首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Canadian northern leopard frogs (Rana pipiens) and bullfrogs (Rana catesbeiana) were acclimated to 3 degrees C and submerged in anoxic (0-5 mmHg) and normoxic (Po(2) approximately 158 mmHg) water. Periodic measurements of blood Po(2), Pco(2), and pH were made on samples taken anaerobically from subsets of each species. Blood plasma was analyzed for [Na(+)], [K(+)], [Cl(-)], [lactate], [glucose], total calcium, total magnesium, and osmolality. Blood hematocrit was determined, and plasma bicarbonate concentration was calculated. Both species died within 4 d of anoxic submergence. Anoxia intolerance would rule out hibernation in mud, which is anoxic. Both species survived long periods of normoxic submergence (R. pipiens, 125 d; R. catesbeiana, 150 d) with minimal changes in acid-base and ionic status. We conclude that ranid frogs require a hibernaculum where the water has a high enough Po(2) to drive cutaneous diffusion, allowing the frogs to extract enough O(2) to maintain aerobic metabolism, but that an ability to tolerate anoxia for several days may still be ecologically meaningful.  相似文献   

2.
Common snapping turtles, Chelydra serpentina (Linnaeus), were submerged in anoxic and normoxic water at 3 degrees C. Periodic blood samples were taken, and PO(2), PCO(2), pH, [Na(+)], [K(+)], [Cl(-)], total Ca, total Mg, [lactate], [glucose], hematocrit, and osmolality were measured; weight gain was determined; and plasma [HCO(3)(-)] was calculated. Submergence in normoxic water caused a decrease in PCO(2) from 10.8 to 6.9 mmHg after 125 d, partially compensating a slight increase in lactate and allowing the turtles to maintain a constant pH. Submergence in anoxic water caused a rapid increase in lactate from 1.8 to 168.1 mmol/L after 100 d. Associated with the increased lactate were decreases in pH from 8.057 to 7.132 and in [HCO(3)(-)] from 51.5 to 4.9 mmol/L and increases in total Ca from 2.0 to 36.6 mmol/L, in total Mg from 1.8 to 12.1 mmol/L, and in [K(+)] from 3.08 to 8.45 mmol/L. We suggest that C. serpentina is tolerant of anoxic submergence and therefore is able to exploit habitats unavailable to some other species in northern latitudes.  相似文献   

3.
These studies were conducted to compare the effects on systemic O(2) transport of chronically vs. acutely increased Hb O(2) affinity. O(2) transport during maximal normoxic and hypoxic [inspired PO(2) (PI(O(2))) = 70 and 55 Torr, respectively] exercise was studied in rats with Hb O(2) affinity that was increased chronically by sodium cyanate (group 1) or acutely by transfusion with blood obtained from cyanate-treated rats (group 2). Group 3 consisted of normal rats. Hb O(2) half-saturation pressure (P(50); Torr) during maximal exercise was approximately 26 in groups 1 and 2 and approximately 46 in group 3. In normoxia, maximal blood O(2) convection (TO(2 max) = cardiac output x arterial blood O(2) content) was similar in all groups, whereas in hypoxia TO(2 max) was significantly higher in groups 1 and 2 than in group 3. Tissue O(2) extraction (arteriovenous O(2) content/arterial O(2) content) was lowest in group 1, intermediate in group 2, and highest in group 3 (P < 0.05) at all exercise PI(O(2)) values. In normoxia, maximal O(2) utilization (VO(2 max)) paralleled O(2) extraction ratio and was lowest in group 1, intermediate in group 2, and highest in group 3 (P < 0.05). In hypoxia, the lower O(2) extraction ratio values of groups 1 and 2 were offset by their higher TO(2 max); accordingly, their differences in VO(2 max) from group 3 were attenuated or reversed. Tissue O(2) transfer capacity (VO(2 max)/mixed venous PO(2)) was lowest in group 1 and comparable in groups 2 and 3. We conclude that lowering Hb P(50) has opposing effects on TO(2 max) and O(2) extraction ratio, with the relative magnitude of these changes, which varies with PI(O(2)), determining VO(2 max). Although the lower O(2) extraction ratio of groups 2 vs. 3 suggests a decrease in tissue PO(2) diffusion gradient secondary to the low P(50), the lower O(2) extraction ratio of groups 1 vs. 2 suggests additional negative effects of sodium cyanate and/or chronically low Hb P(50) on tissue O(2) transfer.  相似文献   

4.
Previously, by measuring myoglobin-associated PO(2) (P(Mb)O(2)) during maximal exercise, we have demonstrated that 1) intracellular PO(2) is 10-fold less than calculated mean capillary PO(2) and 2) intracellular PO(2) and maximum O(2) uptake (VO(2 max)) fall proportionately in hypoxia. To further elucidate this relationship, five trained subjects performed maximum knee-extensor exercise under conditions of normoxia (21% O(2)), hypoxia (12% O(2)), and hyperoxia (100% O(2)) in balanced order. Quadriceps O(2) uptake (VO(2)) was calculated from arterial and venous blood O(2) concentrations and thermodilution blood flow measurements. Magnetic resonance spectroscopy was used to determine myoglobin desaturation, and an O(2) half-saturation pressure of 3.2 Torr was used to calculate P(Mb)O(2) from saturation. Skeletal muscle VO(2 max) at 12, 21, and 100% O(2) was 0.86 +/- 0.1, 1.08 +/- 0.2, and 1.28 +/- 0.2 ml. min(-1). ml(-1), respectively. The 100% O(2) values approached twice that previously reported in human skeletal muscle. P(Mb)O(2) values were 2.3 +/- 0.5, 3.0 +/- 0.7, and 4.1 +/- 0.7 Torr while the subjects breathed 12, 21, and 100% O(2), respectively. From 12 to 21% O(2), VO(2) and P(Mb)O(2) were again proportionately related. However, 100% O(2) increased VO(2 max) relatively less than P(Mb)O(2), suggesting an approach to maximal mitochondrial capacity with 100% O(2). These data 1) again demonstrate very low cytoplasmic PO(2) at VO(2 max), 2) are consistent with supply limitation of VO(2 max) of trained skeletal muscle, even in hyperoxia, and 3) reveal a disproportionate increase in intracellular PO(2) in hyperoxia, which may be interpreted as evidence that, in trained skeletal muscle, very high mitochondrial metabolic limits to muscle VO(2) are being approached.  相似文献   

5.
Type I diabetes reduces dramatically the capacity of skeletal muscle to receive oxygen (QO(2)). In control (C; n = 6) and streptozotocin-induced diabetic (D: n = 6, plasma glucose = 25.3 +/- 3.9 mmol/l and C: 8.3 +/- 0.5 mmol/l) rats, phosphorescence quenching was used to test the hypothesis that, in D rats, the decline in microvascular PO(2) [Pm(O(2)), which reflects the dynamic balance between O(2) utilization (VO(2)) and QO(2)] of the spinotrapezius muscle after the onset of electrical stimulation (1 Hz) would be faster compared with that of C rats. Pm(O(2)) data were fit with a one or two exponential process (contingent on the presence of an undershoot) with independent time delays using least-squares regression analysis. In D rats, Pm(O(2)) at rest was lower (C: 31.2 +/- 3.2 mmHg; D: 24.3 +/- 1.3 mmHg, P < 0.05) and at the onset of contractions decreased after a shorter delay (C: 13.5 +/- 1.8 s; D: 7.6 +/- 2.1 s, P < 0.05) and with a reduced mean response time (C: 31.4 +/- 3.3 s; D: 23.9 +/- 3.1 s, P < 0.05). Pm(O(2)) exhibited a marked undershoot of the end-stimulation response in D muscles (D: 3.3 +/- 1.1 mmHg, P < 0.05), which was absent in C muscles. These results indicate an altered VO(2)-to-QO(2) matching across the rest-exercise transition in muscles of D rats.  相似文献   

6.
The mechanism of myocardial hibernation, the reversible downregulation of contractile activity on reduction of coronary flow with unchanged cardiac energetics, is presently not understood. The oxygen consumption (VO(2)), shortening fraction (DeltaL), energy status [phosphocreatine (PCr), ATP, and adenosine and lactate release], and free intracellular Ca(2+) concentration ([Ca(2+)](i)) were measured in isolated rat cardiomyocytes at precisely controlled ambient PO(2) (Oxystat). When PO(2) was reduced from 25 to 6 mmHg, VO(2) decreased by 50%, while DeltaL was downregulated from 11.2 +/- 4.1 to 7.6 +/- 4.0%, and energy status was unchanged in the steady state (observation time 12 min). Only transiently PCr decreased, and lactate and adenosine release increased. Further reduction of PO(2) (to 3 mmHg) reduced VO(2) by 80%, decreased PCr by 35%, moderately increased adenosine and lactate release, and progressively reduced DeltaL by 50% (to 5.6 +/- 3.3%). All parameters fully recovered during reoxygenation. PO(2)-dependent downregulation of DeltaL was accompanied by a progressive reduction in systolic [Ca(2+)](i) (from 512 +/- 110 to 357 +/- 91 nmol/l at 6 mmHg and to 251 +/- 69 nmol/l at 3 mmHg), whereas diastolic free [Ca(2+)](i) remained unchanged. Therefore, the mechanism of the reversible, PO(2)-dependent downregulation of contractile activity (myocardial hibernation) involves a substantial reduction of systolic calcium.  相似文献   

7.
This study tested the effects of inhaled nitric oxide [NO; 20 parts per million (ppm)] during normoxic and hypoxic (fraction of inspired O(2) = 14%) exercise on gas exchange in athletes with exercise-induced hypoxemia. Trained male cyclists (n = 7) performed two cycle tests to exhaustion to determine maximal O(2) consumption (VO(2 max)) and arterial oxyhemoglobin saturation (Sa(O(2)), Ohmeda Biox ear oximeter) under normoxic (VO(2 max) = 4.88 +/- 0.43 l/min and Sa(O(2)) = 90.2 +/- 0.9, means +/- SD) and hypoxic (VO(2 max) = 4.24 +/- 0.49 l/min and Sa(O(2)) = 75.5 +/- 4.5) conditions. On a third occasion, subjects performed four 5-min cycle tests, each separated by 1 h at their respective VO(2 max), under randomly assigned conditions: normoxia (N), normoxia + NO (N/NO), hypoxia (H), and hypoxia + NO (H/NO). Gas exchange, heart rate, and metabolic parameters were determined during each condition. Arterial blood was drawn at rest and at each minute of the 5-min test. Arterial PO(2) (Pa(O(2))), arterial PCO(2), and Sa(O(2)) were determined, and the alveolar-arterial difference for PO(2) (A-aDO(2)) was calculated. Measurements of Pa(O(2)) and Sa(O(2)) were significantly lower and A-aDO(2) was widened during exercise compared with rest for all conditions (P < 0.05). No significant differences were detected between N and N/NO or between H and H/NO for Pa(O(2)), Sa(O(2)) and A-aDO(2) (P > 0.05). We conclude that inhalation of 20 ppm NO during normoxic and hypoxic exercise has no effect on gas exchange in highly trained cyclists.  相似文献   

8.
We investigated the effect of increasing hemoglobin- (Hb) O2 affinity on muscle maximal O2 uptake (VO2max) while muscle blood flow, [Hb], HbO2 saturation, and thus O2 delivery (muscle blood flow X arterial O2 content) to the working muscle were kept unchanged from control. VO2max was measured in isolated in situ canine gastrocnemius working maximally (isometric tetanic contractions). The muscles were pump perfused, in alternating order, with either normal blood [O2 half-saturation pressure of hemoglobin (P50) = 32.1 +/- 0.5 (SE) Torr] or blood from dogs that had been fed sodium cyanate (150 mg.kg-1.day-1) for 3-4 wk (P50 = 23.2 +/- 0.9). In both conditions (n = 8) arterial PO2 was set at approximately 200 Torr to fully saturate arterial blood, which thereby produced the same arterial O2 contents, and muscle blood flow was set at 106 ml.100 g-1.min-1, so that O2 delivery in both conditions was the same. VO2max was 11.8 +/- 1.0 ml.min-1.100 g-1 when perfused with the normal blood (control) and was reduced by 17% to 9.8 +/- 0.7 ml.min-1.100 g-1 when perfused with the low-P50 blood (P less than 0.01). Mean muscle effluent venous PO2 was also significantly less (26 +/- 3 vs. 30 +/- 2 Torr; P less than 0.01) in the low-P50 condition, as was an estimate of the capillary driving pressure for O2 diffusion, the mean capillary PO2 (45 +/- 3 vs. 51 +/- 2 Torr). However, the estimated muscle O2 diffusing capacity was not different between conditions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Near-infrared spectroscopy (NIRS) could allow insights into controversial issues related to blood lactate concentration ([La](b)) increases at submaximal workloads (). We combined, on five well-trained subjects [mountain climbers; peak O(2) consumption (VO(2peak)), 51.0 +/- 4.2 (SD) ml. kg(-1). min(-1)] performing incremental exercise on a cycle ergometer (30 W added every 4 min up to voluntary exhaustion), measurements of pulmonary gas exchange and earlobe [La](b) with determinations of concentration changes of oxygenated Hb (Delta[O(2)Hb]) and deoxygenated Hb (Delta[HHb]) in the vastus lateralis muscle, by continuous-wave NIRS. A "point of inflection" of [La](b) vs. was arbitrarily identified at the lowest [La](b) value which was >0.5 mM lower than that obtained at the following. Total Hb volume (Delta[O(2)Hb + HHb]) in the muscle region of interest increased as a function of up to 60-65% of VO(2 peak), after which it remained unchanged. The oxygenation index (Delta[O(2)Hb - HHb]) showed an accelerated decrease from 60- 65% of VO(2 peak). In the presence of a constant total Hb volume, the observed Delta[O(2)Hb - HHb] decrease indicates muscle deoxygenation (i.e., mainly capillary-venular Hb desaturation). The onset of muscle deoxygenation was significantly correlated (r(2) = 0.95; P < 0.01) with the point of inflection of [La](b) vs., i.e., with the onset of blood lactate accumulation. Previous studies showed relatively constant femoral venous PO(2) levels at higher than approximately 60% of maximal O(2) consumption. Thus muscle deoxygenation observed in the present study from 60-65% of VO(2 peak) could be attributed to capillary-venular Hb desaturation in the presence of relatively constant capillary-venular PO(2) levels, as a consequence of a rightward shift of the O(2)Hb dissociation curve determined by the onset of lactic acidosis.  相似文献   

10.
High hemoglobin affinity for O2 [low PO2 at 50% saturation of hemoglobin (P50)] could degrade exercise performance in normoxia by lowering mean tissue PO2 but could enhance O2 transport in hypoxic exercise by increasing arterial O2 saturation. We measured O2 transport at rest and at graded levels of steady-state exercise in tracheostomized dogs with normal P50 (28.8 +/- 1.8 Torr) and again after P50 was lowered (19.5 +/- 0.7 Torr) by sodium cyanate infusions. Measurements were made during ventilation with room air (RA), 12% O2 in N2, or 10% O2 in N2. Cardiac output (QT) as a function of O2 consumption (VO2) was not altered by low P50 at any inspired O2 fraction (P greater than 0.05). With RA exercise, arterial content (CaO2) and O2 delivery (QT X CaO2) were unchanged at low P50, whereas mixed venous PO2 was reduced at each level of VO2. With exercise in hypoxia, CaO2 and O2 delivery were significantly improved at low P50 (P less than 0.05). Mixed venous PO2 was lower than control during 12% O2 (P less than 0.05) but not different from control during 10% O2 exercise at low P50. Despite a presumed decrease in tissue PO2 during RA and 12% O2 exercise, exercise performance and base excess decline were not significantly worse than control levels. We conclude that, in canine steady-state exercise, hemoglobin P50 is not an important determinant of tissue O2-extraction capacity during normoxia or moderate hypoxia. In extreme hypoxia, low P50 may help to maintain tissue PO2 by enhancing systemic O2 delivery at each level of QT.  相似文献   

11.
Softshell turtles (Apalone spinifera) were submerged at 3 degrees C in anoxic or normoxic water. Periodically, blood PO(2), PCO(2), pH, plasma [Cl(-)], [Na(+)], [K(+)], total Ca, total Mg, lactate, glucose, and osmolality were measured; hematocrit and body mass determined; and blood [HCO(3)(-)] calculated. On day 14 of anoxic submergence, five of eight softshell turtles were dead, one died immediately after removal, and the remaining two showed no signs of life other than a heartbeat. After 11 days of submergence in anoxic water, blood pH fell from 7.923 to 7.281 and lactate increased to 62.1 mM. Plasma [HCO(3)(-)] was titrated from 34.57 mM to 4.53 mM. Plasma [Cl(-)] fell, but [K(+)] and total Ca and Mg increased. In normoxic submergence, turtles survived over 150 days and no lactate accumulated. A respiratory alkalosis developed (pH-8.195, PCO(2)-5.49 after 10 days) early and persisted throughout; no other variables changed in normoxic submergence. Softshell turtles are very capable of extrapulmonary extraction of O(2), but are an anoxia-intolerant species of turtle forcing them to utilize hibernacula that are unlikely to become hypoxic or anoxic (e.g., large lakes and rivers).  相似文献   

12.
Tissue oxygen extraction during hypovolemia: role of hemoglobin P50   总被引:2,自引:0,他引:2  
When the delivery of O2 to tissues (QO2 = blood flow X O2 content) falls below a critical threshold, tissue O2 uptake (VO2) becomes limited by QO2. The mechanism responsible for this extraction limitation is not understood but may involve molecular diffusion limitation as mean capillary PO2 drops below a critical minimum level in some capillaries. We tested this hypothesis by measuring the critical QO2 necessary to maintain VO2 independent of QO2 in anesthetized, paralyzed normal dogs (n = 7) and in a second group in which PO2 at 50% saturation of hemoglobin (P50) was reduced by exchange transfusion with low-P50 erythrocytes (n = 7). QO2 was reduced in stages by removing blood volume to reduce blood flow while VO2 was measured by spirometry at each step. To the extent that O2 extraction was limited by a critical capillary PO2, we reasoned that the onset of diffusion limitation should occur at a higher QO2 with low P50, since a lower end-capillary PO2 is required to achieve the same O2 extraction. The critical QO2 (7.8 +/- 1.2 ml X min-1 X kg-1) and extraction ratio (0.63 +/- 0.06) in dogs with reduced P50 were not different from controls. At the critical delivery, mixed venous PO2 was lower in low P50 (16.1 +/- 2.9 Torr) than controls (29.9 +/- 2.3 Torr). We concluded that diffusion limitation does not initiate the early fall in VO2 below the critical QO2 and offer an alternative model to explain the onset of supply dependency.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
We hypothesized that impaired O2 transport plays a role in limiting exercise in patients with chronic renal failure (CRF). Six CRF patients (25 +/- 6 yr) and six controls (24 +/- 6 yr) were examined twice during incremental single-leg isolated quadriceps exercise. Leg O2 delivery (QO2(leg)) and leg O2 uptake (VO2(leg)) were obtained when subjects breathed gas of three inspired O2 fractions (FI(O2)) (0.13, 0.21, and 1.0). On a different day, myoglobin O2 saturation and muscle bioenergetics were measured by proton and phosphorus magnetic resonance spectroscopy. CRF patients, but not controls, showed O2 supply dependency of peak VO2 (VO2(peak)) by a proportional relationship between peak VO2(leg) at each inspired O2 fraction (0.59 +/- 0.20, 0.47 +/- 0.10, 0.43 +/- 0.10 l/min, respectively) and 1) work rate (933 +/- 372, 733 +/- 163, 667 +/- 207 g), 2) QO(2leg) (0.80 +/- 0.20, 0.64 +/- 0.10, 0.59 +/- 0.10 l/min), and 3) cell PO2 (6.3 +/- 5.4, 1.7 +/- 1.3, 1.2 +/- 0.7 mmHg). CRF patients breathing 100% O2 and controls breathing 21% O2 had similar peak QO2(leg) (0.80 +/- 0.20 vs. 0.79 +/- 0.10 l/min) and similar peak VO2(leg) (0.59 +/- 0.20 vs. 0.57 +/- 0.10 l/min). However, mean capillary PO2 (47.9 +/- 4.0 vs. 38.2 +/- 4.6 mmHg) and the capillary-to-myocite gradient (40.7 +/- 6.2 vs. 34.4 +/- 4.0 mmHg) were both higher in CRF patients than in controls (P < 0.03 each). We conclude that low muscle O2 conductance, but not limited mitochondrial oxidative capacity, plays a role in limiting exercise tolerance in these patients.  相似文献   

14.
O(2) transport during maximal exercise was studied in rats bred for extremes of exercise endurance, to determine whether maximal O(2) uptake (VO(2 max)) was different in high- (HCR) and low-capacity runners (LCR) and, if so, which were the phenotypes responsible for the difference. VO(2 max) was determined in five HCR and six LCR female rats by use of a progressive treadmill exercise protocol at inspired PO(2) of approximately 145 (normoxia) and approximately 70 Torr (hypoxia). Normoxic VO(2 max) (in ml. min(-1). kg(-1)) was 64.4 +/- 0.4 and 57.6 +/- 1.5 (P < 0.05), whereas VO(2 max) in hypoxia was 42.7 +/- 0.8 and 35.3 +/- 1.5 (P < 0.05) in HCR and LCR, respectively. Lack of significant differences between HCR and LCR in alveolar ventilation, alveolar-to-arterial PO(2) difference, or lung O(2) diffusing capacity indicated that neither ventilation nor efficacy of gas exchange contributed to the difference in VO(2 max) between groups. Maximal rate of blood O(2) convection (cardiac output times arterial blood O(2) content) was also similar in both groups. The major difference observed was in capillary-to-tissue O(2) transfer: both the O(2) extraction ratio (0.81 +/- 0.002 in HCR, 0.74 +/- 0.009 in LCR, P < 0.001) and the tissue diffusion capacity (1.18 +/- 0.09 in HCR and 0.92 +/- 0.05 ml. min(-1). kg(-1). Torr(-1) in LCR, P < 0.01) were significantly higher in HCR. The data indicate that selective breeding for exercise endurance resulted in higher VO(2 max) mostly associated with a higher transfer of O(2) at the tissue level.  相似文献   

15.
O(2) transport and O(2) diffusion interact in providing O(2) to tissue, but the extent to which diffusion may be critical in the heart is unclear. If O(2) diffusion limits mitochondrial oxygenation, a change in blood O(2) affinity at constant total O(2) transport should alter cardiac O(2) consumption (VO(2)) and function. To test this hypothesis, we perfused isolated isovolumically working rabbit hearts with erythrocytes at physiological blood-gas values and P(50) (PO(2) required to half-saturate hemoglobin) values at pH of 7.4 of 17 +/- 1 Torr (2,3-bisphosphoglycerate depletion) and 33 +/- 5 Torr (inositol hexaphosphate incorporation). When perfused at 40 and 20% of normal coronary flow, mean VO(2) decreased from the control value by 37 and 46% (P < 0.001), and function, expressed as cardiac work, decreased by 38 and 52%, respectively (P < 0.001). Perfusion at higher P(50) during low-flow ischemia improved VO(2) by 20% (P < 0.001) and function by 36% (P < 0.02). There was also modest improvement at basal flow (P < 0.02 and P < 0.002, respectively). The improvement in VO(2) and function due to the P(50) increase demonstrates the importance of O(2) diffusion in this cardiac ischemia model.  相似文献   

16.
The kinetics of adjustment of oxygen uptake (VO2) at the onset of a square wave of exercise in man has been shown to be variable and related mainly to factors located distal to the capillary. The present study examined the effects of decreasing oxygen and high energy phosphates (approximately P) stores, by blood flow occlusion (BFO) and/or preceding exercise, on the half time of the VO2 on-response (t1/2 VO2 on-) during arm exercise. Twelve male subjects performed an arm exercise test at a standard intensity of 75 W (75 WA) following six procedures designed progressively to decrease O2 and/or approximately P stores. Breath-by-breath VO2 and lactic acid accumulation in blood (delta [1ab]) during the VO2 transient were measured. Preceding the 75 WA by 5 min of 125 W leg exercise decreased significantly the t1/2 VO2 on- (63-47 s). Preceding the 75 WA with either arm BFO and isometric exercise (1 min), no-load or 25 W (25WA) arm cranking (5 min) did not significantly affect t1/2 VO2 on- or delta [1ab]. Preceding 75 WA with 5-10 min BFO or BFO plus 25 WA resulted in a significant decrease in t1/2 VO2 on- (20% and 50%, respectively). The delta [1ab] increased linearly with t1/2 VO2 on-responses greater than 24 s. These data suggest that the local depletion of O2 and/or approximately P stores play an important role in determining the kinetics of adjustment of VO2 to exercise.  相似文献   

17.
Reducing the hemolobin (Hb)-O(2) binding affinity facilitates O(2) unloading from Hb, potentially increasing tissue mitochondrial O(2) availability. We hypothesized that a reduction of Hb-O(2) affinity would increase O(2) extraction when tissues are O(2) supply dependent, reducing the threshold of critical O(2) delivery (DO(2 CRIT)). We investigated the effects of increased O(2) tension at which Hb is 50% saturated (P(50)) on systemic O(2) uptake (VO(2) (SYS)), DO(2 CRIT), lactate production, and acid-base balance during isovolemic hemodilution in conscious rats. After infusion of RSR13, an allosteric modifier of Hb, P(50) increased from 36.6 +/- 0.3 to 48.3 +/- 0.6 but remained unchanged at 35.4 +/- 0.8 mmHg after saline (control, CON). Arterial O(2) saturations were equivalent between RSR13 and saline groups, but venous PO(2) was higher and venous O(2) saturation was lower after RSR13. Convective O(2) delivery progressively declined during hemodilution reaching the DO(2 CRIT) at 3.4 +/- 0.8 ml x min(-1) x 100 g(-1) (CON) and 3.6 +/- 0.6 ml x min(-1) x 100 g(-1) (RSR13). At Hb of 8.1 g/l VO(2) (SYS) started to decrease (CON: 1.9 +/- 0.1; RSR13: 1.8 +/- 0.2 ml x min(-1) x 100 g(-1)) and fell to 0.8 +/- 0.2 (CON) and 0.7 +/- 0.2 ml x min(-1). 100 g(-1) (RSR13). Arterial lactate was lower in RSR13-treated than in control animals when animals were O(2) supply dependent. The decrease in base excess, arterial pH, and bicarbonate during O(2) supply dependence was significantly less after RSR13 than after saline. These findings demonstrate that during O(2) supply dependence caused by severe anemia, reducing Hb-O(2) binding affinity does not affect VO(2) (SYS) or DO(2 CRIT) but appears to have beneficial effects on oxidative metabolism and acid base balance.  相似文献   

18.
We investigated the relationships among maximal O2 uptake (VO2max), effluent venous PO2 (PvO2), and calculated mean capillary PO2 (PCO2) in isolated dog gastrocnemius in situ as arterial PO2 (PaO2) was progressively reduced with muscle blood flow held constant. The hypothesis that VO2max is determined in part by peripheral tissue O2 diffusion predicts proportional declines in VO2max and PCO2 if the diffusing capacity of the muscle remains constant. The inspired O2 fraction was altered in each of six dogs to produce four different levels of PaO2 [22 +/- 2, 29 +/- 1, 38 +/- 1, and 79 +/- 4 (SE) Torr]. Muscle blood flow, with the circulation isolated, was held constant at 122 +/- 15 ml.100 g-1.min-1 while the muscle worked maximally (isometric twitches at 5-7 Hz) at each of the four different values of PaO2. Arterial and venous samples were taken to measure lactate, pH, PO2, PCO2, and muscle VO2. PCO2 was calculated using Fick's law of diffusion and a Bohr integration procedure. VO2max fell progressively (P less than 0.01) with decreasing PaO2. The decline in VO2max was proportional (R = 0.99) to the fall in both muscle PvO2 and calculated PCO2 while the calculated muscle diffusing capacity was not different among the four conditions. Fatigue developed more rapidly with lower PaO2, although lactate output from the muscle was not different among conditions. These results are consistent with the hypothesis that resistance to O2 diffusion in the peripheral tissue may be a principal determinant of VO2max.  相似文献   

19.
The oxygen consumption rate (VO(2)) of Biomphalaria glabrata populations, using polarometric and manometric methods, when plotted against dried body mass as logarithmic co-ordinates, respectively, fell on a regression line with a slope between 0.933 and 1.02. The slope of the regression line for non-infected Schistosoma mansoni populations was found to be 1.04 with no differences in the VO(2) between infected and non-infected snails. The VO(2) of CO-treated snails was the same as for the control snails. The VO(2) of starved snails declined after 3 days and was half the original value after 10 days starvation at 27 degrees C. The P(50) value for snail haemolymph containing haemoglobin suspended in a Tris-HCl buffer was 5.57(+/-0.73)mmHg at a pH of 7.51 and 25 degrees C. For Sephadex-75 cleaned haemolymph the P(50) value was 1.72(+/-0.07)mmHg at 25 degrees C and pH 7.51. Snails exposed to oxygen fs and to choices of different oxygen concentrations in water did not exclusively prefer high (130mmHg), low (15mmHg), or normal (80mmHg) oxygen tensions. The oxygen consumption rate of 782 cercariae at 27 degrees C was measured as 0.0092 microl O(2)/h per single cercaria. The results, when compared with the data in the literature [Z. Vergl. Physiol. 46 (1963) 467;; S. A. J. Zool. 14 (1979) 202], indicate that the mantle cavity gas bubble plays an insignificant or no role at all when pulmonate snails are kept in water with high partial pressures of oxygen and at low temperatures.  相似文献   

20.
A group of 15 competitive male cyclists [mean peak oxygen uptake, VO2peak 68.5 (SEM 1.5 ml x kg(-1) x min(-1))] exercised on a cycle ergometer in a protocol which began at an intensity of 150 W and was increased by 25 W every 2 min until the subject was exhausted. Blood samples were taken from the radial artery at the end of each exercise intensity to determine the partial pressures of blood gases and oxyhaemoglobin saturation (SaO2), with all values corrected for rectal temperature. The SaO2 was also monitored continuously by ear oximetry. A significant decrease in the partial pressure of oxygen in arterial blood (PaO2) was seen at the first exercise intensity (150 W, about 40% VO2peak). A further significant decrease in PaO2 occurred at 200 W, whereafter it remained stable but still significantly below the values at rest, with the lowest value being measured at 350 W [87.0 (SEM 1.9) mmHg]. The partial pressure of carbon dioxide in arterial blood (PaCO2) was unchanged up to an exercise intensity of 250 W whereafter it exhibited a significant downward trend to reach its lowest value at an exercise intensity of 375 W [34.5 (SEM 0.5) mmHg]. During both the first (150 W) and final exercise intensities (VO2peak) PaO2 was correlated significantly with both partial pressure of oxygen in alveolar gas (P(A)O2, r = 0.81 and r = 0.70, respectively) and alveolar-arterial difference in oxygen partial pressure (P(A-a)O2, r = 0.63 and r = 0.86, respectively) but not with PaCO2. At VO2peak PaO2 was significantly correlated with the ventilatory equivalents for both oxygen uptake and carbon dioxide output (r = 0.58 and r = 0.53, respectively). When both P(A)O2 and P(A-a)O2 were combined in a multiple linear regression model, at least 95% of the variance in PaO2 could be explained at both 150 W and VO2peak. A significant downward trend in SaO2 was seen with increasing exercise intensity with the lowest value at 375 W [94.6 (SEM 0.3)%]. Oximetry estimates of SaO2 were significantly higher than blood measurements at all times throughout exercise and no significant decrease from rest was seen until 350 W. The significant correlations between PaO2 and P(A)O2 with the first exercise intensity and at VO2peak led to the conclusion that inadequate hyperventilation is a major contributor to exercise-induced hypoxaemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号