首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
2.
3.
4.
Neal AT 《Parasitology》2011,138(10):1203-1210
Evolutionary theory predicts that the sex ratio of Plasmodium gametocytes will be determined by the number of gametes produced per male gametocyte (male fecundity), parasite clonal diversity and any factor that reduces male gametes' ability to find and combine with female gametes. Despite the importance of male gametocyte fecundity for sex ratio theory as applied to malaria parasites, few data are available on gamete production by male gametocytes. In this study, exflagellating gametes, a measure of male fecundity, were counted for 866 gametocytes from 26 natural infections of the lizard malaria parasite, Plasmodium mexicanum. The maximum male fecundity observed was 8, but most gametocytes produced 2-3 gametes, a value consistent with the typical sex ratio observed for P. mexicanum. Male gametocytes in infections with higher gametocytaemia had lower fecundity. Male fecundity was not correlated with gametocyte size, but differed among infections, suggesting genetic variation for fecundity. Fecundity and sex ratio were correlated (more female gametocytes with higher fecundity) as predicted by theory. Results agree with evolutionary theory, but also suggest a possible tradeoff between production time and fecundity, which could explain the low fecundity of this species, the variation among infections, and the correlation with gametocytaemia.  相似文献   

5.
Gametocyte maturation in Plasmodium falciparum is a critical step in the transmission of malaria. While the majority of parasites proliferate asexually in red blood cells, a small fraction of parasites undergo sexual conversion and mature over 2 weeks to become competent for transmission to a mosquito vector. Immature gametocytes sequester in deep tissues while mature stages must be able to circulate, pass the spleen and present themselves to the mosquito vector in order to complete transmission. Sequestration of asexual red blood cell stage parasites has been investigated in great detail. These studies have demonstrated that induction of cytoadherence properties through specific receptor-ligand interactions coincides with a significant increase in host cell stiffness. In contrast, the adherence and biophysical properties of gametocyte-infected red blood cells have not been studied systematically. Utilizing a transgenic line for 3D live imaging, in vitro capillary assays and 3D finite element whole cell modelling, we studied the role of cellular deformability in determining the circulatory characteristics of gametocytes. Our analysis shows that the red blood cell deformability of immature gametocytes displays an overall decrease followed by rapid restoration in mature gametocytes. Intriguingly, simulations suggest that along with deformability variations, the morphological changes of the parasite may play an important role in tissue distribution in vivo. Taken together, we present a model, which suggests that mature but not immature gametocytes circulate in the peripheral blood for uptake in the mosquito blood meal and transmission to another human host thus ensuring long-term survival of the parasite.  相似文献   

6.
7.
8.
9.
10.
Intra- and extracellular gametocytes of Haemogregarina sp. from Rana berlandieri were studied by light and electron microscopy. Locomotion in free gametocytes appears to be related to series of horizontal “peristaltic” waves of constriction, passing from anterior to posterior along the body. Intracellular gametocytes lie within a vacuole in the erythrocyte cytoplasm. The pellicle of the parasite consists of a trilaminar plasmalemma and an inner electron dense layer, beneath which lies a ring of 80 microtubules. The inner dense layer becomes thickened and modified in the apical region, to form a cap-like structure. The gametocytes contain a prominent nucleus, several mitochondria, and many granular inclusions. One type of inclusion consists of elliptical, electron-dense, profeinaceous bodies scattered throughout the cytoplasm, while other inclusions are larger and electron-opaque, polysaccharide in nature, and occur predominantly in the pre- and post-nuclear regions. In the electron microscope, pronounced pellicular folds were observed in longitudinally sectioned extracellular gametocytes. These folds are thought to represent the waves of constriction seen in motile specimens by light microscopy. The mechanism of movement of the parasite is discussed and compared with that in haemosporidian ookinetes, as well as in gregarines.  相似文献   

11.
Haemoproteus (Haemoproteus) jenniae n. sp. (Haemosporida: Haemoproteidae) is described from a Galapagos bird, the swallow-tailed gull Creagrus furcatus (Charadriiformes, Laridae), based on the morphology of its blood stages and segments of the mitochondrial cytochrome b (cyt b) gene. The most distinctive features of H. jenniae development are the circumnuclear gametocytes occupying all cytoplasmic space in infected erythrocytes and the presence of advanced, growing gametocytes in which the pellicle is closely appressed to the erythrocyte envelope but does not extend to the erythrocyte nucleus. This parasite is distinguishable from Haemoproteus larae, which produces similar gametocytes and parasitizes closely related species of Laridae. Haemoproteus jenniae can be distinguished from H. larae primarily due to (1) the predominantly amoeboid outline of young gametocytes, (2) diffuse macrogametocyte nuclei which do not possess distinguishable nucleoli, (3) the consistent size and shape of pigment granules, and (4) the absence of rod-like pigment granules from gametocytes. Additionally, fully-grown gametocytes of H. jenniae cause both the marked hypertrophy of infected erythrocytes in width and the rounding up of the host cells, which is not the case in H. larae. Phylogenetic analyses identified the DNA lineages that are associated with H. jenniae and showed that this parasite is more closely related to the hippoboscid-transmitted (Hippoboscidae) species than to the Culicoides spp.-transmitted (Ceratopogonidae) species of avian hemoproteids. Genetic divergence between morphologically well-differentiated H. jenniae and the hippoboscid-transmitted Haemoproteus iwa, the closely related parasite of frigatebirds (Fregatidae, Pelecaniformes), is only 0.6%; cyt b sequences of these parasites differ only by 1 base pair. This is the first example of such a small genetic difference in the cyt b gene between species of the subgenus Haemoproteus. In a segment of caseinolytic protease C gene (ClpC), genetic divergence is 4% between H. jenniae and H. iwa. This study corroborates the conclusion that hippoboscid-transmitted Haemoproteus parasites infect not only Columbiformes birds but also infect marine birds belonging to Pelecaniformes and Charadriiformes. We conclude that the vertebrate host range should be used cautiously in identification of subgenera of avian Haemoproteus species and that the phylogenies based on the cyt b gene provide evidence for determining the subgeneric position of avian hemoproteids.  相似文献   

12.
13.
SYNOPSIS. Sexual and asexual stages of a parasite found in the thrombocyte-like cells of some Tropidurus torquatus infected with Plasmodium tropiduri are described. The strong ultrastructural similarities between the gametocytes of this parasite and the gametocytes of P. tropiduri, and the finding of this parasite in lizards inoculated with P. tropiduri suggest that this malaria parasite can develop both in erythrocytes and thrombocytes. Evidence in favor of this hypothesis is discussed.  相似文献   

14.
Plasmodium kentropyxi n.sp. is described in the teiid lizard Kentropyx calcarata from north Brazil. Young asexual stages and gametocytes are at first polar in the erythrocyte but with elongation, move to a lateral position. Largest meronts seen contained from 30-40 nuclei and conspicuous greenish-black pigment granules located in a distinct vacuole. With growth the gametocytes eventually assume a smooth, curved cylindrical shape, with evenly rounded ends. Pigment is scattered or concentrated around a conspicuous vacuole which is slowly developed as the gametocytes mature. Mature male parasites measured 11.8 x 4.0 microns (9.6 x 4.2 - 13.2 x 3.6 microns), shape-index 2.9 (2.2 - 5.0), and females 13.5 x 4.5 microns (12.0 x 4.5 - 15.0 x 4.8 microns), shape-index 3.0 (2.2 - 3.8). Some larger meronts may slightly enlarge the erythrocyte, but most asexual stages and the mature gametocytes rarely do so. A second, P. tropiduri-like parasite encountered in K. calcarata possessed small rounded or fan-shaped meronts producing from 4-14 merozoites, and spherical to subspherical gametocytes of approximately 6.0 x 5.0 microns. The parasite was consistently polar in its position in the erythrocyte.  相似文献   

15.
In Plasmodium falciparum infections the parasite transmission stages, the gametocytes, mature in 10 days sequestered in internal organs. Recent studies suggest that cell mechanical properties rather than adhesive interactions play a role in sequestration during gametocyte maturation. It remains instead obscure how sequestration is established, and how the earliest sexual stages, morphologically similar to asexual trophozoites, modify the infected erythrocytes and their cytoadhesive properties at the onset of gametocytogenesis. Here, purified P. falciparum early gametocytes were used to ultrastructurally and biochemically analyse parasite‐induced modifications on the red blood cell surface and to measure their functional consequences on adhesion to human endothelial cells. This work revealed that stage I gametocytes are able to deform the infected erythrocytes like asexual parasites, but do not modify its surface with adhesive ‘knob’ structures and associated proteins. Reduced levels of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) adhesins are exposed on the red blood cell surface bythese parasites, and the expression of the var gene family, which encodes 50–60 variants of PfEMP1, is dramatically downregulated in the transition from asexual development to gametocytogenesis. Cytoadhesion assays show that such gene expression changes and host cell surface modifications functionally result in the inability of stage I gametocytes to bind the host ligands used by the asexual parasite to bind endothelial cells. In conclusion, these results identify specific differences in molecular and cellular mechanisms of host cell remodelling and in adhesive properties, leading to clearly distinct host parasite interplays in the establishment of sequestration of stage I gametocytes and of asexual trophozoites.  相似文献   

16.
SYNOPSIS The sexes of mature gametocytes of Haemoproteus columbae Kruse circulating in the blood of the domestic pigeon can be identified in the electron microscope by the same criteria that distinguish them in the light microscope. The microgametocyte has a large nucleus and pigment granules restricted to the 2 extremities of its halter-shaped cells. The macrogametocyte has dense granular cytoplasm with scattered pigment granules and a small central nucleus. The sex of young gametocytes cannot yet be recognized. When blood containing mature gametocytes is cooled outside the body of the host visible signs of gametogenesis appear within 30 seconds. The earliest signs are increasing electron lucidity of the cytoplasm and separation of the outer membrane from the body of the parasite. The membrane may form vesicles or whorls or lie free in the erythrocyte's cytoplasm. The middle membrane of the parasite becomes the plasma membrane. Axonemes and microtubules appear in the cytoplasm and nucleoplasm of the microgametocyte. The macrogametocyte lags slightly behind the microgametocyte in development. With the first signs of differentiation, the host cell cytoplasm begins to disappear. The fate of the outer membrane and the erythrocyte's cytoplasm suggests the release of a lytic substance by the parasite.  相似文献   

17.
18.

Background

Current anti-malarial drugs have been selected on the basis of their activity against the symptom-causing asexual blood stage of the parasite. Which of these drugs also target gametocytes, in the sexual stage responsible for disease transmission, remains unknown. Blocking transmission is one of the main strategies in the eradication agenda and requires the identification of new molecules that are active against gametocytes. However, to date, the main limitation for measuring the effect of molecules against mature gametocytes on a large scale is the lack of a standardized and reliable method. Here we provide an efficient method to produce and purify mature gametocytes in vitro. Based on this new procedure, we developed a robust, affordable, and sensitive ATP bioluminescence-based assay. We then assessed the activity of 17 gold-standard anti-malarial drugs on Plasmodium late stage gametocytes.

Methods and Findings

Difficulties in producing large amounts of gametocytes have limited progress in the development of malaria transmission blocking assays. We improved the method established by Ifediba and Vanderberg to obtain viable, mature gametocytes en masse, whatever the strain used. We designed an assay to determine the activity of antimalarial drugs based on the intracellular ATP content of purified stage IV–V gametocytes after 48 h of drug exposure in 96/384-well microplates. Measurements of drug activity on asexual stages and cytotoxicity on HepG2 cells were also obtained to estimate the specificity of the active drugs.

Conclusions

The work described here represents another significant step towards determination of the activity of new molecules on mature gametocytes of any strain with an automated assay suitable for medium/high-throughput screening. Considering that the biology of the forms involved in the sexual and asexual stages is very different, a screen of our 2 million-compound library may allow us to discover novel anti-malarial drugs to target gametocyte-specific metabolic pathways.  相似文献   

19.
In vertebrate hosts, malaria parasites produce specialized male and female sexual stages (gametocytes). Soon after being taken up by a mosquito, gametocytes rapidly produce gametes and, once mated, they infect their vector and can be transmitted to new hosts. Despite being the parasite stages that were first identified (over a century ago), gametocytes have remained elusive, and basic questions remain concerning their biology. However, the postgenomic era has substantiated information on the specialized molecular machinery of gametocytogenesis and expedited the development of molecular tools to detect and quantify gametocytes. The application of such highly sensitive and specific tools has opened up novel approaches and provided new insights into gametocyte biology. Here, we review the discoveries made during the past decade, highlight unanswered questions and suggest new directions.  相似文献   

20.
The protozoan parasite Plasmodium falciparum, responsible for the most severe form of malaria, is able to sequester from peripheral circulation during infection. The asexual stage parasites sequester by binding to endothelial cell receptors in the microvasculature of various organs. P. falciparum gametocytes, the developmental stages responsible for parasite transmission from humans to Anopheles mosquitoes, also spend the almost ten days necessary for their maturation sequestered away from the peripheral circulation before they are released in blood mainstream. In contrast to those of asexual parasites, the mechanisms and cellular interactions responsible for immature gametocyte sequestration are largely unexplored, and controversial evidence has been produced so far on this matter. Here we present a systematic comparison of cell binding properties of asexual stages and immature and mature gametocytes from the reference P. falciparum clone 3D7 and from a patient parasite isolate on a panel of human endothelial cells from different tissues. This analysis includes assays on human bone marrow derived endothelial cell lines (HBMEC), as this tissue has been proposed as a major site of gametocyte maturation. Our results clearly demonstrate that cell adhesion of asexual stage parasites is consistently more efficient than that, virtually undetectable of immature gametocytes, irrespectively of the endothelial cell lines used and of parasite genotypes. Importantly, immature gametocytes of both lines tested here do not show a higher binding efficiency compared to asexual stages on bone marrow derived endothelial cells, unlike previously reported in the only study on this issue. This indicates that gametocyte-host interactions in this tissue are unlikely to be mediated by the same adhesion processes to specific endothelial receptors as seen with asexual forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号