首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
By using two reporter protein-encoding virus-like RNAs derived from identical viral RNA (vRNA) segments, we assessed their incorporation efficiency into single progeny virions. Most plaques formed by the recombinant viruses that were generated in cells positive for both reporter genes expressed only one or the other protein. These results suggest that two virus-like RNAs encoding different reporter proteins compete for incorporation into virions, and individual influenza virions incorporate single, but not multiple, copies of homologous vRNA segments.  相似文献   

2.
A final step in the influenza virus replication cycle is the assembly of the viral structural proteins and the packaging of the eight segments of viral RNA (vRNA) into a fully infectious virion. The process by which the RNA genome is packaged efficiently remains poorly understood. In an approach to analyze how vRNA is packaged, we rescued a seven-segmented virus lacking the hemagglutinin (HA) vRNA (deltaHA virus). This virus could be passaged in cells constitutively expressing HA protein, but it was attenuated in comparison to wild-type A/WSN/33 virus. Supplementing the deltaHA virus with an artificial segment containing green fluorescent protein (GFP) or red fluorescent protein (RFP) with HA packaging regions (45 3' and 80 5' nucleotides) partially restored the growth of this virus to wild-type levels. The absence of the HA vRNA in the deltaHA virus resulted in a 40 to 60% reduction in the packaging of the PA, NP, NA, M, and NS vRNAs, as measured by quantitative PCR (qPCR), and the packaging of these vRNAs was partially restored in the presence of GFP/RFP packaging constructs. To further define nucleotides of the HA coding sequence which are important for vRNA packaging, synonymous mutations were introduced into the full-length HA cDNA of influenza A/WSN/33 and A/Puerto Rico/8/34 viruses, and mutant viruses were rescued. qPCR analysis of vRNAs packaged in these mutant viruses identified a key region of the open reading frame (nucleotides 1659 to 1671) that is critical for the efficient packaging of an influenza virus H1 HA segment.  相似文献   

3.
The significance of the conserved cytoplasmic tail sequence of influenza A virus neuraminidase (NA) was analyzed by the recently developed reverse genetics technique (W. Luytjes, M. Krystal, M. Enami, J. D. Parvin, and P. Palese, Cell 59:1107-1113, 1989). A chimeric influenza virus A/WSN/33 NA containing the influenza B virus cytoplasmic tail rescued influenza A virus infectivity. The transfectant virus had less NA incorporated into virions than A/WSN/33, indicating that the cytoplasmic tail of influenza virus NA plays a role in incorporation of NA into virions. However, these results also suggest that the influenza A virus and influenza B virus cytoplasmic tail sequences share common features that lead to the production of infectious virus. Transfectant virus was obtained with all cytoplasmic tail mutants generated by site-directed mutagenesis of the influenza A virus tail, except for the mutant resulting from substitution of the conserved proline residue, presumably because of its contribution to the secondary structure of the tail. No virus was rescued when the cytoplasmic tail was deleted, indicating that the cytoplasmic tail is essential for production of the virus. The virulence of the transfectant viruses in mice was directly proportional to the amount of NA incorporated. The importance of the NA cytoplasmic tail in virus assembly and virulence has implications for use in developing antiviral strategies.  相似文献   

4.
M2 protein of influenza A viruses is a tetrameric transmembrane proton channel, which has essential functions both early and late in the virus infectious cycle. Previous studies of proton transport by M2 have been limited to measurements outside the context of the virus particle. We have developed an in vitro fluorescence-based assay to monitor internal acidification of individual virions triggered to undergo membrane fusion. We show that rimantadine, an inhibitor of M2 proton conductance, blocks the acidification-dependent dissipation of fluorescence from a pH-sensitive virus-content probe. Fusion-pore formation usually follows internal acidification but does not require it. The rate of internal virion acidification increases with external proton concentration and saturates with a pK(m) of ~4.7. The rate of proton transport through a single, fully protonated M2 channel is approximately 100 to 400 protons per second. The saturating proton-concentration dependence and the low rate of internal virion acidification derived from authentic virions support a transporter model for the mechanism of proton transfer.  相似文献   

5.
The influenza A virus genome consists of eight viral RNAs (vRNAs) that form viral ribonucleoproteins (vRNPs). Even though evidence supporting segment-specific packaging of vRNAs is accumulating, the mechanism ensuring selective packaging of one copy of each vRNA into the viral particles remains largely unknown. We used electron tomography to show that the eight vRNPs emerge from a common 'transition zone' located underneath the matrix layer at the budding tip of the virions, where they appear to be interconnected and often form a star-like structure. This zone appears as a platform in 3D surface rendering and is thick enough to contain all known packaging signals. In vitro, all vRNA segments are involved in a single network of intermolecular interactions. The regions involved in the strongest interactions were identified and correspond to known packaging signals. A limited set of nucleotides in the 5' region of vRNA 7 was shown to interact with vRNA 6 and to be crucial for packaging of the former vRNA. Collectively, our findings support a model in which the eight genomic RNA segments are selected and packaged as an organized supramolecular complex held together by direct base pairing of the packaging signals.  相似文献   

6.
7.
The uptake and expression of cucumber mosaic viral (CMV) RNA by tobacco protoplasts was examined using both square wave and exponential wave electroporation pulses. These electropulses, when supplied at sufficient field strength for a critical duration, enabled RNA to be incorporated and expressed in more than 60% of the surviving protoplasts. The results of experiments using these two electroporation wave forms showed significant differences in RNA uptake and expression. The number of viable protoplasts and cells showing expression of RNA was higher over a much broader range of experimental conditions using the square rather than exponential wave generator, even when both machines were optimized for maximal performance. However, at a narrow range of low field strengths the exponential wave pulse generated a higher percentage of transformants than did the square wave pulse. It was shown that after an electroporation pulse from either wave form, there were viable cells which expressed foreign RNA at predictable levels.  相似文献   

8.
9.
Poxvirus replication is inhibited by streptovaricin. The most readily observed effect is the inhibition of incorporation of [3H]uridine into viral mRNA, suggesting an inhibition of RNA synthesis. Streptovaricin also inhibits the incorporation of [3H]uridine into cellular RNA but not as severely as viral RNA. On the other hand, [3H]uridine incorporation into the RNA of Semliki Forest virus (SFV), which contains a positive strand RNA genome, does not seem to be inhibited by streptovaricin. The inhibitory effect of streptovaricin is completely reversible after removal of the inhibitor. In addition to inhibiting RNA synthesis, streptovaricin also may inhibit the methylation of cellular RNA. Viral RNA is stable in the presence of streptovaricin.  相似文献   

10.
The genome of influenza A virus consists of eight single-strand negative-sense RNA segments, each comprised of a coding region and a noncoding region. The noncoding region of the NS segment is thought to provide the signal for packaging; however, we recently showed that the coding regions located at both ends of the hemagglutinin and neuraminidase segments were important for their incorporation into virions. In an effort to improve our understanding of the mechanism of influenza virus genome packaging, we sought to identify the regions of NS viral RNA (vRNA) that are required for its efficient incorporation into virions. Deletion analysis showed that the first 30 nucleotides of the 3' coding region are critical for efficient NS vRNA incorporation and that deletion of the 3' segment-specific noncoding region drastically reduces NS vRNA incorporation into virions. Furthermore, silent mutations in the first 30 nucleotides of the 3' NS coding region reduced the incorporation efficiency of the NS segment and affected virus replication. These results suggested that segment-specific noncoding regions together with adjacent coding regions (especially at the 3' end) form a structure that is required for efficient influenza A virus vRNA packaging.  相似文献   

11.
In this study, we investigated the role of the conserved neuraminidase (NA) cytoplasmic tail residues in influenza virus replication. Mutants of influenza A virus (A/WSN/33 [H1N1]) with deletions of the NA cytoplasmic tail region were generated by reverse genetics. The resulting viruses, designated NOTAIL, contain only the initiating methionine of the conserved six amino-terminal residues. The mutant viruses grew much less readily and produced smaller plaques than did the wild-type virus. Despite similar levels of NA cell surface expression by the NOTAIL mutants and wild-type virus, incorporation of mutant NA molecules into virions was decreased by 86%. This reduction resulted in less NA activity per virion, leading to the formation of large aggregates of progeny mutant virions on the surface of infected cells. A NOTAIL virus containing an additional mutation (Ser-12 to Pro) in the transmembrane domain incorporated three times more NA molecules into virions than did the NOTAIL parent but approximately half of the amount incorporated by the wild-type virus. However, aggregation of the progeny virions still occurred at the cell surface. All NOTAIL viruses were attenuated in mice. We conclude that the cytoplasmic tail of NA is not absolutely essential for virus replication but exerts important effects on the incorporation of NA into virions and thus on the aggregation and virulence of progeny virus. In addition, the relative abundance of long filamentous particles formed by the NOTAIL mutants, compared with the largely spherical wild-type particles, indicates a role for the NA cytoplasmic tail in virion morphogenesis.  相似文献   

12.
Stan Fields  Greg Winter 《Cell》1982,28(2):303-313
Defective interfering RNAs of influenza virus are small segments derived from viral segments 1, 2 and 3. We present here the complete nucleotide sequences of segments 1 and 3 from the human influenza strain A/PR/8/34 and deduce that the sequence of a small RNA segment from A/NT/60/68, apparently a defective interfering RNA, is derived from five separate regions in segment 3 and from one region in segment 1. These regions, which are located near the termini of the two parental segments, are arranged in the small RNA segment in an alternating fashion: thus a region derived from near a 5′ terminus is adjacent to a region derived from near a 3′ terminus. We propose that the small segment is generated during positive strand synthesis as a result of the viral polymerase pausing at uridine-rich sequences in the template and reinitiating synthesis at another site.  相似文献   

13.
X Yu  X Yuan  Z Matsuda  T H Lee    M Essex 《Journal of virology》1992,66(8):4966-4971
Accumulating evidence suggests that the matrix (MA) protein of retroviruses plays a key role in virus assembly by directing the intracellular transport and membrane association of the Gag polyprotein. In this report, we show that the MA protein of human immunodeficiency virus type 1 is also critical for the incorporation of viral Env proteins into mature virions. Several deletions introduced in the MA domain (p17) of human immunodeficiency virus type 1 Gag polyprotein did not greatly affect the synthesis and processing of the Gag polyprotein or the formation of virions. Analysis of the viral proteins revealed normal levels of Gag and Pol proteins in these mutant virions, but the Env proteins, gp120 and gp41, were hardly detectable in the mutant virions. Our data suggest that an interaction between the viral Env protein and the MA domain of the Gag polyprotein is required for the selective incorporation of Env proteins during virus assembly. Such an interaction appears to be very sensitive to conformational changes in the MA domain, as five small deletions in two separate regions of p17 equally inhibited viral Env protein incorporation. Mutant viruses were not infectious in T cells. When mutant and wild-type DNAs were cotransfected into T cells, the replication of wild-type virus was also hindered. These results suggest that the incorporation of viral Env protein is a critical step for replication of retroviruses and can be a target for the design of antiviral strategies.  相似文献   

14.
Chan WM  Ward BM 《Journal of virology》2012,86(15):8210-8220
There are two mechanisms for the incorporation of B5 into the envelope of extracellular virions produced by orthopoxviruses, one that requires A33 and one that does not. We have hypothesized that the A33-dependent mechanism requires a direct interaction between A33 and B5. In this study, chimeric constructs of A33 and B5/B5-green fluorescent protein (GFP) were used to show that the two proteins interact through their lumenal domains and that the coiled-coil domain of B5 is sufficient for an interaction with A33. Furthermore, our experiments reveal that a transmembrane domain, not necessarily its own, is requisite for the lumenal domain of B5 to interact with A33. In contrast, the lumenal domain of A33 is sufficient for interaction with B5. Furthermore, the lumenal domain of A33 is sufficient to restore the proper localization of B5-GFP in infected cells. Taken together, our results demonstrate that the lumenal domains of A33 and B5 interact and that the interaction is required for the incorporation of B5-GFP into extracellular virions, whereas the incorporation of A33 is independent of B5. These results suggest that viral protein incorporation into extracellular virions is an active process requiring specific protein-protein interactions.  相似文献   

15.
Influenza B virus contains four integral membrane proteins in its envelope. Of these, BM2 has recently been found to have ion channel activity and is considered to be a functional counterpart to influenza A virus M2, but the role of BM2 in the life cycle of influenza B virus remains unclear. In an effort to explore its function, a number of BM2 mutant viruses were generated by using a reverse genetics technique. The BM2DeltaATG mutant virus synthesized BM2 at markedly lower levels but exhibited similar growth to wild-type (wt) virus. In contrast, the BM2 knockout virus, which did not produce BM2, did not grow substantially but was able to grow normally when BM2 was supplemented in trans by host cells expressing BM2. These results indicate that BM2 is a required component for the production of infectious viruses. In the one-step growth cycle, the BM2 knockout virus produced progeny viruses lacking viral ribonucleoprotein complex (vRNP). The inhibited incorporation of vRNP was regained by trans-supplementation of BM2. An immunofluorescence study of virus-infected cells revealed that distribution of hemagglutinin, nucleoprotein, and matrix (M1) protein of the BM2 knockout virus at the apical membrane did not differ from that of wt virus, whereas the sucrose gradient flotation assay revealed that the membrane association of M1 was greatly affected in the absence of BM2, resulting in a decrease of vRNP in membrane fractions. These results strongly suggest that BM2 functions to capture the M1-vRNP complex at the virion budding site during virus assembly.  相似文献   

16.
17.
The Ebola virus nucleoprotein (NP) is an essential component of the nucleocapsid, required for filovirus particle formation and replication. Together with virion protein 35 (VP35) and VP24, this gene product gives rise to the filamentous nucleocapsid within transfected cells. Ebola virus NP migrates aberrantly, with an apparent molecular mass of 115 kDa, although it is predicted to encode an approximately 85-kDa protein. In this report, we show that two domains of this protein determine this aberrant migration and that this region mediates its incorporation into virions. These regions, amino acids 439 to 492 and amino acids 589 to 739, alter the mobility of Ebola virus NP by sodium dodecyl sulfate-polyacrylamide gel electrophoresis by 5 and 15 kDa, respectively, and confer similar effects on a heterologous protein, LacZ, in a position-independent fashion. Furthermore, when coexpressed with VP40, VP35, and VP24, this region mediated incorporation of NP into released viruslike particles. When fused to chimeric paramyxovirus NPs derived from measles or respiratory syncytial virus, this domain directed these proteins into the viruslike particle. The COOH-terminal NP domain comprises a conserved highly acidic region of NP with predicted disorder, distinguishing Ebola virus NPs from paramyxovirus NPs. The acidic character of this domain is likely responsible for its aberrant biochemical properties. These findings demonstrate that this region is essential for the assembly of the filamentous nucleocapsids that give rise to filoviruses.  相似文献   

18.
Qu F  Morris TJ 《FEBS letters》2005,579(26):5958-5964
RNA silencing as a robust host defense mechanism against plant viruses is generally countered by virus-encoded silencing suppressors. This strategy is now increasingly recognized to be used by animal viruses as well. We present here an overview of the common features shared by some of the better studied plant viral silencing suppressors. We then briefly describe the characteristics of the few reported animal viral suppressors, notably their extraordinary ability of cross-kingdom suppression. We next discuss the basis for biased protection of viral RNA and subviral parasites by silencing suppressors, the link between movement and silencing suppression, the influence of temperature on the outcome of viral infection and the effect of viral silencing suppressors on the microRNA pathway.  相似文献   

19.
20.
Liposomes connected with influenza viral glycoproteins increase by 1-2 orders the specific infectiousness of DNA from SV-40 or monkey adenovirus SA7 as compared with the one registered when the standard method of calcium precipitation is used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号