首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Sheep internal parasites (nematodes) remain a major health challenge and are costly for pasture-based production systems. Most current breeding programmes for nematode resistance are based on indicator traits such as faecal egg counts (FEC), which are costly and laborious to collect. Hence, genetic markers for resistance would be advantageous. However, although some quantitative trait loci (QTL) have been identified, these QTL are often not consistent across breeds and few breeding strategies for nematode resistance in sheep are currently using molecular information. In this study, QTL for nematode resistance on ovine chromosomes (OAR) 3 and 14, previously identified in the Blackface breed, were explored using commercial Suffolk (n = 336) and Texel lambs (n = 879) sampled from terminal sire breeder flocks in the United Kingdom. FEC were used as the indicator trait for nematode resistance, and these were counted separately for Nematodirus and Strongyles genera. Microsatellite markers were used to map the QTL and the data were analysed using interval mapping regression techniques and variance component analysis. QTL for Nematodirus and Strongyles FEC were found to be segregating on OAR3 at 5% chromosome region-wide significance threshold in both Suffolk and Texel sheep, and Nematodirus FEC QTL were segregating on OAR14 in both breeds. In addition, QTL for growth traits were also found to be segregating at 5% chromosome region-wide on OAR3 and OAR14. The confirmation that FEC QTL segregate in the same position in three widely used breeds widens their potential applicability to purebred Blackface, Suffolk and Texel sheep, with benefits likely to be observed in their commercial crossbred progeny.  相似文献   

2.
This study aimed to identify regions of the genome affecting resistance to gastrointestinal nematodes in a Creole goat population naturally exposed to a mixed nematode infection (Haemonchus contortus, Trichostrongylus colubriformis and Oesophagostomum columbianum) by grazing on irrigated pasture. A genome‐wide quantitative trait loci (QTL) scan was performed on 383 offspring from 12 half‐sib families. A total of 101 microsatellite markers were genotyped. Traits analysed were faecal egg count (FEC), packed cell volume (PCV), eosinophil count and bodyweight (BW) at 7 and 11 months of age. Levels of activity of immunoglobulin A (IgA) and activity of immunoglobulin E (IgE) anti‐Haemonchus contortus L3 crude extracts and adult excretion/secretion products (ESPs) were also analysed. Using interval mapping, this study identified 13 QTL for parasite resistance. Two QTL linked with FEC were found on chromosomes 22 and 26. Three QTL were detected on chromosomes 7, 8 and 14 for eosinophil counts. Three QTL linked with PCV were identified on chromosomes 5, 9 and 21. A QTL for BW at 7 months of age was found on chromosome 6. Lastly, two QTL detected on chromosomes 3 and 10 were associated with IgE anti‐L3, and IgE anti‐ESP was linked with two QTL on chromosomes 1 and 26. This study is the first to have identified regions of the genome linked with nematode resistance in a goat population using a genome scan. These results provide useful tools for the understanding of parasite resistance in small ruminants.  相似文献   

3.
DNA markers associated with quantitative trait loci (QTL) affecting host tolerance to gastrointestinal (GI) parasite infection are ideal targets for marker‐assisted selection. However, few studies in cattle have attempted to identify this type of QTL due to the difficulty of generating accurate phenotypic data from a resource population with adequate statistical power for detection. For this effort, we amassed fecal egg count (FEC) measures from annual natural field challenges with GI nematodes that spanned 12 different contemporary groups of Angus calves (1992–2000) derived from a closed breeding population. FEC and blood pepsinogen measures were taken weekly over a 26‐week period post‐weaning, and the FEC data were Box‐Cox transformed to normalize the distribution of phenotypes. These 305 test animals and more than 100 founding animals from the extended pedigree were genotyped across 190 microsatellites markers. The genome‐wide analyses identified a suggestive genome‐wide QTL on bovine chromosome (Chr) 8 (< 0.002) and nominal QTL on Chr 4, 12 and 17 (< 0.05). These findings were unique for cattle, and some corresponded to previously identified QTL locations for parasite‐related traits in sheep to provide genome locations for further fine mapping of parasite resistance/susceptibility in Angus cattle.  相似文献   

4.
A genome-wide scan was performed to detect quantitative trait loci (QTL) for resistance to gastrointestinal parasites and ectoparasitic keds segregating in the free-living Soay sheep population on St. Kilda (UK). The mapping panel consisted of a single pedigree of 882 individuals of which 588 were genotyped. The Soay linkage map used for the scans comprised 251 markers covering the whole genome at average spacing of 15cM. The traits here investigated were the strongyle faecal egg count (FEC), the coccidia faecal oocyst count (FOC) and a count of keds (Melophagus ovinus). QTL mapping was performed by means of variance component analysis so that the genetic parameters of the study traits were also estimated and compared with previous studies in Soay and domestic sheep. Strongyle FEC and coccidia FOC showed moderate heritability (h(2)=0.26 and 0.22, respectively) in lambs but low heritability in adults (h(2)<0.10). Ked count appeared to have very low h(2) in both lambs and adults. Genome scans were performed for the traits with moderate heritability and two genomic regions reached the level of suggestive linkage for coccidia FOC in lambs (logarithm of the odds=2.68 and 2.21 on chromosomes 3 and X, respectively). We believe this is the first study to report a QTL search for parasite resistance in a free-living animal population and therefore may represent a useful reference for similar studies aimed at understanding the genetics of host-parasite co-evolution in the wild.  相似文献   

5.
A genome‐wide scan for quantitative trait loci (QTL) affecting gastrointestinal nematode resistance in sheep was completed using a double backcross population derived from Red Maasai and Dorper ewes bred to F1 rams. This design provided an opportunity to map potentially unique genetic variation associated with a parasite‐tolerant breed like Red Maasai, a breed developed to survive East African grazing conditions. Parasite indicator phenotypes (blood packed cell volume – PCV and faecal egg count – FEC) were collected on a weekly basis from 1064 lambs during a single 3‐month post‐weaning grazing challenge on infected pastures. The averages of last measurements for FEC (AVFEC) and PCV (AVPCV), along with decline in PCV from challenge start to end (PCVD), were used to select lambs (N = 371) for genotyping that represented the tails (10% threshold) of the phenotypic distributions. Marker genotypes for 172 microsatellite loci covering 25 of 26 autosomes (1560.7 cm ) were scored and corrected by Genoprob prior to qxpak analysis that included Box–Cox transformed AVFEC and arcsine transformed PCV statistics. Significant QTL for AVFEC and AVPCV were detected on four chromosomes, and this included a novel AVFEC QTL on chromosome 6 that would have remained undetected without Box–Cox transformation methods. The most significant P‐values for AVFEC, AVPCV and PCVD overlapped the same marker interval on chromosome 22, suggesting the potential for a single causative mutation, which remains unknown. In all cases, the favourable QTL allele was always contributed from Red Maasai, providing support for the idea that future marker‐assisted selection for genetic improvement of production in East Africa will rely on markers in linkage disequilibrium with these QTL.  相似文献   

6.
Resistance to gastrointestinal nematodes has previously been shown to be a moderately heritable trait in some breeds of sheep, but the mechanisms of resistance are not well understood. Selection for resistance currently relies upon faecal egg counts (FEC), blood packed cell volumes and FAMACHA visual indicator scores of anaemia. Identifying genomic markers associated with disease resistance would potentially improve the selection process and provide a more reliable means of classifying and understanding the biology behind resistant and susceptible sheep. A GWAS was conducted to identify possible genetic loci associated with resistance to Haemonchus contortus in Katahdin sheep. Forty animals were selected from the top and bottom 10% of estimated breeding values for FEC from a total pool of 641 sires and ram lambs. Samples were genotyped using Applied Biosystems™ Axiom™ Ovine Genotyping Array (50K) consisting of 51 572 SNPs. Following quality control, 46 268 SNPs were included in subsequent analyses. Analyses were conducted using a linear regression model in plink v1.90 and a single-locus mixed model in snp and variation suite . Genome-wide significance was determined by a Bonferroni correction for multiple testing. Using linear regression, loci on chromosomes 2, 3, 16, 23 and 24 were significantly associated at the genome level with FEC estimated breeding values, and we identified a region on chromosome 2 that was significant using both statistical analyses. We suggest a potential role for the gene DIS3L2 for gastrointestinal nematode resistance in Katahdin sheep, although further research is needed to validate these findings.  相似文献   

7.
We report on a complete genome scan for quantitative trait loci (QTL) affecting milk protein percentage (PP) in the Italian Holstein-Friesian cattle population, applying a selective DNA pooling strategy in a daughter design. Ten Holstein-Friesian sires were chosen, and for each sire, about 200 daughters, each from the high and low tails of estimated breeding value for PP, were used to construct milk DNA pools. Sires and pools were genotyped for 181 dinucleotide microsatellites covering all cattle autosomes. Sire marker allele frequencies in the pools were obtained by shadow correction of peak height in the electropherograms. After quality control, pool data from eight sires were used for all subsequent analyses. The QTL heterozygosity estimate was lower than that of similar studies in other cattle populations. Multiple marker mapping identified 19 QTL located on 14 chromosomes (BTA1, 2, 3, 4, 5, 6, 8, 9, 12, 14, 17, 20, 23 and 27). The sires were also genotyped for seven polymorphic sites in six candidate genes (ABCG2, SPP1, casein kappa, DGAT1, GHR and PRLR) located within QTL regions of BTA6, 14 and 20 found in this study. The results confirmed or excluded the involvement of some of the analysed markers as the causative polymorphic sites of the identified QTL. The QTL identified, combined with genotype data of these candidate genes, will help to identify other quantitative trait genes and clarify the complex QTL patterns observed for a few chromosomes. Overall, the results are consistent with the Italian Holstein population having been under long-term selection for high PP.  相似文献   

8.
Association mapping is a method to test the association between molecular markers and quantitative trait loci (QTL) based on linkage disequilibrium (LD). In this study, the collection of 108 wheat germplasm accessions form China were evaluated for their plant heights, spike length, spikelets per spike, grains per spike, thousand kernel weight and spikelets density in 3 years at three locations. And they were genotyped with 85 SSR markers and 40 EST-SSR markers. The population structure was inferred on the basis of unlinked 48 SSR markers and 40 EST-SSR markers. The extent of LD on chromosome 2A was 2.3 cM. Association of 37 SSR loci on chromosomes 2A with six agronomic traits was analysed with a mixed linear model. A total of 14 SSR loci were significantly associated with agronomic traits. Some of the associated markers were located in the QTL region detected in previous linkage mapping analysis. Our results demonstrated that association mapping can enhance QTL information and achieves higher resolution with short LD extent.  相似文献   

9.
Twinning is a complex trait with negative impacts on health and reproduction, which cause economic loss in dairy production. Several twinning rate quantitative trait loci (QTL) have been detected in previous studies, but confidence intervals for QTL location are broad and many QTL are unreplicated. To identify genomic regions or genes associated with twinning rate, QTL analysis based on linkage combined with linkage disequilibrium (LLD) and individual marker associations was conducted across the genome using high-throughput single nucleotide polymorphism (SNP) genotypes. A total of 9919 SNP markers were genotyped with 200 sires and sons in 19 half-sib North American Holstein dairy cattle families. After SNPs were genotyped, informative markers were selected for genome-wide association tests and QTL searches. Evidence for twinning rate QTL was found throughout the genome. Thirteen markers significantly associated with twinning rate were detected on chromosomes 2, 5 and 14 ( P  < 2.3 × 10−5). Twenty-six regions on fourteen chromosomes were identified by LLD analysis at P  < 0.0007. Seven previously reported ovulation or twinning rate QTL were supported by results of single marker association or LLD analyses. Single marker association analysis and LLD mapping were complementary tools for the identification of putative QTL in this genome scan.  相似文献   

10.
A genome‐wide association study of 2098 progeny‐tested Nordic Holstein bulls genotyped for 36 387 SNPs on 29 autosomes was conducted to confirm and fine‐map quantitative trait loci (QTL) for mastitis traits identified earlier using linkage analysis with sparse microsatellite markers in the same population. We used linear mixed model analysis where a polygenic genetic effect was fitted as a random effect and single SNPs were successively included as fixed effects in the model. We detected 143 SNP‐by‐trait significant associations (P < 0.0001) on 20 chromosomes affecting mastitis‐related traits. Among them, 21 SNP‐by‐trait combinations exceeded the genome‐wide significant threshold. For 12 chromosomes, both the present association study and the previous linkage study detected QTL, and of these, six were in the same chromosomal locations. Strong associations of SNPs with mastitis traits were observed on bovine autosomes 6, 13, 14 and 20. Possible candidate genes for these QTL were identified. Identification of SNPs in linkage disequilibrium with QTL will enable marker‐based selection for mastitis resistance. The candidate genes identified should be further studied to detect candidate polymorphisms underlying these QTL.  相似文献   

11.
The productivity and economic prosperity of sheep farming could benefit greatly from more effective methods of selection for year-round lambing. Identification of QTL for aseasonal reproduction in sheep could lead to more accurate selection and faster genetic improvement. One hundred and twenty microsatellite markers were genotyped on 159 backcross ewes from a Dorset × East Friesian crossbred pedigree. Interval mapping was undertaken to map the QTL underlying several traits describing aseasonal reproduction including the number of oestrous cycles, maximum level of progesterone prior to breeding, pregnancy status determined by progesterone level, pregnancy status determined by ultrasound, lambing status and number of lambs born. Seven chromosomes (1, 3, 12, 17, 19, 20 and 24) were identified to harbour putative QTL for one or more component traits used to describe aseasonal reproduction. Ovine chromosomes 12, 17, 19 and 24 harbour QTL significant at the 5% chromosome-wide level, chromosomes 3 and 20 harbour QTL that exceeded the threshold at the 1% chromosome-wide level, while the QTL identified on chromosome 1 exceeded the 1% experiment-wide significance level. These results are a first step towards understanding the genetic mechanism of this complex trait and show that variation in aseasonal reproduction is associated with multiple chromosomal regions.  相似文献   

12.
Differences in domestication and selection processes have contributed to considerable phenotypic and genotypic differences between Bos taurus and Bos indicus cattle breeds. Of particular interest in tropical and subtropical production environments are those genetic differences between subspecies that underlie the phenotypic extremes in tolerance and susceptibility to parasite infection. In general, B. taurus cattle are more susceptible to ectoparasites than B. indicus cattle in tropical environments, and much of this difference is under genetic control. To identify genomic regions involved in tick resistance, we developed a B. taurus x B. indicus F(2) experimental population to map quantitative trait loci (QTL) for resistance to the Riphicephalus (Boophilus) microplus tick. About 300 individuals were measured for parasite load in two seasons (rainy and dry) and genotyped for 23 microsatellite markers covering chromosomes 5, 7 and 14. We mapped a suggestive chromosome-wide QTL for tick load in the rainy season (P < 0.05) on chromosome 5. For the dry season, suggestive (P < 0.10) chromosome-wide QTL were mapped on chromosomes 7 and 14. The additive effect of the QTL on chromosome 14 corresponds to 3.18% of the total observed phenotypic variance. Our QTL-mapping study has identified different genomic regions controlling tick resistance; these QTL were dependent upon the season in which the ticks were counted, suggesting that the QTL in question may depend on environmental factors.  相似文献   

13.
Provisional quantitative trait loci (QTL) for circadian locomotor period and wheel-running period have been identified in recombinant inbred (RI) mouse strains. To confirm those QTL and identify new ones, the genetic component of variance of the circadian period was partitioned among an F2 intercross of RI mouse strains (BXD19 and CXB07). First, a genomic survey using 108 SSLP markers with an average spacing of 15 cM was carried out in a population of 259 (BXD19 x CXB07)F2 animals. The genome-wide survey identified two significant QTL for period of locomotor activity measured by infrared photobeam crossings on mouse chromosomes 1 (lod score 5.66) and 14 (lod score 4.33). The QTL on distal chromosome 1 confirmed a previous report based on congenic B6.D2-Mtv7a/Ty mice. Lod scores greater than 2.0 were found on chromosomes 1, 2, 6, 12, 13, and 14. In a targeted extension study, additional genotyping was performed on these chromosomes in the full sample of 341 F2 progeny. The 6 chromosome-wide surveys identified 3 additional QTL on mouse chromosomes 6, 12, and 13. The QTL on chromosome 12 overlaps with circadian period QTL identified in several prior studies. For wheel-running period, the chromosome-wide surveys identified QTL on chromosomes 2 and 13 and one highly suggestive QTL on proximal chromosome 1. The results are compared to other published studies of QTL of circadian period.  相似文献   

14.
A higher incidence of coronary artery disease is associated with a lower level of HDL-cholesterol. We searched for genetic loci influencing HDL-cholesterol in F2 mice from a cross between MRL/MpJ and SM/J mice. Quantitative trait loci (QTL) mapping revealed one significant HDL QTL (Apoa2 locus), four suggestive QTL on chromosomes 10, 11, 13, and 18 and four additional QTL on chromosomes 1 proximal, 3, 4, and 7 after adjusting HDL for the strong Apoa2 locus. A novel nonsynonymous polymorphism supports Lipg as the QTL gene for the chromosome 18 QTL, and a difference in Abca1 expression in liver tissue supports it as the QTL gene for the chromosome 4 QTL. Using weighted gene co-expression network analysis, we identified a module that after adjustment for Apoa2, correlated with HDL, was genetically determined by a QTL on chromosome 11, and overlapped with the HDL QTL. A combination of bioinformatics tools and systems genetics helped identify several candidate genes for both the chromosome 11 HDL and module QTL based on differential expression between the parental strains, cis regulation of expression, and causality modeling. We conclude that integrating systems genetics to a more-traditional genetics approach improves the power of complex trait gene identification.  相似文献   

15.
Smaragdov MG 《Genetika》2006,42(1):5-21
The review presents a definition of loci controlling quantitative traits (quantitative trait loci, QTLs) and localization of all currently known QTLs responsible for milk production traits in dairy cattle. The QTL number and chromosome localization are verified, with special reference to chromosomes 1, 3, 6, 14, 20, and 23. In a number of cases, close location of QTLs for mastitis and for milk production traits was found. Some aspects of QTL pleiotropy and epistasis are discussed and mapping methods of major QTLs are listed.  相似文献   

16.
Body weight and abdominal fat traits in meat-type chickens are complex and economically important factors. Our objective was to identify quantitative trait loci (QTL) responsible for body weight and abdominal fat traits in broiler chickens. The Northeast Agricultural University Resource Population (NEAURP) is a cross between broiler sires and Baier layer dams. We measured body weight and abdominal fat traits in the F(2) population. A total of 362 F(2) individuals derived from four F(1) families and their parents and F(0) birds were genotyped using 29 fluorescent microsatellite markers located on chromosomes 3, 5 and 7. Linkage maps for the three chromosomes were constructed and interval mapping was performed to identify putative QTLs. Nine QTL for body weight were identified at the 5% genome-wide level, while 15 QTL were identified at the 5% chromosome-wide level. Phenotypic variance explained by these QTL varied from 2.95 to 6.03%. In particular, a QTL region spanning 31 cM, associated with body weight at 1 to 12 weeks of age and carcass weight at 12 weeks of age, was first identified on chromosome 5. Three QTLs for the abdominal fat traits were identified at the 5% chromosome-wide level. These QTLs explained 3.42 to 3.59% of the phenotypic variance. This information will help direct prospective fine mapping studies and can facilitate the identification of underlying genes and causal mutations for body weight and abdominal fat traits.  相似文献   

17.
Phenotypic measurements of chicken egg character and production traits are restricted to mature females only. Marker assisted selection of immature chickens using quantitative trait loci (QTL) has the potential to accelerate the genetic improvement of these traits in the chicken population. The QTL for 12 traits (i.e. body weight (BW), six for egg character, three for egg shell colour and two for egg production) of chickens were identified. An F2 population comprising 265 female chickens obtained by crossing White Leghorn and Rhode Island Red breeds and genotyped for 123 microsatellite markers was used for detecting QTL. Ninety-six markers were mapped on 25 autosomal linkage groups, and 13 markers were mapped on one Z chromosomal linkage group. Eight previous unmapped markers were assigned to their respective chromosomes in this study. Significant QTL were detected for BW on chromosomes 4 and 27, egg weight on chromosome 4, the short length of egg on chromosome 4, and redness of egg shell colour (using the L*a*b* colour system) on chromosome 11. A significant QTL on the Z chromosome was linked with age at first egg. Significant QTL could account for 6-19% of the phenotypic variance in the F2 population.  相似文献   

18.
直播水稻茎鞘非结构碳水化合物积累与转运的遗传剖析   总被引:1,自引:0,他引:1  
为了揭示水稻(Oryza sativa)茎鞘非结构碳水化合物(nonstructural carbohydrate, NSC)积累与转运的遗传基础, 在大田直播条件下, 利用来源于Lemont/特青的重组自交系群体, 对5个相关性状进行了QTL定位。始穗期和成熟期共检测到3个茎鞘NSC含量QTL, 分别位于第1、9和12染色体上, 贡献率分别为13%、7%和7%, 增效等位基因均来自特青。检测到的2个NSC转运率QTL均位于第12染色体上, 贡献率分别为8%和14%。检测到的结实率和千粒重QTL分别为3个和4个, 3个结实率QTL的贡献率分别为9%、24%和6%, 4个千粒重QTL的贡献率分别为14%、11%、12%和13%。进一步的分析表明,来自Lemont的等位基因降低成熟期茎鞘NSC含量的同时却能提高NSC转运率、结实率和千粒重, 而来自特青的等位基因对NSC转运率和结实率均有增效作用, 这为性状间表型相关提供了重要的遗传解释。  相似文献   

19.
Characterization of QTL for oil content in maize kernel   总被引:2,自引:0,他引:2  
Kernel oil content in maize is a complex quantitative trait. Phenotypic variation in kernel oil content can be dissected into its component traits such as oil metabolism and physical characteristics of the kernel, including embryo size and embryo-to-endosperm weight ratio (EEWR). To characterize quantitative trait loci (QTL) for kernel oil content, a recombinant inbred population derived from a cross between normal line B73 and high-oil line By804 was genotyped using 228 molecular markers and phenotyped for kernel oil content and its component traits [embryo oil content, embryo oil concentration, EEWR, embryo volume, embryo width, embryo length, and embryo width-to-length ratio (EWLR)]. A total of 58 QTL were identified for kernel oil content and its component traits in 26 genomic regions across all chromosomes. Eight main-effect QTL were identified for kernel oil content, embryo oil content, embryo oil concentration, EEWR, embryo weight, and EWLR, each accounting for over 10?% of the phenotypic variation in six genomic regions. Over 90?% of QTL identified for kernel oil content co-localized with QTL for component traits, validating their molecular contribution to kernel oil content. On chromosome 1, the QTL that had the largest effect on kernel oil content (qKO1-1) was associated with embryo width; on chromosome 9, the QTL for kernel oil content (qKO9) was related to EEWR (qEEWR9). Embryo oil concentration and embryo width were identified as the most important component traits controlling the second largest QTL for kernel oil content on chromosome 6 (qKO6) and a minor QTL for kernel oil content on chromosome 5 (qKO5-2), respectively. The dissection of kernel oil QTL will facilitate future cloning and/or functional validation of kernel oil content, and help to elucidate the genetic basis of kernel oil content in maize.  相似文献   

20.

Background

Improving digestive efficiency is a major goal in poultry production, to reduce production costs, make possible the use of alternative feedstuffs and decrease the volume of manure produced. Since measuring digestive efficiency is difficult, identifying molecular markers associated with genes controlling this trait would be a valuable tool for selection. Detection of QTL (quantitative trait loci) was undertaken on 820 meat-type chickens in a F2 cross between D- and D+ lines divergently selected on low or high AMEn (apparent metabolizable energy value of diet corrected to 0 nitrogen balance) measured at three weeks in animals fed a low-quality diet. Birds were measured for 13 traits characterizing digestive efficiency (AMEn, coefficients of digestive utilization of starch, lipids, proteins and dry matter (CDUS, CDUL, CDUP, CDUDM)), anatomy of the digestive tract (relative weights of the proventriculus, gizzard and intestine and proventriculus plus gizzard (RPW, RGW, RIW, RPGW), relative length and density of the intestine (RIL, ID), ratio of proventriculus and gizzard to intestine weight (PG/I); and body weight at 23 days of age. Animals were genotyped for 6000 SNPs (single nucleotide polymorphisms) distributed on 28 autosomes, the Z chromosome and one unassigned linkage group.

Results

Nine QTL for digestive efficiency traits, 11 QTL for anatomy-related traits and two QTL for body weight at 23 days of age were detected. On chromosome 20, two significant QTL at the genome level co-localized for CDUS and CDUDM, i.e. two traits that are highly correlated genetically. Moreover, on chromosome 16, chromosome-wide QTL for AMEn, CDUS, CDUDM and CDUP, on chromosomes 23 and 26, chromosome-wide QTL for CDUS, on chromosomes 16 and 26, co-localized QTL for digestive efficiency and the ratio of intestine length to body weight and on chromosome 27 a chromosome-wide QTL for CDUDM were identified.

Conclusions

This study identified several regions of the chicken genome involved in the control of digestive efficiency. Further studies are necessary to identify the underlying genes and to validate these in commercial populations and breeding environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号