共查询到20条相似文献,搜索用时 0 毫秒
1.
Identification of koningic acid (heptelidic acid)-modified site in rabbit muscle glyceraldehyde-3-phosphate dehydrogenase 总被引:2,自引:0,他引:2
The sesquiterpene antibiotic koningic acid (heptelidic acid) has been previously demonstrated to modify glyceraldehyde-3-phosphate dehydrogenase in specific manner, probably by binding to the sulfhydryl residue at the active site of the enzyme (Sakai, K., Hasumi, K. and Endo, A. (1988) Biochim. Biophys. Acta 952, 297-303). Rabbit muscle glyceraldehyde-3-phosphate dehydrogenase labeled with [3H]koningic acid was digested with trypsin. Reverse-phase HPLC revealed that the label is associated exclusively with a tryptic peptide having 17 amino acid residues. Microsequencing and fast atom bombardment mass spectrometry demonstrated that the peptide has the sequence Ile-Var-Ser-Asn-Ala-Ser-Cys-Thr-Thr-Asn-Cys-Leu-Ala-Pro-Leu-Ala-Lys. In comparison to the amino acid sequence of glyceraldehyde-3-phosphate dehydrogenase from other species, this peptide is in a highly conserved region and is part of the active site of the enzyme. The cysteine residue corresponding to the Cys-149 in the pig muscle enzyme, which has been shown to be an essential residue for the enzyme activity, was shown to be the site modified by koningic acid. Structural analyses of the reaction product of koningic acid and L-cysteine suggested that the epoxide of koningic acid reacts with the sulfhydryl group of cysteine residue, resulting in a thioether. 相似文献
2.
3.
Initial rate studies at pH 7.6 with three aldehydes, product inhibition patterns with NADH and dead-end inhibition with adenosine diphosphoribose show that the kinetic mechanism of glyceraldehyde-3-phosphate dehydrogenase from rabbit muscle cannot be ordered, and support an enzyme-substitution mechanism. Deviations from Michaelis-Menten behaviour are consistent with negative interactions in the binding of NAD+ and instability of the species E(NAD)3 and E(NAD)4. Inhibition with large concentrations of phosphate and arsenate indicates competition for a binding site for glyceraldehyde 3-phosphate, and is not found with glyceraldehyde as substrate. 相似文献
4.
The sesquiterpene lactone koningic acid (heptelidic acid) irreversibly inactivated glyceraldehyde-3-phosphate dehydrogenase [D-glyceraldehyde 3-phosphate: NAD+ oxidoreductase (phosphorylating)] (EC 1.2.1.12) (GAPDH) and thus inhibits glycolysis. The koningic-acid-producing strain of Trichoderma koningii M3947 was shown to contain the koningic-acid-resistant GAPDH isozyme (GAPDH I) under conditions of koningic acid production. In peptone-rich medium, however, no koningic acid production was observed, and the koningic-acid-sensitive GAPDH isozyme (GAPDH II), in addition to the resistant enzyme, was produced. Both enzymes were tetramer with a molecular mass of 152 kDa (4 x 38 kDa) and lost enzyme activity when two of the four cysteine residues reacted with koningic acid. The apparent Km values of GAPDH I and II for glyceraldehyde 3-phosphate were 0.54 mM and 0.33 mM, respectively. The former isozyme was inhibited 50% by 1 mM koningic acid but not affected at 0.1 mM, while the latter isozyme was inhibited 50% at 0.01 mM. The immunochemical properties and partial amino acid sequences suggested that the two isozymes have different molecular structures. These results suggest that GAPDH I is responsible for the glycolysis in T. koningii when koningic acid is produced. 相似文献
5.
Markossian KA Khanova HA Kleimenov SY Levitsky DI Chebotareva NA Asryants RA Muronetz VI Saso L Yudin IK Kurganov BI 《Biochemistry》2006,45(44):13375-13384
Thermal denaturation and aggregation of rabbit muscle glyceraldehyde-3-phosphate dehydrogenase (GAPDH) have been studied using differential scanning calorimetry (DSC), dynamic light scattering (DLS), and analytical ultracentrifugation. The maximum of the protein thermal transition (T(m)) increased with increasing the protein concentration, suggesting that the denaturation process involves the stage of reversible dissociation of the enzyme tetramer into the oligomeric forms of lesser size. The dissociation of the enzyme tetramer was shown by sedimentation velocity at 45 degrees C. The DLS data support the mechanism of protein aggregation that involves a stage of the formation of the start aggregates followed by their sticking together. The hydrodynamic radius of the start aggregates remained constant in the temperature interval from 37 to 55 degrees C and was independent of the protein concentration (R(h,0) approximately 21 nm; 10 mM sodium phosphate, pH 7.5). A strict correlation between thermal aggregation of GAPDH registered by the increase in the light scattering intensity and protein denaturation characterized by DSC has been proved. 相似文献
6.
7.
These studies establish the specificity of 3,3,3-trifluorobromoacetone for reaction with the active site cysteines of rabbit muscle glyceraldehyde-3-phosphate dehydrogenase and suggest the potential use of trifluoroacetonyl groups as 19F nuclear magnetic resonance probes for study of symmetry relations between the four protomers of the enzyme. The alkylation of the holoenzyme follows biphasic kinetics and indicates either preexistent or induced nonequivalence among the sites; these effects are not predisposed by a low coenzyme/enzyme ratio. Two additional alkylation sites not at the active centers are created by acylation with beta-(2-furyl)acryloyl phosphate: it is concluded that pseudosubstrates cause an intramolecular rearrangement which exposes two sulfhydryl functions besides those of the active site (Cys-149). 相似文献
8.
A Levitzki 《Biochemical and biophysical research communications》1973,54(3):889-893
ApoGPDH is shown to exhibit half-of-the-sites reactivity towards iodeacetamido-naphthal (IAN) and FDNB and all-of-the-sites reactivity towards DTNB, iodoactic acid and the large DDPM molecule. It is suggested that the asymmetry in the ApoGPDH molecule is induced by some alkylating reagents and not by others, depending on the nature of the interaction between the alkyl group and the active site of the enzyme. 相似文献
9.
Molecular basis of negative co-operativity in rabbit muscle glyceraldehyde-3-phosphate dehydrogenase 总被引:6,自引:0,他引:6
The interactions of rabbit muscle glyceraldehyde-3-phosphate dehydrogenase with NAD+ and with its fluorescent derivative 1, N6-etheno-adenine dinucleotide were investigated using a variety of spectroscopic methods. These techniques included: difference spectroscopy, circular dichroism, fluorescence and circular polarized luminescence. It was found that the greatest structural change in the protein tetramer occurs upon binding of the first mole of coenzyme. We have also demonstrated that progressive structural changes occur at the adenine subsite in the NAD+ binding site as a function of coenzyme saturation. These conformational changes are probably responsible for the progressive decrease in the affinity towards the coenzyme. It was also found that every NAD+ molecule induces the same conformational change of the nicotinamide subsite. These results offer a molecular explanation for the negative co-operativity in the binding of the coenzyme, without a change in the catalytic power of the NAD+ site as a function of coenzyme saturation. These results also offer a new explanation for the fact that enzyme exhibits half-of-the-sites reactivity towards certain ligands and full-site reactivity towards others. It is suggested that those ligands interacting at the adenine subsite of the NAD+ binding site induce the half-of-the-sites reactivity.Our results support the view that both the negative co-operativity in coenzyme binding and half-of-the-sites reactivity are due to ligand-induced conformational changes on an a priori symmetric glyceraldehyde-3-phosphate dehydrogenase molecule. 相似文献
10.
11.
Inactivation of glyceraldehyde-3-phosphate dehydrogenase of human malignant cells by methylglyoxal 总被引:1,自引:0,他引:1
The effect of methylglyoxal on the activity of glyceraldehyde-3-phosphate dehydrogenase (GA3PD) of several normal human tissues and benign and malignant tumors has been tested. Methylglyoxal inactivated GA3PD of all the malignant cells (47 samples) and the degree of inactivation was in the range of 25-90%, but it had no inhibitory effect on this enzyme from several normal cells (24 samples) and benign tumors (13 samples). When the effect of methylglyoxal on other two dehydrogenases namely glucose 6-phosphate dehydrogenase (G6PD) and L-lactic dehydrogenase (LDH) of similar cells was tested as controls it has been observed that methylglyoxal has some inactivating effect on G6PD of all the normal, benign and malignant samples tested, whereas, LDH remained completely unaffected. These studies indicate that the inactivating effect of methylglyoxal on GA3PD specifically of the malignant cells may be a common feature of all the malignant cells, and this phenomenon can be used as a simple and rapid device for the detection of malignancy. 相似文献
12.
13.
Khanova HA Markossian KA Kleimenov SY Levitsky DI Chebotareva NA Golub NV Asryants RA Muronetz VI Saso L Yudin IK Muranov KO Ostrovsky MA Kurganov BI 《Biophysical chemistry》2007,125(2-3):521-531
The study of thermal denaturation of rabbit muscle glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in the presence of alpha-crystallin by differential scanning calorimetry (DSC) showed that the position of the maximum on the DSC profile (T(max)) was shifted toward lower temperatures with increasing alpha-crystallin concentration. The diminishing GAPDH stability in the presence of alpha-crystallin has been explained assuming that heating of GAPDH induces dissociation of the tetrameric form of the enzyme into dimers interacting with alpha-crystallin. The dissociation of the enzyme tetramer was shown by sedimentation velocity at 45 degrees C. Suppression of thermal aggregation of GAPDH by alpha-crystallin was studied by dynamic light scattering under the conditions wherein temperature was elevated at a constant rate. The construction of the light scattering intensity versus the hydrodynamic radius (R(h)) plots enabled estimating the hydrodynamic radius of the start aggregates (R(h,0)). When aggregation of GAPDH was studied in the presence of alpha-crystallin, the start aggregates of lesser size were observed. 相似文献
14.
15.
16.
17.
T Nakagawa F Nagayama 《Comparative biochemistry and physiology. B, Comparative biochemistry》1989,93(2):379-384
1. Glyceraldehyde-3-phosphate dehydrogenase was isolated from the ordinary muscle of red sea bream Pagrus major, Pacific mackerel Scomber japonicus and carp Cyprinus carpio by ammonium sulfate fractionation, followed by DEAE-Sepharose CL-6B and DEAE-cellulose column chromatography and Sephadex G-150 gel filtration, and examined for enzymatic properties. 2. Their optimum pH values in the backward reaction ranged from 7.8 to 8.2, and Km values from 1.56 to 1.90 mM. 3. Irrespective of the species of fish, the enzymatic activity was non-competitively inhibited by inorganic phosphate in the backward reaction. Divalent metal ions were not necessary to activate these glyceraldehyde-3-phosphate dehydrogenases. In the presence of 1 mM Zn(2+), these enzymes showed relative activities of 42-64% the activities measured in the absence of those ions. 5. Thermal stability of carp enzyme was higher than those of red sea bream and Pacific mackerel; the enzyme activity of the latter two species was almost lost on incubation at 45 degrees C for 10-20 min, whereas carp enzyme retained half the activity even when incubated at 60 degrees C for 30 min. 相似文献
18.
19.
Mechanism of glyceraldehyde-3-phosphate transfer from aldolase to glyceraldehyde-3-phosphate dehydrogenase 总被引:3,自引:0,他引:3
The catalytic interaction of glyceraldehyde-3-phosphate dehydrogenase with glyceraldehyde 3-phosphate has been examined by transient-state kinetic methods. The results confirm previous reports that the apparent Km for oxidative phosphorylation of glyceraldehyde 3-phosphate decreases at least 50-fold when the substrate is generated in a coupled reaction system through the action of aldolase on fructose 1,6-bisphosphate, but lend no support to the proposal that glyceraldehyde 3-phosphate is directly transferred between the two enzymes without prior release to the reaction medium. A theoretical analysis is presented which shows that the kinetic behaviour of the coupled two-enzyme system is compatible in all respects tested with a free-diffusion mechanism for the transfer of glyceraldehyde 3-phosphate from the producing enzyme to the consuming one. 相似文献
20.
Hybridization of glyceraldehyde-3-phosphate dehydrogenase 总被引:2,自引:0,他引:2
M Kochman J Golebiowska T Baranowski J R Dedman D W Fodge B G Harris 《FEBS letters》1974,41(1):104-107