 mm) or G (13.2 +/- 0.3 mm) heifers. Growth rate (mm/day) of dominant follicles during the oestrous cycle was not affected (P greater than 0.05) by dietary intake. Persistence of dominant follicles was shorter (P less than 0.05) in L (9.8 +/- 0.2 days) than in M (11.9 +/- 0.3 days) or G (12.7 +/- 0.4 days) heifers. Three dominant follicles were identified during the oestrous cycle of 5 of 7 L, 3 of 7 M and 1 of 5 G heifers (P less than 0.10); 2 dominant follicles were identified in the remaining heifers (n = 2 of 7, 4 of 7 and 4 of 5, respectively). Length of the luteal phase and luteal-phase concentrations of progesterone were not affected (P greater than 0.05) by treatment. Low dietary intake reduced the diameter and persistence of dominant follicles during the oestrous cycle of beef heifers and tended to increase the proportion of oestrous cycles with 3 dominant follicles.  相似文献   

9.
An experiment was conducted to evaluate the role of the dominant follicle (DF) of the first wave in regulating follicular and ovulatory responses and embryonic yield to a superovulation regime with FSH-P. Twenty normally cycling Holstein-Freisian heifers (n = 20) were synchronized with GnRH and pgf(2alpha) and randomly assigned to a control or a treated group (n = 10 each). Treated heifers had the first wave dominant follicle removed via transvaginal, ultrasound-guided aspiration on Day 6 after a synchronized estrus. All heifers received a total of 32 mg FSH-P given in decreasing doses at 12 h intervals from Day 8 to Day 11 plus two injections of pgf(2alpha) (35 mg and 20 mg, respectively) on Day 10. Heifers were inseminated at 6 h and 16 h after onset of estrus. Follicular dynamics were examined daily by transrectal ultrasonography from Day 4 to estrus, once following ovulation, and at the time of embryo collection on Day 7. Blood samples were collected daily during the superovulatory treatment and at embryo collection. Follicles were classified as: small, /= 10 mm. Aspiration of the dominant follicle was associated with an immediate decrease in large follicles, and a linear rate increase in small follicles from Day 4 to Day 8 just prior to the FSH-P injections, (treatment > control: +0.33 vs. -0.22, number of small follicles per day; P < 0.10). During FSH-P injections, the increase in number of medium follicles was greater (P < 0.01) for treatment on Day 9-11 (treatment > control: Day 9, 3.2 > 1.8; Day 10, 9.2 > 4.7; Day 11, 13.1 > 8.3; +/- 0.56). Number of large follicles was greater in treatment at Day 11 (5.12 > 1.4 +/-0.21; P < 0.01). Mean number of induced ovulatory follicles (difference between number of follicles at estrus and Day 2 after estrus) was greater in treatment (13.4 > 6.3 +/- 1.82; P < 0.01). Plasma estradiol at Day 11 during FSH-P treatment was greater in treatment (32.5 > 15.8 +/- 2.6; P < 0.01). Plasma progesterone at embryo flushing (Day 7 after ovulation) was greater in treatment (7.4 > 4.9; P < 0.02); technical difficulties at embryo recovery reduced sensitivity of embryonic measurements. No changes in the distribution of unfertilized oocytes and embryo developmental stages were detected between control and treatment groups. Presence of dominant follicle of the first wave inhibited intraovarian follicular responses to exogenous FSH.  相似文献   

10.
Nulliparous Holstein heifers were examined ultrasonically once daily during an interovulatory interval (ovulation = Day 0). Follicles with a diameter >/=4 mm were sequentially identified. Heifers were randomized into four groups (n = 4 heifers per group): untreated control heifers and those treated on Days 0 to 3, Days 3 to 6, or Days 6 to 11. Heifers designated for treatment were given an intravenous injection, twice daily, of a proteinaceous fraction of follicular fluid (PFFF; 16 ml) prepared by extracting bovine follicular fluid with activated charcoal. Mean cessation of growth of the dominant follicle of Wave 1 was later (P<0.005) in control heifers (Day 5.5) than in heifers treated on Days 0 to 3 (Day 1.5) or Days 3 to 6 (Day 3.5). Mean onset of regression of the dominant follicle of Wave 1 was later (P<0.005) in control heifers (Day 12.0) than in heifers treated on Days 0 to 3 (Day 5.0) or Days 3 to 6 (Day 7.5). Mean cessation of growth of the largest subordinate follicle of Wave 1 was later (P<0.05) in control heifers (Day 3.0) than in heifers treated on Days 0 to 3 (Day 1.2). Mean onset of regression of the largest subordinate follicle of Wave 1 was later (P<0.05) in control heifers (Day 7.0) than in heifers treated on Days 0 to 3 (Day 4.8). In heifers treated on Days 6 to 11, cessation of growth and onset of regression of the dominant follicle (means, Days 5.2 and 12.0, respectively) were not significantly different from those of the controls. The hypothesis that PFFF treatment on Days 0 to 3 would cause suppression of all follicles of Wave 1 was supported. The hypothesis that PFFF treatment on Days 3 to 6 would not alter growth of the dominant follicle of Wave 1 was not supported. The mean day of detection of the dominant follicle of Wave 2 was different (P<0.005) in control heifers (Day 8.5) than in heifers treated on Day 0 to 3 (Day 5.5) or Days 6 to 11 (Day 14.2). The mean length of the interovulatory interval was shorter (P<0.05) in control heifers (20.5 d) than in heifers treated on Days 6 to 11 (23.2 d). The hypothesis that PFFF treatment on Days 6 to 11 would delay the emergence of Wave 2 was supported. The proportion of heifers with 2-wave interovulatory intervals was 3 4 for control heifers and 0 4 , 1 4 , and 4 4 for heifers treated on Days 0 to 3, Days 3 to 6, and Days 6 to 11, respectively (3 4 vs 0 4 , P<0.05); the remaining heifers had 3-wave interovulatory intervals. On average, in PFFF-treated heifers, follicles stopped growing 1 d after treatment was started, and Wave 2 was detected 3 d after treatment was stopped.  相似文献   

11.
Two experiments were designed to determine the effect of purified ovulation inducing factor (OIF) on ovarian function in cattle. In Experiment 1, prepubertal heifers (n = 11 per group) were treated on Day 5 (Day 0 = day of follicular wave emergence) of the follicular wave with an intramuscular dose of saline (1 mL), GnRH (100 μg), or purified OIF (1 mg/100 kg body weight). Ovulation occurred in 9/11 heifers treated with GnRH, and 1/11 heifers in each of the OIF- and saline-treated groups (P < 0.05). Compared to saline-treated controls, OIF treatment was associated with a smaller dominant follicle diameter (P < 0.01), a rise in plasma FSH concentration (P < 0.1), and earlier emergence of the next follicular wave (P < 0.05). In Experiment 2, sexually mature heifers were given either GnRH or purified OIF on Days 3, 6 or 9 of the first follicular wave (i.e., early growing, early static, or late static phase of the dominant follicle; n = 5 per group per day), or were untreated (n = 10). In heifers treated with OIF on Day 6, the dominant follicle diameter profile tended to be smaller than in controls, and was associated with a rise (P < 0.05) in plasma FSH concentrations. A similar rise in FSH was detected after OIF treatment on Day 9. Compared to untreated controls, treatment with OIF and GnRH was associated with a larger CL diameter (Days 3 and 6 groups; P < 0.05) and a greater concentration of plasma progesterone (Days 6 and 9 groups; P < 0.05). Treatment with purified OIF did not induce ovulation in heifers, but hastened new follicular wave emergence in prepubertal heifers, influenced follicular dynamics in a phase-specific manner in mature heifers, and was luteotrophic.  相似文献   

12.
It has been suggested that superovulation in cattle is impaired if FSH injections are initiated in the presence of a dominant follicle, but the results of experiments to test this hypothesis have been contradictory. However, previous experiments were conducted during mid-cycle, when the absence or presence of a dominant follicle is difficult to assess. We took a different approach by comparing the effects of initiating superovulatory injections of FSH (11 equal doses of FSH-P, every 12 h) on Day 1 of the bovine estrous cycle, when a dominant follicle clearly is not present, vs initiation on Day 6, when a dominant follicle clearly is present and actively growing (n = 17 heifers in a "crossover" design). In 8 17 heifers initiation of FSH injections in the presence of a dominant follicle (Day 6 group) caused ovulation of the dominant follicle within 1 to 2 days and formation of a smaller than normal CL. These animals had higher than normal concentrations of plasma progesterone around the time of expected estrus (P < 0.05) and failed to exhibit estrus. Although the mean number and diameter of the follicles recruited in response to FSH injections in heifers that ovulated the dominant follicle prematurely were not different from the other heifers in the Day 6 group, no ovulations were observed, and no embryos or ova were recovered 6 d after insemination. Conversely, when FSH injections were initiated on Day 1 in these 8 heifers, they exhibited estrus, and their plasma progesterone around the time of estrus, mean ovulation rate, and number of total and transferable embryos recovered did not differ from the responses observed in the remaining 9 heifers treated either on Day 1 or on Day 6. Taken together, these results indicate that a dominant follicle does not affect the ability of smaller follicles to be recruited in response to exogenous FSH, but may impair their ovulation. These findings provide an explanation for previous reports of decreased superovulatory responses during times of the cycle when a dominant follicle would be expected to be present.  相似文献   

13.
Taneja M  Singh G  Totey SM  Ali A 《Theriogenology》1995,44(4):581-597
The ovaries of 12 buffalo were examined daily by ultrasound beginning at Day 3 of the estrous cycle, followed by superovulation between Days 10 and 13 of the cycle. The buffalo were divided into 2 groups on the basis of the presence (dominant, n = 7) or absence (nondominant, n = 5) of a dominant follicle at the start of superovulation. Daily ultrasonographic observations of the ovaries were recorded on a videotape and were used to assess the progression of both the large (dominant) follicle and the next-to-the-large (subdominant) follicle as well as the numbers of follicles in the small (4 to 6 mm), medium (7 to 10 mm), and large (>10 mm) size categories, before and during the superovulation treatment. A greater number of small size (P < 0.05) follicles was available before the start of the superovulatory treatment in the buffalo superovulated in the absence of a dominant follicle. The turnover of follicles from medium to large size classes also occurred sooner (P < 0.01), and was of higher magnitude (P < 0.01) during treatment in buffalo of the nondominant follicle group. The number of corpora lutea at palpation per rectum was higher (P < 0.05) in buffalo of the nondominant than the dominant group (4.6 +/- 0.6 vs 2.7 +/- 0.5). However, there was no significant difference among the groups in the means of serum progesterone concentration (3.6 +/- 1.3 vs 2.2 +/- 0.6 ng/ml), total number of embryos (2.0 +/- 0.6 vs 1.1 +/- 0.7), transferable embryos (1.6 +/- 0.5 vs 1.0 +/- 0.6) and unfertilized ova recovered (0.4 +/- 0.2 vs 0) on Day 6. It is concluded that in buffalo, the superovulatory response could possibly be improved by ultrasongraphic observation of the status of follicular dominance prior to treatment.  相似文献   

14.
The effects of ablation of a dominant follicle and treatment with follicular fluid on circulating concentrations of follicle-stimulating hormone (FSH) were studied and the temporal relationships between surges of FSH and follicular waves were studied in heifers with two or three follicular waves/interovulatory interval. Cauterization of the dominant follicle on Day 3 or Day 5 (ovulation on Day 0) (six control and six treated heifers/day) resulted in a surge (P less than 0.05) in FSH beginning the day after cautery. The FSH surge prior to wave 2 (first post-treatment follicular wave) occurred 4 days (Day 3 cautery) and 2 days (Day 5 cautery) before the surge in control groups, corresponding to a 4-day and a 2-day advance in emergence of wave 2 compared with controls. It was concluded that the dominant follicle on Day 3 and Day 5 was associated with the suppression of circulating FSH concentrations. Heifers (n = 4/group) were untreated or treated intravenously with a proteinaceous fraction of bovine follicular fluid on Days 0-3, 3-6, or 6-11. Concentrations of FSH were suppressed (P less than 0.05) for the duration of treatment, regardless of the days of treatment. Cessation of treatment was followed within 1 day by the start of a surge in FSH. The FSH surge prior to wave 2 occurred 2 days earlier (treatment on Days 0-3), 1 day later (treatment on Days 3-6), and 6 days later (treatment on Days 6-11) than in controls, corresponding to an equivalent advance or delay, respectively, in the emergence of wave 2 compared with controls. The results suggest that the effects of exogenous follicular fluid on follicular development were mediated, in whole or in part, by altering plasma FSH concentrations. Control heifers combined for the two experiments were separated into those with 2-wave (n = 11) or 3-wave (n = 5) interovulatory intervals. Two-wave heifers had two FSH surges and 3-wave heifers had three apparent FSH surges during the interovulatory interval. Results of the cautery and follicular fluid experiments indicated that a surge in FSH necessarily preceded the emergence of a wave. The FSH surges in treated and control heifers began 2-4 days before the detectable (ultrasound) emergence of a follicular wave (follicles of 4 and 5 mm), peaked 1 or 2 days before emergence and began to decrease approximately when the follicles of a wave begin to diverge into a dominant follicle and subordinate follicles (follicles 6-7 mm).  相似文献   

15.
Three experiments evaluated the effects of estradiol valerate (EV) on ovarian follicular and CL dynamics, intervals to estrus and ovulation, and superovulatory response in cattle. Experiment 1 compared the efficacy of two norgestomet ear implants (Crestar and Syncro-Mate B; SMB) for 9 d (with PGF at implant removal), combined with either 5 mg estradiol-17beta and 100 mg progesterone (EP) or 5 mg EV and 3mg norgestomet (EN) im at the time of implant insertion on CL diameter and follicular wave dynamics. Ovaries were monitored by ultrasonography. There was no effect of norgestomet implant. Diameter of the CL decreased following EN treatment (P < 0.01). Mean (+/- S.D.) day of follicular wave emergence (FWE) was earlier (P < 0.0001) and less variable (P < 0.0001) in EP- (3.6 +/- 0.5 d) than in EN- (5.7 +/- 1.5 d) treated heifers. Intervals from implant removal to estrus (P < 0.001) and ovulation (P < 0.01) were shorter in EN- (45.7 +/- 11.7 and 74.3 +/- 12.6 h, respectively) than in EP- (56.4 +/- 14.1 and 83.3 +/- 17.0 h, respectively) treated heifers. Experiment 2 compared the efficacy of EP versus EN in synchronizing FWE for superovulation in SMB-implanted cows. At random stages of the estrous cycle, Holstein cows (n = 78) received two SMB implants (Day 0) and were randomly assigned to receive EN on Day 0 or EP on Day 1. Folltropin-V treatments were initiated on the evening of Day 5, with PGF in the morning and evening of Day 8, when SMB were removed. Cows were inseminated after the onset of estrus and embryos were recovered 7 d later. Non-lactating cows had more CL (16.7 +/- 11.3 versus 8.3 +/- 4.9) and total ova/embryos (14.7 +/- 9.5 versus 7.9 +/- 4.6) than lactating cows (P < 0.05). EP-treated cows tended (P = 0.09) to yield more transferable embryos (5.6 +/- 5.2) than EN-treated cows (4.0 +/- 3.7). Experiment 3 compared the effect of dose of EV on ovarian follicle and CL growth profiles and synchrony of estrus and ovulation in CIDR-treated beef cows (n = 43). At random stages of the estrous cycle (Day 0), cows received a CIDR and no further treatment (Control), or an injection of 1, 2, or 5 mg im of EV. On Day 7, CIDR were removed and cows received PGF. Follicular wave emergence occurred within 7 d in 7/10 Control cows and 31/32 EV-treated cows (P < 0.05). In responding cows, interval from treatment to FWE was longer (P < 0.05) in those treated with 5 mg EV (4.8 +/- 1.2 d) than in those treated with 1 mg (3.2 +/- 0.9 d) or 2 mg (3.4 +/- 0.8 d) EV, while Control cows were intermediate (3.8 +/- 2.0 d). Diameter of the dominant follicle was smaller (P < 0.05) at CIDR removal and tended (P = 0.08) to be smaller just prior to ovulation in the 5 mg EV group (8.5 +/- 2.2 and 13.2 +/- 0.6 mm, respectively) than in the Control (11.8 +/- 4.6 and 15.5 +/- 2.9 mm, respectively) or 1mg EV (11.7 +/- 2.5 and 15.1 +/- 2.2 mm, respectively) groups, with the 2mg EV group (10.7 +/- 1.5 and 14.3 +/- 1.7 mm, respectively) intermediate. Diameter of the dominant follicle at CIDR removal was less variable (P < 0.01) in the 2 and 5mg EV groups than in the Control group, and intermediate in the 1mg EV group. In summary, treatment with 5mg EV resulted in a longer and more variable interval to follicular wave emergence than treatment with 5mg estradiol-17beta, which affected preovulatory dominant follicle size following progestin removal, and may have also affected superstimulatory response in Holstein cows. Additionally, 5 mg EV appeared to induce luteolysis in heifers, reducing the interval to ovulation following norgestomet removal. Conversely, intervals to, and synchrony of, follicular wave emergence, estrus and ovulation following treatment with 1 or 2 mg EV suggested that reduced doses of EV may be more useful for the synchronization of follicular wave emergence in progestogen-treated cattle.  相似文献   

16.
Holstein heifers were given 5 injections (twice/day) of 10 ml charcoal-extracted bovine follicular fluid (bFF; N = 6) or 10 ml saline (N = 5) beginning 12 h after the onset of oestrus. Blood samples were collected for determination of plasma concentrations of FSH, LH, progesterone and oestradiol-17 beta. Treatment with bFF suppressed the secondary FSH surge (P less than 0.01). Cessation of bFF injections was followed by a rebound period during which FSH was elevated compared with controls (P less than 0.01). Daily ultrasonographic examinations revealed that follicular growth occurred in waves, with 4 of 5 control heifers exhibiting 3 waves and the other 2 waves. In contrast, 5 of 6 bFF-treated animals exhibited 2 waves and the other 3 waves. Appearance of follicles in the first wave was delayed in bFF-treated heifers (Day 3.3 +/- 0.3 compared with Day 1.4 +/- 0.2; P less than 0.0001) and appearance of the dominant follicle of the first wave was delayed (Day 4.5 +/- 0.3 compared with Day 1.8 +/- 0.2; P less than 0.0001). Follicles in the second wave appeared later in animals treated with bFF (Day 12.7 +/- 0.4 compared with Day 10.4 +/- 0.6; P less than 0.01), and the dominant follicle of this wave also appeared later (Day 13.0 +/- 0.5 compared with Day 10.6 +/- 0.5; P less than 0.01). Oestradiol-17 beta increased during the early luteal phase, but this increase occurred later in heifers treated with bFF (peak concentrations on Day 6.3 +/- 0.6 compared with Day 4.2 +/- 0.2; P less than 0.05). LH, progesterone and cycle length were not affected by bFF. Delayed follicular growth associated with suppression of FSH suggests that the secondary FSH surge is important in the initiation of follicular development early in the bovine oestrous cycle, and thus may play a role in the regulation of ovarian follicular dynamics.  相似文献   

17.
A GnRH analogue was used to synchronize ovarian follicular development prior to an injection of PGF(2alpha) for the synchronization of estrus in lactating Holstein cows. On Day 12 (estrus = Day 0) of the experimental cycle, cows (n = 8) were injected with 8 mug Buserelin (BUS group), followed by 25 mg PGF(2alpha) 7 d later (Day 19). Control cows (n = 7) received PGF(2alpha) on Day 12 (PGF group). Ovaries were scanned daily via ultrasonography, and plasma progesterone and estradiol concentrations were determined. Sizes of all visible follicles were recorded. Follicles were classified as small (3 to 5 mm), medium (6 to 9 mm), or large (>/= 10 mm). Between Days 12 and 16 of the cycle, the number of large follicles in PGF cows remained unchanged (1.2), whereas in the BUS group, the number of large follicles decreased from 1.3 on Day 12 to 0.5 on Day 15. Only 4 of 7 PGF cows ovulated a second-wave dominant follicle. In the BUS group, 7 of 8 cows ovulated a GnRH analogue induced dominant follicle that was first identified on Day 15. During the follicular phase (last 5 d prior to estrus), plasma progesterone declined in association with CL regression in both groups, and estradiol concentrations increased, reaching higher (P<.0.05) preovulatory peak concentration in BUS cows than in PGF cows (14.0 +/- 1.0 vs 10.4 +/- 1.1 pg/ml). The number of medium-size follicles was smaller and the number of small-size follicles tended to be higher in BUS cows than in the PGF-treated group. On the day of estrus, the size of the ovulatory follicle (16.1 vs 13.3 mm) and the size difference between the ovulatory and second largest follicle (11.4 vs 6.2 mm) were both larger in BUS cows than in PGF-treated cows, suggesting a more potent dominance effect of the ovulatory follicle in the BUS cows. This study suggests that a GnRH analogue can alter follicular development prior to synchronization of estrus with an injection of PGF(2alpha) in lactating dairy cows.  相似文献   

18.
The objective of this study was to determine the relationships between follicle stimulating hormone, (FSH), estradiol (E(2)), and progesterone (P(4)) concentrations in peripheral blood samples and the follicular dynamics prior to and during superovulation in heifers pretreated with FSH-P (10 mg, i.m.) (FSH-P-primed; n=9) or not (saline-primed; n=9) on Day 3 (Day 0 = estrus) of the estrous cycle. On Day 10, all heifers were superovulated with FSH-P (27.7 mg i.m.) in declining dosages over 5 days. Prior to and during superovulation, blood samples were collected one to five times daily, and the follicular dynamics were monitored daily by ultrasonography. Prior to superovulation, profiles of P(4) and E(2) did not differ (P>1) between the saline- and FSH-P-primed heifers. The FSH concentrations in saline-primed heifers decreased from 0.43 +/- 0.05 ng/ml to 0.30 +/- 0.04 ng/ml between Days 3 and 7 and then increased progressively to 0.59 +/- 0.04 ng/ml on Day 10. In contrast (P<0.002), FSH concentrations in the FSH-P-primed heifers remained constant between Days 3 and 10 and averaged 0.41 +/- 0.03 ng/ml. Higher increases in E(2) during superovulation (maximum values, 100 vs 46 pg/ml) and in P(4) after superovulation (maximum values, 39 vs 22 ng/ml) in the saline-than in the FSH-P-primed heifers reflected the greater increase in the number of follicles (>10 mm) and in the number of corpora lutea (CL) in the saline-primed heifers. Prior to the preovulatory luteinizing hormone (LH) peak during superovulation, there was a parallel (P>0.1) decrease in FSH concentrations in the saline- and FSH-P-primed groups. Within heifers partial correlations indicated that E(2) was correlated positively with the number of follicles (>/= 7 mm) and the size of the largest follicle during superovulation (r=0.54 to 0.81; P<0.01). Negative correlations were detected (P<0.01) between FSH and the number of follicles >/=7 mm prior to (r=-0.26) and during superovulation (r=-0.37). The results cofirm earlier reports indicating that priming with FSH-P decreases the superovulatory response in cattle. Interrelationships of hormonal and ovarian responses support the concept that the presence of large dominant follicles prior to superovulation limits the superovulatory response.  相似文献   

19.
Carrière PD  Amaya D  Lee B 《Theriogenology》1995,43(6):1061-1076
This study monitored the long-term follicular dynamics and changes in ovarian steroid hormones associated with an experimental model of cystic ovarian degeneration (COD) in the heifer. In the treated group (n = 7), Holstein heifers received a single injection of 500 microg of cloprostenol (prostaglandin F2a, PG) and 5 mg of estradiol valerate (EV) on either Day 17, 18 or 19 of the estrous cycle. The control group (n = 7) received only PG. Transrectal ultrasound was performed daily, beginning 8 to 10 d before injection and continuing until a return to normal cyclicity (40 to 74 d). Blood samples were taken twice daily over the same period. The EV disrupted the normal follicular development as well as the plasma progesterone and estradiol profiles of 6/7 heifers in the treated group. Two different types of responses were observed. The Type-I response (n = 2) was characterized by a premature ovulation followed by a corpus luteum (CL) which persisted for over 30 d. The Type-II response (n = 4) was characterized by anovulation followed by the emergence of a large ovarian structure which could further be subtyped. In Type- IIA (n = 2), this follicle ovulated at an exaggerated size of 19 or 24 mm (mean diameter of controls: 13.4 +/- 2.7 mm). The subsequent cavernous CL was very large at 35 and 37 mm (mean diameter of CL in controls: 23.8 +/- 2.0 mm). In Type- IIB (n = 1), the follicle present at the time of injection continued to grow and became a luteinized cyst. In Type-IIC (n = 1), several waves of follicular cysts developed and persisted for 52 d. This study suggests that EV induces a range of ovarian dysfunctions including different forms of COD. The individual differences in the stage of folliculogenesis at the time of injection of EV may be responsible for the different types of responses.  相似文献   

20.
This study was designed to determine the effect of location of the preovulatory dominant follicle and stage of ovarian follicle development on ovulation rate and embryo survival in alpacas. In Experiment 1, mature lactating alpacas were randomly assigned to one of two groups according to the location of the dominant follicle detected by ultrasonography: (a) Right ovary (RO, n=96) or (b) Left ovary (LO, n=108). All females were mated once by an intact adult male. Ovulation rate, CL diameter and embryo survival rate (heartbeat) were assessed by ultrasonography on Days 2 (Day 0=mating), 8 and 30, respectively. Ovulation rate (96.5 and 96.3% for RO and LO group, respectively), corpus luteum (CL) diameter (10.2 and 10.6 mm for RO and LO group, respectively) and pregnancy rate (60.2 and 56.7% for RO and LO group, respectively) did not differ among groups. In Experiment 2, lactating alpacas (n=116) were submitted to ultrasonic-guided follicle ablation to synchronize follicular wave emergence. Afterwards, daily ultrasonography examinations were performed and females were randomly assigned to the following groups according to the growth phase and diameter of the dominant follicle: (a) early growing (5-6 mm, n=27), (b) growing (7-12 mm, n=30); (c) static (7-12 mm, n=30), or (d) regressing phase (12-7 mm, n=29). All alpacas were mated with a proven intact male, except five alpacas from early growing group that rejected the male. Females were examined by ultrasonography on Day 2 (ovulation rate), Day 8 (CL diameter), and Days 15, 20, 25, 30 and 35 (embryo survival by the presence of embryo proper and heartbeat). No differences were detected in ovulation rate among groups (96%, 97%, 100%, and 97%) or in CL size (10.3, 11.7, 11.1, and 11.1 mm, for early growing, growing, early static and regressing, respectively). Although, embryo survival rate at Day 35 after mating was numerically greatest in growing (65.5%), intermediate in early growing (52.4%) and static (53.3%), and least in regressing phase (42.9%), there were no differences among groups. Results suggest that neither location nor stage of development of the dominant follicle has an influence on ovulation and embryo survival rate in alpacas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号